

Gene expression analysis

Ulf Leser and Karin Zimmermann

What are **microarrays**? - Biomolecular devices measuring the transcriptome of a cell of interest.

Workflow of a **microarray experiment** - RNA extraction, cDNA rewriting, labeling, hybridization to microarray, scanning, spot detection, spot intensity to numeric values, normalization, *analysis* (today)

Normalization – Assumption, that the vast majority of genes is not differentially expressed between the two classes. Remove technical bias to detect the biological differences.

This lecture

Differential expression Clustering Standards in the gene expression data management Databases Why find genes that behave differently in two classes (e.g. normal and tumor)?

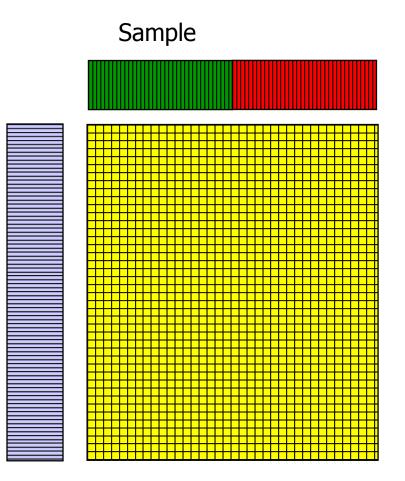
Better understanding of the genetic circumstances that cause the difference (disease) hopefully leads to better therapy.

Detection of marker-genes enables the early recognition of diseases as well as the recognition of subtypes of diseases.

Once a cause is identified therapy can become more specific, more effective and reduce side-effects.

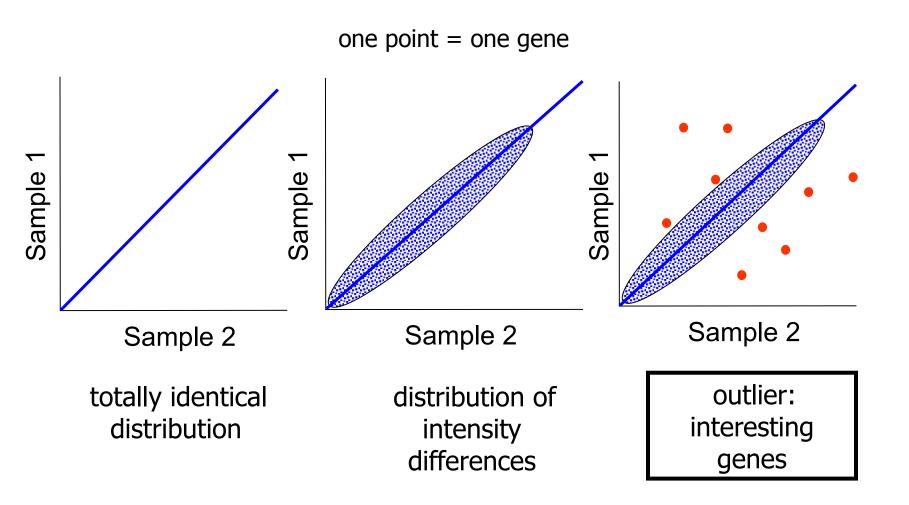
Differential Expression

We have:


 $N_{1'}...,N_{m}$: normale samples $T_{1'}...,T_{n}$: tumor samples

We **look for**: genes with significant differences between N and T

Compare values of gene X from group N with those of group T $% \left(T_{n}^{2}\right) =0$


$$N = \{n_{1}, ..., n_{m}\}$$
$$T = \{t_{1}, ..., t_{n}\}$$

many methods, here: Fold change t-test

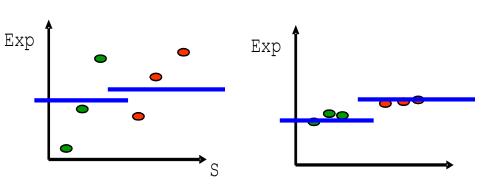
Visualization - Scatterplot

Fold Change

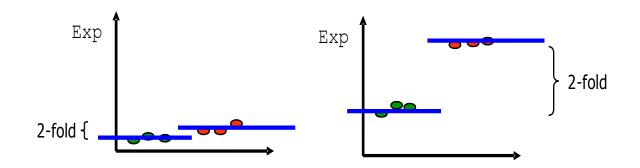
Definition Fold Change (FC):

$$2^{\left|\log 2\left(\frac{avg(T)}{avg(N)}\right)\right|}$$

Significance of result is determined by threshold fc:


fc < 2 not interesting 2 < fc < 4 interesting fc > 4 very interesting

Why log2?


	mean(tumor)	mean(normal)	mean(t) / mean(n)	FC
gene x	16	1	16	16
gene y	0.0624	1	1/16	16

Fold Change– Advantages / Disadvantages

- + intuitive measure
- independent of scatter

- independent of absolut values

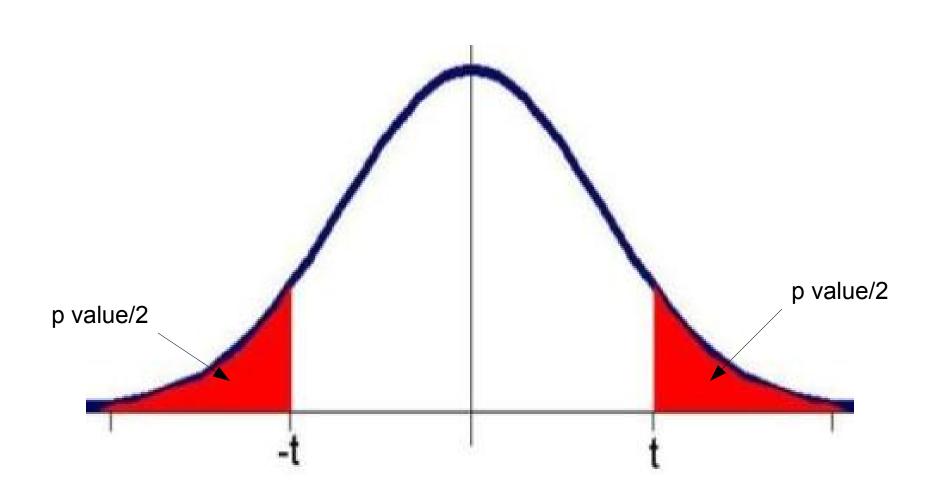
 \rightarrow score based only on the mean of the groups not optimal, include variance!

Hypothesis

H0 Null hypothesis (the one we want to reject) H1 Alternative hypothesis (logical opposite of H0)

Test statistic

Function of the sample that summarizes the characteristics of the latter into one number with a known distribution.


Significance level

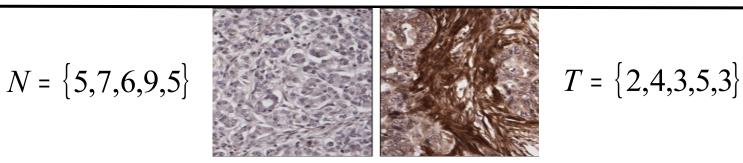
Probability for a false positive outcome of the test, the error of rejecting a null hypothesis when it is actually true

P-Value

Probability of obtaining the observed test-statistic or higher under the assumption, that the null hypothesis holds.

Hypothesis testing – p value

T-test (Welch-test)


Assumption: The values are normally distributed (note that for the normal t-test equal variances are assumed)

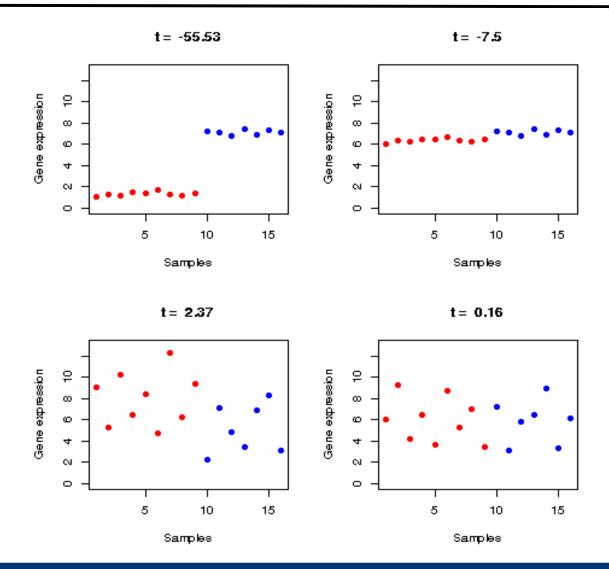
Teststatistik:
$$t = \frac{mean(N) - mean(T)}{\sqrt{\frac{sd(N)^2}{m} + \frac{sd(T)^2}{n}}}$$

the greater | t |, the greater the differential expression of gene X .

From t statistic to p value: t-value and significance level determine the p value (look-up tables)

Example

 $H0: \mu_N - \mu_T = 0$ $H1: \mu_N - \mu_T \neq 0$ **Hypothesis**


Significance level

 $\alpha = 0.05$

mean(N) - mean(T)

Test statistic
$$t = \frac{mcan(T) - mcan(T)}{\sqrt{\frac{sd(N)^2}{m} + \frac{sd(T)^2}{n}}} = 3.3129$$

P-Value $p - value = 0.0126$

Example

ANOVA – comparing more than one group as well as different factors.

SAM – Significance analysis of Microarrays. An 'improvement' of the t-test, as small variances can lead to very significant results without a considerable fold change.

Rank Produkt – sort genes by expression and determine Geometric mean of rank.

Problem: Microarrays contain up to 20 000 genes, thus an α =0.05 leads to 20 000 * 0.05 = 1000 FPs.

Solution: Multiple testing correction. Two basic approaches:

1. Family wise error rate (FWER), the probability of having at least one false positive in the set of results considered as significant.

2. False discovery rate (FDR), the expected proportion of true null hypotheses rejected in the total number of rejections.(FDR measures the expected proportion of incorrectly rejected null hypotheses, i.e. type I errors).

Let N be the number of genes tested and p the p-value of a given probe, one computes an adjusted p-value using:

 $p_{adjusted} = p^*N$

Only if the adjusted p-value is smaller than the pre-chosen significance value, the probe is considered differentially expressed.

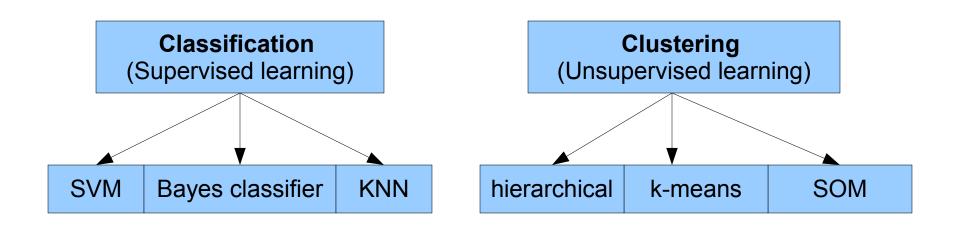
Very conservative test, rarely used in practice.

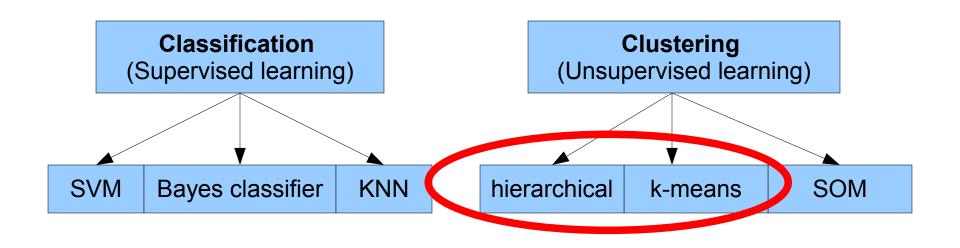
Benjamini – Hochberg (FDR)

- 1. choose a specific α (e.g. α =0.05)
- 2. rank all m p-values from smallest to largest
- 3. correct all p-values: $BH(p_i)_{i=1,...,m} = p_i * m/i$
- 4. BH (p) = significant if BH(p) $\leq \alpha$

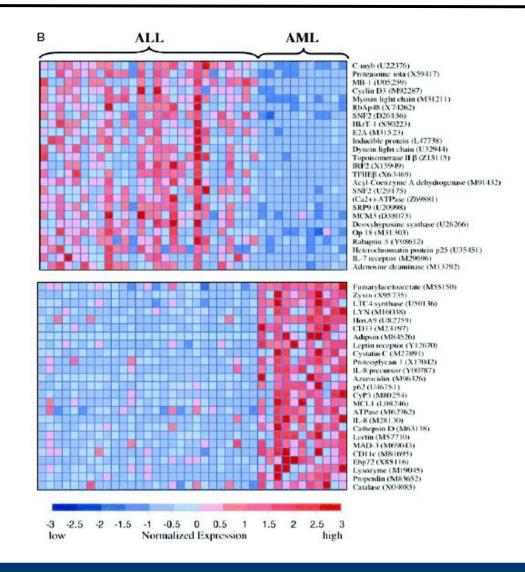
Genes	p-value	rank	BH(p)	Significant? (α=0.05)
Gene A	0.00001	1	1000/1*0.00001=0.01	yes
Gene B	0.0004	2	1000/2*0.0004=0.02	yes
Gene C	0.01	3	1000/3*0.01=3.33	no

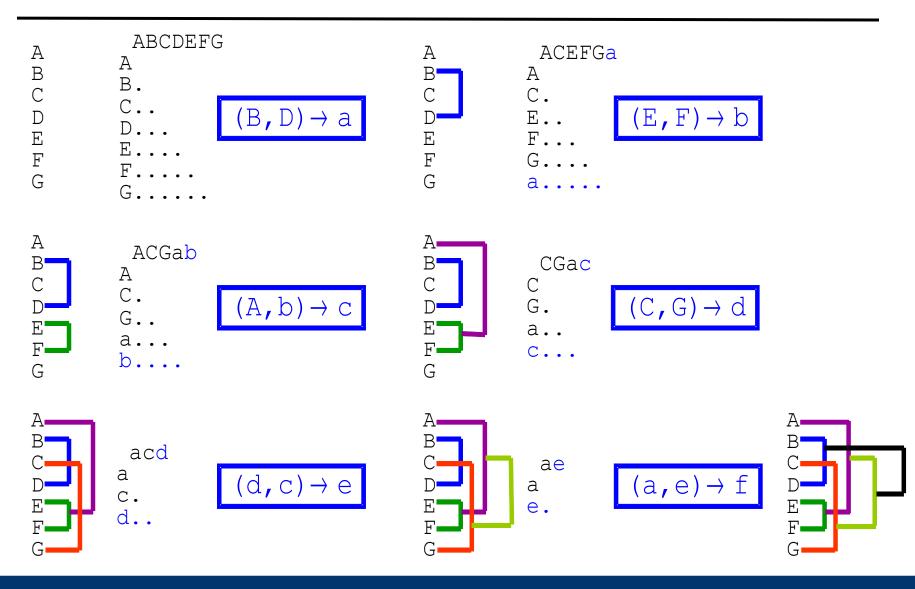
High dimensional data possibly containing all kinds of patterns and behavior of subgroups which might represent biolmedical phenomena. (explorative)


Clustering for quality control.

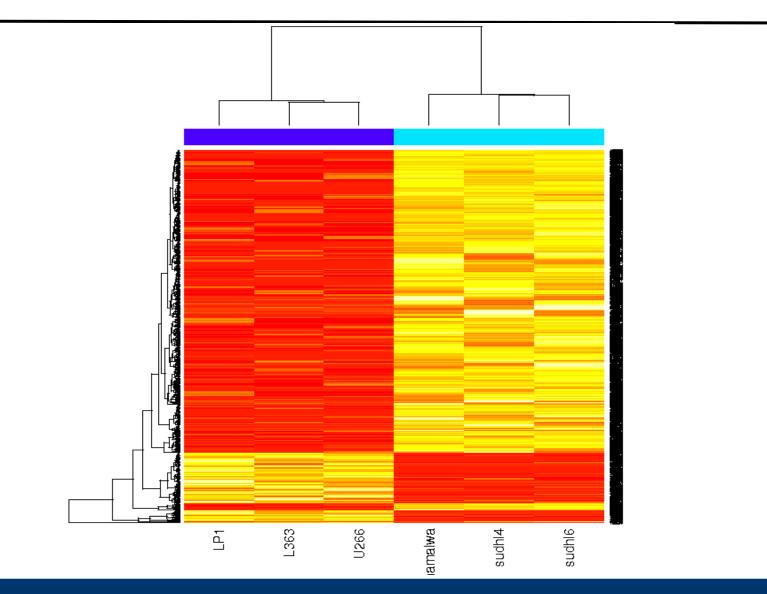

Expression patterns similar in spacial and temporal behavior \rightarrow **co-regulated / expressed genes** (e.g. genes controlled by the same transkriptionfactor).

Discover new **disease subtypes** by clustering samples.


Clustering



Clustering - Example



- 1. choose a distance measure (e.g. euclidean, Pearson, etc.)
- 2. compute similarity matrix S
- 3. compute all pairwise distances in the matrix
- 4. while |S|>1
 - 5. determine pair (X,Y) with minimal distance
 - 6. compute new value Z = avg(X,Y), (single, average, or complete linkage)
 - 7. delete X and Y in S, insert Z in S
 - 8. compute new distances of Z to all elements in S
 - 9. visualize X and Y as pair

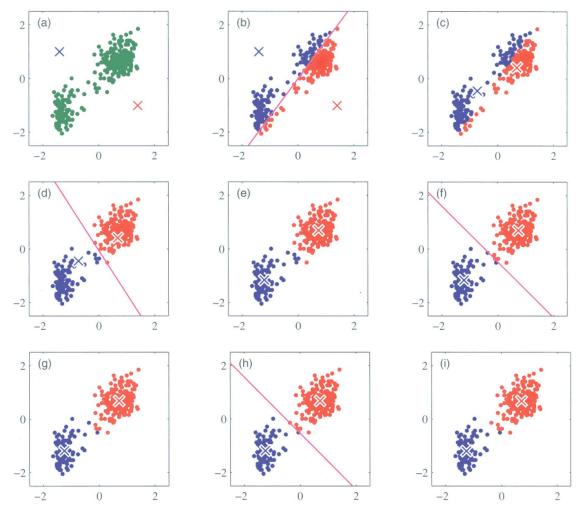
Hierarchical Clustering - graphical

Hierarchical Clustering – real data

Result: binary tree, clusters have to be determined by the user.

- For a easier determination of clusters: length of branch is set in relation to the difference of the leafs.
- The quality of the clustering can (then) be determined by the ratio of the mean distance in the cluster to the mean distance to points not in the cluster. Can be used as a measure for the cluster borders.
- Dendrogram not unambiguous, 2ⁿ possibilities. An O(n⁴) algorithm is known to optimize the dendrogram.

1. choose k random cluster centers μ_1, \dots, μ_k .


for all x in the dataset S compute nearest cluster center
 for all Clusters C_i compute its cost:

$$cost(Ci) = \sum_{r=1...|Ci|} (d(\mu_i, x_{r,i}))$$

4. compute a new center μ_i for every cluster C_i c(Ci)=1/|Ci| $\sum_{r=1}^{|Ci|}$ xri

5. repeat 2.-3. until cluster centers do not change

K means

http://www.itee.uq.edu.au/~comp4702/lectures/k-means_bis_1.jpg

Convergence is not assured.

Cluster quality can be computed by determining the mean distance of a gene to its clustercenters for all clusters.

Number of clusters has to be chosen in advance.

The initialization of the cluster centers has a great impact on the clustering quality, compute more than one initial constellation

Standards

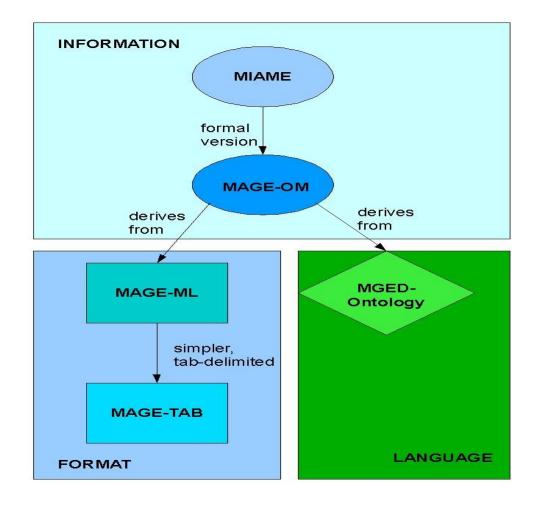
To determine the comparability of different experiments detailed information on the different steps is necessary.

RNA extraction, cDNA rewriting, labeling, hybridization to microarray, scanning, spot detection, spot intensity to numeric values, normalization **MIAME** describes the **Minimum Information About a Microarray Experiment** that is needed to enable the interpretation of the results of the experiment unambiguously and potentially to reproduce the experiment.

MIAME does not specify a particular format (\rightarrow use MAGE-TAB or MAGE-ML)

MIAME does not specify any particular terminology (use MGEDontology)

- 1. raw data (.CEL, .gpr)
- 2. final processed (normalized) data

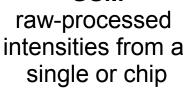

3. sample annotation (incl. Experimental factors and their values)

4. experimental design including sample data relationships (e.g., hybridisations technical or biological replicates)

5. annotation of the **array** (e.g., gene identifiers, genomic coordinates, probe oligonucleotide sequences)

6. laboratory and **data processing protocols** (e.g., what normalisation method)

Standards - Overview


Standards - Overview

	DNA Microarray Data	High- throughput Sequencing Data	In Situ Hy- bridization and Im- munohisto- chemistry Data	Tissue Microarray Data	Proteomics Data
Minimum Information Specifi- cation	MIAME	MINSEQE	MISFISHIE	???	MAIPE
Data Model	MAGE-OM	?	?	TMA-OM	PSI-OM
XML format	MAGE-ML	?	?	TMA-DES	PSI-ML
TAB-del. format	MAGE-TAB	?	?	TMA-TAB	?
Controlled vocabulary	MGED- ontology	?	?	?	?

GEO (Gene Expression Omnibus) Array Express

NCBI public repository RDBMS schema

GPL platform description

GSM

grouping of chip data, a single experiment

GSE

GDS grouping of experiments

curated by NCBI

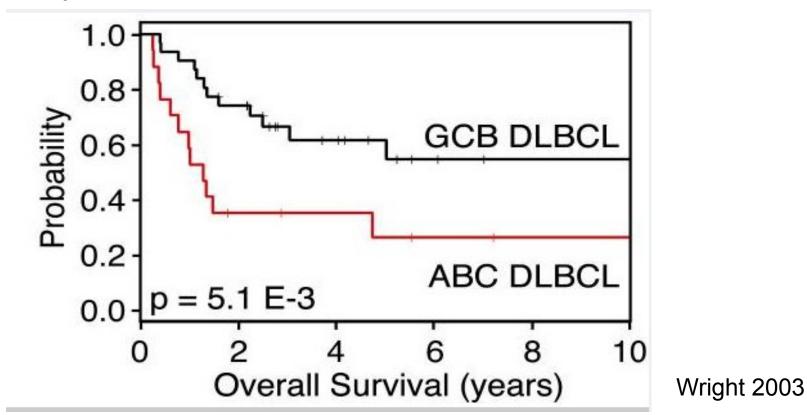
submitted	by
manufactu	rer

submitted by experimentalist

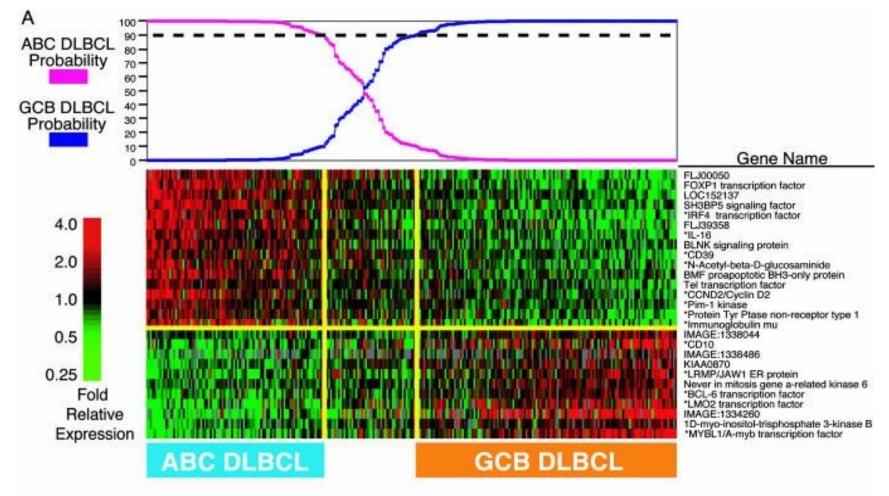
GEO

S NCBI	Gene Expression Omnibus GEO Publications	FAQ	MIAME	Email GEO
BI » GEO			Not logg	jed in Login
ubmissions. Array- and seq	us: a public functional genomics data repository suppuence-based data are accepted. Tools are provided to have expression profiles. More information »			
GEO navigation		5	Site content	s
		F	Public data	
	DataSets GO		Platforms Samples	8,121 504,063
	GO GO		Series	20,230
QUERY	= GEO accession GO		Documentatio	on
	GEO accession		Overview F	AQ Find
	GEO BLAST		Submission g	juide
			Linking & citi	ng
			Journal citati	ons
	DataSets		Construct a C	Query
BROWSE	Platorinis		Programmati	
DROWSE	GEO accessions ————————————————————————————————————		DataSet clust	
			GEO announ	
	Series		Data disclaim	er
			GEO staff	
			Query & Brov	
ubmitter login			Repository br	owser
			Submitters	
User id:	» New account		SAGEmap	
Password	* Recover password		FTP site	
			GEO Profiles	
	LOGIN		GEO DataSet	S

GEO


S NCBI			Gene	Expression O
ME SEARCH SITE MAP			G	EO Publica
BI > GEO > Repository I	rowser 🛛			
O help: Mouse over screen	elements for info	ormation.		
	Total hold	lings		
		Public	Unreleased	Total
	Platforms	8121	541	8662
	Samples	504063	99419	603482
	Series	20230	3744	23974
		 spotte spotte spotte antibo tissue MS (1 SARS' MPSS RT-PC oligon mixed spotte SAGE 	(0) 6) T (2) (17) R (47) ucleotide bead spotted oligor d protein (20)	ide (2065 (2486) Is (130) nucleotide,
		o RNA (o genor o protei o SAGE o mixeo o SRA (404262) nic (83552) n (2241) (1717) I (2428)	

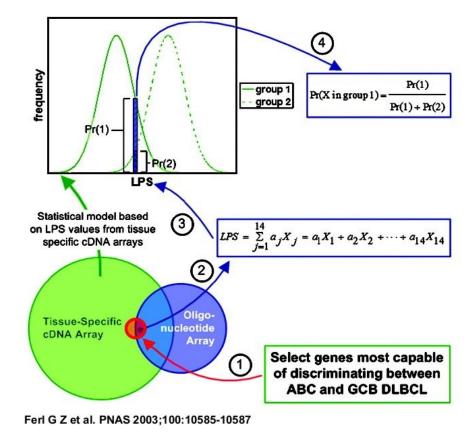
ArrayExpress (EMBL-EBI)


EMBL-EBI EB-eve All Databases Inter Text Here Go Reset ? Go Advanced Search	
Databases Tools EBI Groups Training Industry About Us Help Site Index 🔊 🎒	
The ArrayExpress Archive is a database of functional genomics experiments including gene expression when collected to MIAME and MINSEQE standards. Gene Expression Atlas contains a subset of curated and re-array queried for individual gene expression under different biological conditions across experiments.	
Experiments Archive 16266 experiments, 458692 assays Gene Expression Atlas 5661 experiments, 138677 assays,	
Experiment, citation, sample and factor annotations Genes up/down	Conditions
Browse experiments Advanced query syntax Query Any species	Query
Submitter/reviewer login	
News Links	
 15 Nov 2010 - New citation for ArrayExpress Parkinson et al. 2010. ArrayExpress update - an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucl. Acids Res., doi: 10.1093/nar /gkq1040. Pubmed ID 21071405. 20 Oct 2010 - Internship for a student project in human gene expression - Filled now This student project is now taken. ArrayExpress User Survey Old ArrayExpress Interfact Help Training FAQ Cit Submit Data (array based Programmatic Access FT Software Downloads and EFO Bioconductor Packa ArrayExpress Scientific Adv Functional Genomics Group 	iting I and re-sequencing) TP Access I Statistics age Quality Metrics visory Board

- both encompass MIAME compliance
- both provide a good possibility for making data publicly availabe as often requested by journals
- GEO contains more data
- ArrayExpress provides analysis tools (and seq data?)

germinal center B-cell-like (GCB), activated B-cell-like (ABC) with 5-year survival rates of 59% and 30%

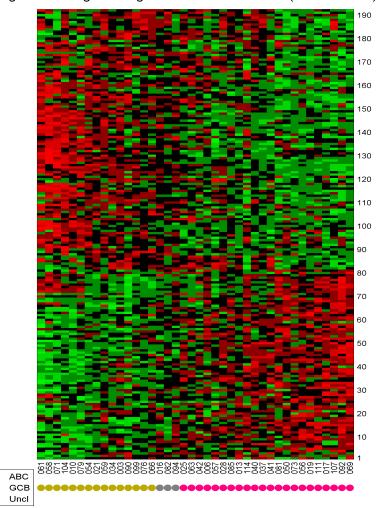
DLBCL Subtypes



Wright 2003

40 Exon arrays of DLBCL patients, subtype unknown. Do we see the division in subgroups with a different technology and different probes?

DLBCL Subtypes


Schematic representation of how gene expression results can be compared across microarray platforms.

©2003 by National Academy of Sciences

PNAS

DLBCL Subtypes

signature=WrightAnalogOnGeneLevel201Genes(192 available)

Combine t-test and fold change for optimal detection of differential expression.

More explorative analysis like clustering can detect patterns inherent in the expression data like co-regulated genes or new disease subtypes.

Public repositories like GEO and ArrayExpress offer a rich fundus of data.