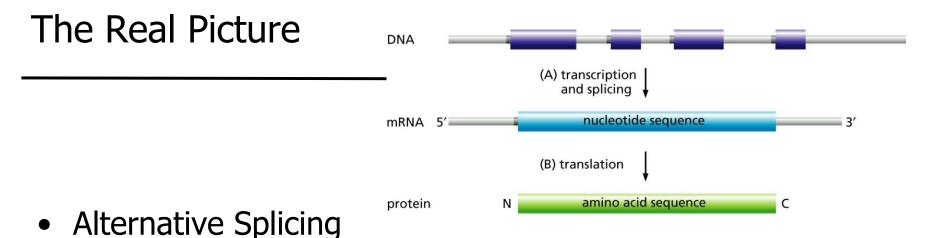
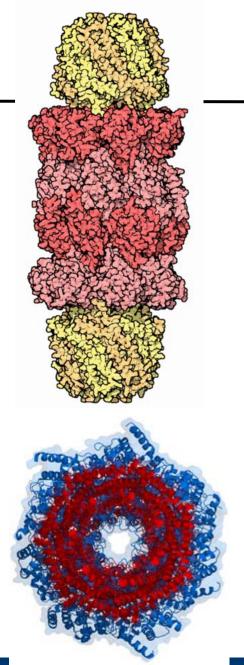

Proteins: Structure & Function

Ulf Leser

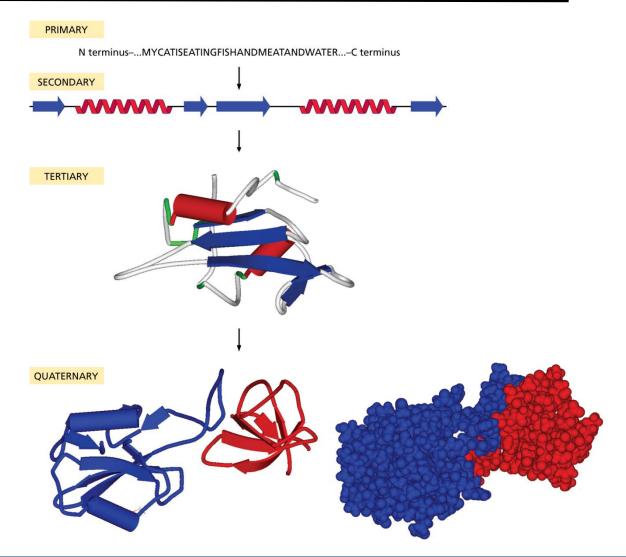

This Lecture

- Introduction
 - Structure
 - Function
 - Databases
- Predicting Protein Secondary Structure
- Many figures from Zvelebil, M. and Baum, J. O. (2008). "Understanding Bioinformatics", Garland Science, Taylor & Francis Group.
- Examples often from O. Kohlbacher, Vorlesung Strukturvorhersage, WS 2004/2005, Universität Tübingen

Central Dogma of Molecular Biology


	U		с		A		G			
	000 000	Phenyl- alanine	UCU UCC	C	UAU UAC	Tyrosine	UGU UGC	Cysteine	U C	
U	UUA UUG	Leucine	UCA UCG	Serine	UAA UAG	Stop codon Stop codon	UGA UGG	Stop codon Tryptophan	A G	
c	CUU CUC	C Leucine	000 000 000 000	Proline	CAU CAC	Histidine	CGU CGC	Arginine	U C	
	CUA CUG				CAA CAG	Glutamine	CGA CGG		A G	
A	AUU AUC	Isoleucine Methionine; initiation codon	ACU ACC ACA ACG	Threonine	AAU AAC	Asparagine	AGU AGC	Serine	U C	
	AUA				AAA AAG	Lysine	AGA AGG	Arginine	A G	
G	GUU GUC		GCU GCC	Alanine	GAU GAC	Aspartic acid	GGU GGC	Glycine	U C	
	GUA GUG	GCA GCG	Aldinite	GAA GAG	Glutamic acid	GGA GGG	Giycine	A G		

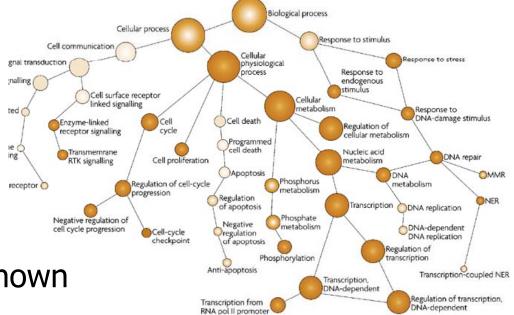
- "One gene one protein" is wrong
- Exons may be spliced from the protein sequence
- Human: ~ 6 times more proteins than genes
- Post-translational modifications
 - (De-)Phosporylation, glycolysation, cleavage of signals, ...
 - Estimates: 100K proteins, 500K protein forms
- Complexes
 - Proteins gather together to perform specific function


Example: Proteasome

- Very large complexes present in all eukaryotes (and more)
 - >2000 kDa, made of dozens of single protein chains
 - Formation of the complex is a very complex process only partly understood yet
- Breaks (mis-folded, broken, superfluous, ...) proteins into small peptides for reuse
 - Suspicious proteins are tagged with ubiquitin which binds to the proteasome

Protein Structure

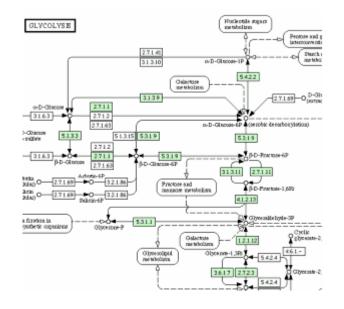
- Primary
 - 1D-Seq. of AA
- Secondary
 - 1D-Seq. of "subfolds"
- Tertiary
 - 3D-Structure
- Quaternary
 - 3D-Structure of assembled complexes

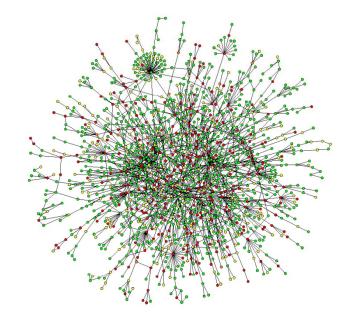

Protein Function

- Proteins perform essentially everything that makes an organism alive
 - Metabolism
 - Signal processing
 - Gene regulation
 - Cell cycle

. . .

- For ~1/3 of all human gene, no function is known
- Describing function
 - Gene Ontology: 3 branches, >30.000 concepts
 - Used world-wide to describe gene/protein function


7



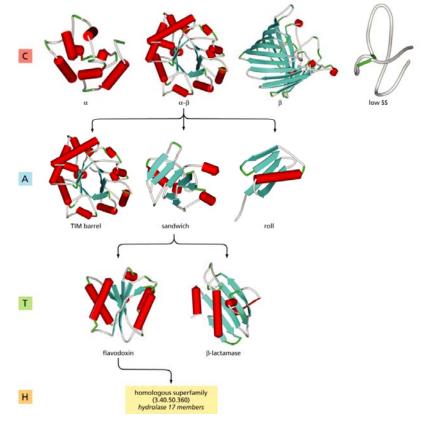
Nature Reviews | Cancer

Protein Interactions and Networks

- Function usually is carried out by a complex interplay between many proteins and other molecules
- Pathways: (artificial) fragments of the cellular network associated to a certain function
 - See lectures later

Function and Motifs

- A protein may "have" many functions
 - Avg. n# of GO terms assigned to a human protein: ~6
- Functions are carried out by substructures of a protein


(A)

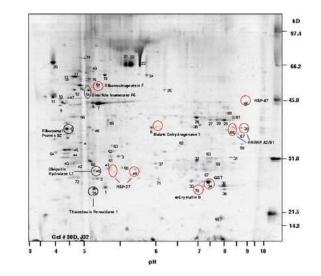
(B)

- Called motifs or domains
- There probably exist only 4000-5000 motifs
 - Proteins: "Assemblies of functional motifs"
- Performing a function often requires binding to another protein or molecule
 - The binding requires a certain constellation of the protein structure
 - Blocking such bindings is a major goal in pharmacological research

Protein Families and Classification

- Several DBs classify proteins according to their overall structure (CATH, SCOP, FSSP)
- Highly related to evolutionary relationships (and function)
- Example: CATH
 - Class (all α , all β , α - β , other)
 - Architecture
 - Topology (similar folds)
 - Homologous superfamily (sets of concrete proteins)
- Helpful to characterize novel proteins

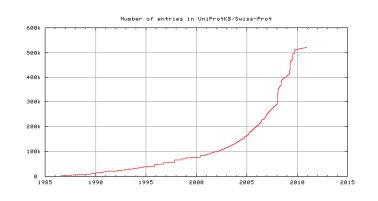
Functional Classification


- Folds correlate with function, but many exceptions
- Enzyme classification (EC-numbers)
 - 4-level hierarchy
 - Based on chemical reactions that are catalyzed
 - Closer related to function than classes of folds
 - Relation protein:EC-number is mostly 1:1

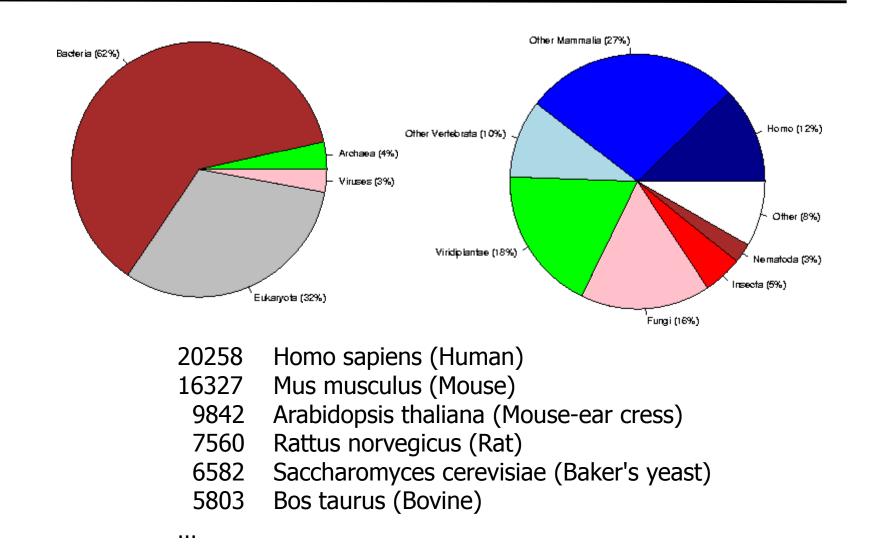
CLASSIFICATION OF ENZYMES								
Group of Enzyme	Reaction Catalysed	Examples						
1. Oxldoreductases	Transfer of hydrogen and oxygen atoms or electrons from one substrate to another.	Dehydrogenases Oxidases						
2. Transferases	Transfer of a specific group (a phosphate or methyl etc.) from one substrate to another.	Transaminase Kinases						
3. Hydrolases	Hydrolysis of a substrate.	Estrases Digestive enzymes						
4. Isomerases	Change of the molecular form of the substrate.	Phospho hexo isomerase, Fumarase						
5. Lyases	Nonhydrolytic removal of a group or addition of a group to a substrate.	Decarboxylases Aldolases						
 Ligases (Synthetases) 	Joining of two molecules by the formation of new bonds.	Citric acid synthetase						

- EC-number and GOannotation are highly correlated
 - But >30.000 concepts versus <4000 EC-numbers

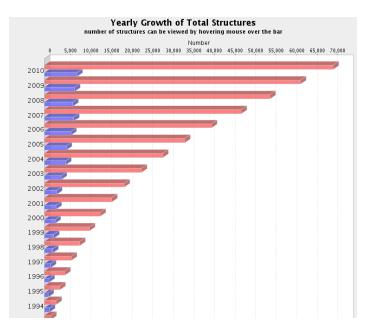
Proteomics – Large Scale Protein Identification


- Measuring gene expression is comparably simple
 - Sequencing mRNA, microarrays (based on hybridization)
- Measuring proteins is much harder
 - Isolating proteins is very complex
 - Sequencing a protein is very slow
- Options (see lecture later)
 - Using 2D-Page
 - Using mass spectrometry
 - De-dovo sequencing with MS/MS
 - Quantification is very difficult

- Some classes of proteins are particularly hard to handle
 - Membrane proteins, non-soluble proteins


UniProt

- "Standard" database for protein sequences and annotation
 - Original name: SwissProt
 - Started at the Swiss Institute of Bioinformatics, now mostly EBI
 - Other: PIR, HPRD
- Continuous growth and curation
 - >30 "Scientific Database Curators"
 - Quarterly releases
 - Very rich annotation set
 - Redundancy-free
- Actually two databases
 - SwissProt: Curated, high quality, versioned
 - TrEMBL: Automatic generation from (putative) coding genomic sequences, low quality, redundant, much larger

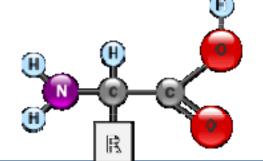


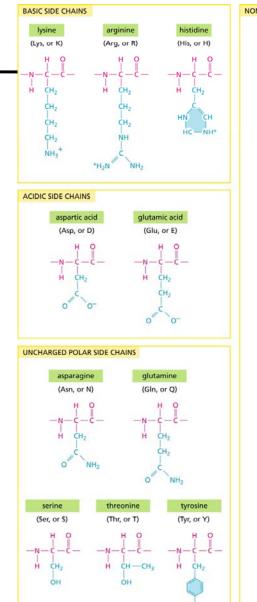
UniProt: Species [http://www.expasy.org/sprot/relnotes/relstat.html]

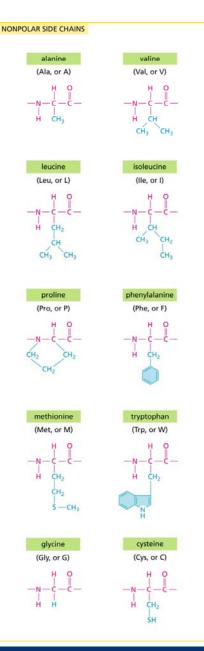
- Oldest protein database, evolved from a book
- Contains all experimentally obtained protein 3D-structures
 - Plus DNA, protein-ligand, complexes, ...
 - X-Ray (~75%), NMR (Nuclear magnetic resonance, ~23%)
- Still costly and slow techniques
 - Growth much smaller than that of sequence-related DBs
- Many problems with legacy data and data formats

InterPro

- Integrated database of protein signatures, classifications, and motifs
 - Currently ~21.000 signatures
- Associates signatures with function (GO term)
- InterProScan quick identification of signatures in a protein sequence
 - For a fast, first functional annotation

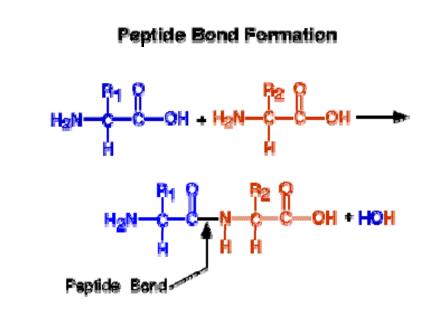


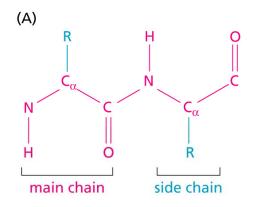

This Lecture


- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - GOR IV
 - Other methods

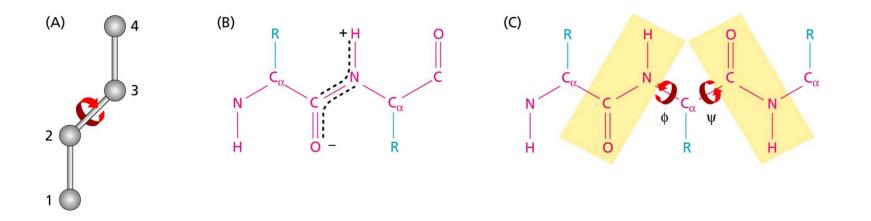
Amino Acids

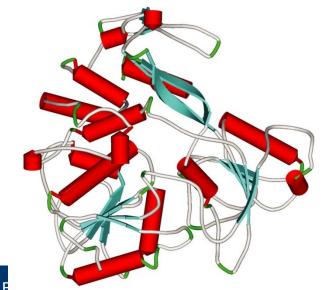
- An AA consists of a common "core" and a specific residue
 - Amino group NH₂
 - Central C_{α} Carbon CH
 - Carboxyl group COOH
- Residues (side chains) vary greatly between AA
- Residues determine the specific properties of a AA

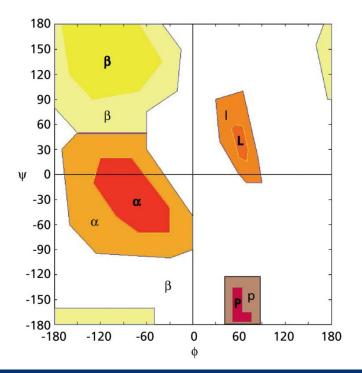


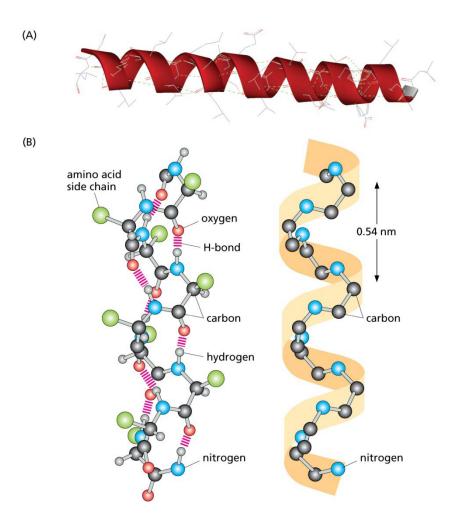


Structure of a Protein

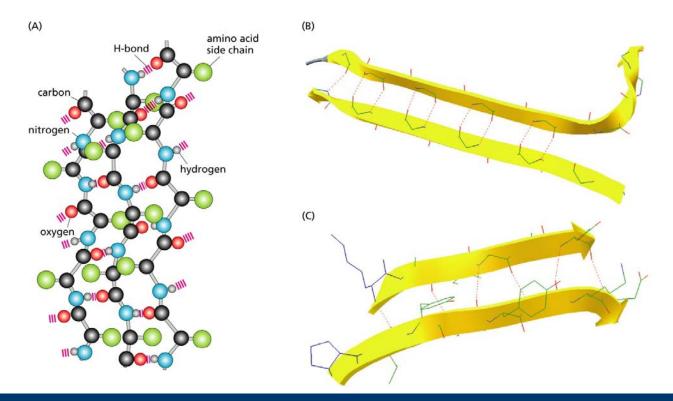

- The core forms the backbone of a protein (AA chain)
- Main structure: Covalent peptide bond between carboxyl and amino group
 - Loss of H_2O

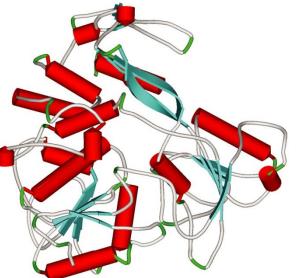

Structure Flexibility


- In principle, every chemical bond can rotate freely, which would allow arbitrary structures to be formed
- In proteins things are much more restricted
 - Peptide bound is "flat" almost no torsion possible
 - Flexibility only in the C_{\!\alpha}\text{-flanking bonds }\phi and ψ


Ramachandran Plots

- Combinations of ϕ and ψ are highly constrained
 - Due to chemical properties of the backbone / side chains
- Two combinations are favored: α -helixes and β -sheets
 - More detailed classifications exist
 - Angels lead to specific structures
 - Secondary structure


α -Helixes


- Comb. of angles forming a regularly structured helix
- Additional bonds between amino and carboxyl groups
 - Very stable structure
- May have two orientations
 Most are right-handed
- 3.4 AA per twist
- Often short, sometimes very long

- Two linear and parallel stretches (β-strands)
- Strands are bound together by hydrogen bounds
- Can be parallel or anti-parallel (wrt. N/C terminus)

- α -helixes and β -sheets form around 50-80% of a protein
- All other "glue" parts are called loops or coils
 - Usually not very important for the structure of the protein
 - But very important for its function
 - Loops are often exposed on the surface and participate in binding to other molecules

- Secondary structure elements (SSE) are vital for the overall structure of a protein
- Thus, they often are evolutionary well conserved
- SSE can be used to classify proteins
 - Such classes are highly associated to function
- Knowing secondary structure thus gives important clues to protein function
- Secondary structure prediction (SSP) is much simpler than 3D structure prediction
 - And 3D structure prediction can benefit a lot from a good SSP

 SSP: Given a protein sequence, assign each AA in the sequence one of the three classes Helix, E (Strand), or Coil

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD ----HHHHHHHHH GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK ----EEEEE KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL

HHH-----EEE------

Classification

- Classification: Classify each AA into one of three classes
- Classification is a fundamental problem (not only in bioinformatics)
 - Classify the readout of a microarray as diseased / healthy
 - Classify a subsequence of a genome as coding / non-coding
 - Classify an email as spam / no spam
- A wealth of different techniques exist (Machine Learning)
 - Naïve Bayes, Regression, Decision Trees, Support Vector Machines, Neural Networks, Sequential Models, ...
- Many of them use the same abstraction and can be exchanged easily
 - Describe objects by features
 - Learn properties of feature values in the different classes
 - Derive a classification function on the features
 - Pre-requisite: Distribution of feature values are at least slightly different in the different classes

This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

Chou-Fasmann Algorithm

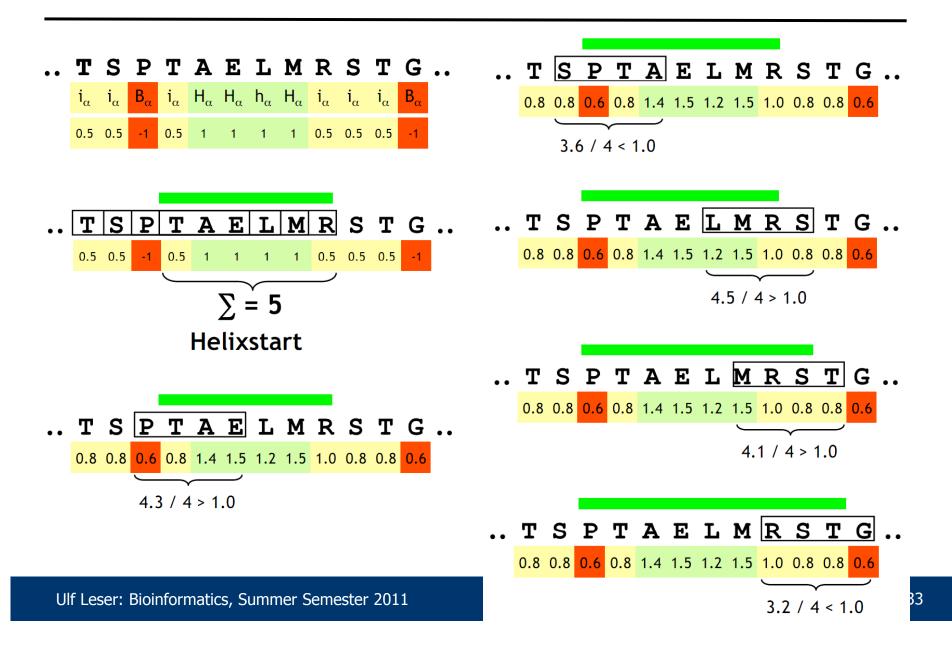
Chou & Fasman (1974). Prediction of protein conformation. Biochemistry 13

- Observation: Different AA favor different folds
 - Different AA are more or less often in H, E, C
 - Different AA are more or less often within, starting, or ending a stretch of H, E, C
- Chou-Fasman algorithm (rough idea)
 - Classifies each AA into E or H; unclassified AA are assigned C
 - Compute a score for the probability of any AA to be E / H
 - Basis: Relative frequencies of assignments in a set of sequences with known secondary structure
 - In principle, assigns each AA its most frequent class
 - Add constraints about minimal length of E, H stretches and several other heuristics

- Let $f_{j,k}$ be the relative frequency of observing AA j in class k
- Let f_k be the average over all 20 $f_{i,k}$ values
- Compute the propensity of AA j to be part of class k as

 $\mathsf{P}_{j,k}{=}\mathsf{f}_{j,k}{/}\mathsf{f}_k$

- Using $P_{j,k}$, classify each AA j for class k according into
 - Strong, normal, weak builder (H_{α} , h_{α} , I_{α})
 - Strong, weak breaker (B_{α} , b_{α})
 - Indifferent (i_{α})
- For now, context (neighboring AAs) is ignored completely


Concrete Values

• Originally computed on only 15 proteins (1974)

٨٢	P _α	Klasse	٨٢	Ρ _β	Klasse	AS	Ρα	Klasse	AS	P _β	Klasse
Glu	.53		Met	.67		lle	1.00	Ι _α	Ala	0.93	Ι _β
Ala	1.45	H_{α}	Val	1.65	H_{β}	Asp	0.98	i _α	Arg	0.90	i _β
Leu	1.34		lle	1.60		Thr	0.82		Gly	0.81	
His	1.24	h _α	Cys	1.30		Ser	0.79		Asp	0.80	
Met	.20		Tyr	1.29		Arg	0.79		Lys	0.74	b _β
Gin	1.17		Phe	1.28		Cys	0.77		Ser	0.72	
Trp	1.14		Gln	1.23	h_{β}	Asn	0.73	b _α	His	0.71	
Val	1.14		Leu	1.22		Tyr	0.61		Asn	0.65	
Phe	1.12		Thr	1.20		Pro	0.59	Βα	Dro	0.62	
Lys	1.07		Trp	1.19		Gly	0.53		Glu	0.26	Β _β

- Go through the protein sequence
- Score each AA with 1 (H_{α} , h_{α}), 0.5 (I_{α} , i_{α}), or -1 (B_{α} , b_{α})
- Find helix cores: subsequences of length 6 with an aggregated AA score ≥ 4
- Starting from the middle of each core, shift a window of length 4 to the left (then to the right)
 - Compute the aggregated P_k -score P inside the window
 - If $P \ge 4$, continue; otherwise stop
- Similar method for strands
- Conflicts (regions assigned both H and E) are resolved based on aggregated P_k-scores

Example

Performance

- Accuracy app. 50-60%
 - Measured on per-AA correctness
- Prediction is more accurate in helices than in strands
 - Because helices build local bridges (hydrogen bounds between the turns; each AA binds to the +4 AA)
- General problem
 - Secondary structure is not only a local problem
 - Looking only at single AAs is not enough
 - Note: Scores are based on individual AA; aggregation by summation assumes statistical independence of pairs, triples ... in a class
 - One needs to include the context of an AA

This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

Classes of Methods

- First generation: Only look at properties of single AA
 - Accuracy: 50-60%
 - E.g. Chou-Fasman (1974)
- Second generation: Include info. about neighborhood
 - Accuracy: ~65%
 - E.g. GOR (1974 1987)
- Third generation: Include info. from homologous seq's
 - Accuracy: ~70-75%
 - E.g. PHD (1994)
- Forth generation: Build ensembles of good methods
 - Accuracy: ~80%
 - E.g. Jpred (1998)

GOR Algorithm

[Garnier et al. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, Jounal of Molecular Biology 120(1), 1978]

- In principle, GOR uses P_k values for 16-grams of AAs
 - Recall: Helices have a "reach" of ~4 AA
 - But neighbors in a strand can be arbitrarily far away from each other (but they are not in practice)
- These cannot be learned from counting
 - There are 16²⁰~1.2E24 different such 16-grams
- Different versions of GOR use different methods to estimate these values
 - GOR IV uses propensities of all pairs in this window
- Other difference
 - Use of negative information (chances of AA j not being in class k)
 - No cores+extension: Each AA is classified based on its 16-context

- Uses two neural networks
- Input is not only the AA and its context, but its profile
 - Given the input sequence X, PHD first search homologous sequences (using PSI-BLAST)
 - All these are subjected to a multiple sequence alignment
 - The "column" of an AA in X is its profile
- Rationale
 - On average, one can exchange ~65% of a protein without changing its secondary structure notably
 - Thus, the concrete AA is not as important as one might think
 - Homologous sequences are believed to have the same function and the same secondary structure
 - We do not classify the AA, but the list of all its replacements

- Gerhard Steger (2003). "Bioinformatik Methoden zur Vorhersage von RNA- und Proteinstrukturen", Birkhäuser, chapter 8,10,11,13
- Zvelebil, M. and Baum, J. O. (2008). "Understanding Bioinformatics", Garland Science, Taylor & Francis Group, chapter 2, 11, 12 (partly)