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Last lecture

What are microarrays? -  Biomolecular devices measuring the transcriptome 
of a cell of interest.

Workflow of a microarray experiment  -  RNA extraction, cDNA rewriting, labeling,
hybridization to microarray, scanning, spot detection, spot intensity to numeric values, 
normalization, analysis (today) 

Normalization – Assumption, that the vast majority of genes is not differentially 
expressed between the two classes. Remove technical bias to detect the 
biological differences.
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This lecture

Differential expression
Clustering
Standards in the gene expression data management
Databases
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Differential Expression - Motivation

Why find genes that behave differently in two classes (e.g. normal and tumor)?

Better understanding of the genetic circumstances that cause the difference 
(disease) hopefully leads to better therapy.

Detection of marker-genes enables the early recognition of diseases as well as 
the recognition of subtypes of diseases.

Once a cause is identified therapy can become more specific, more effective
and reduce side-effects.



Ulf Leser and Karin Zimmermann: Bioinformatics, Sommersemester 2011 5

Differential Expression 

Sample

Gene

We have:

N
1
,...,N

m
: normale samples

T
1
,...,T

n
: tumor samples

We look for: genes with significant differences 
between N and T

Compare values of  gene X from group N 
with those of group T

N = {n
1
,...,n

m
}

T = {t
1
,...,t

n
} 

many methods, here:
Fold change
t-test
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Visualization - Scatterplot
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Fold Change

Definition Fold Change (FC): 

Significance of result is determined by threshold fc:

fc < 2 not interesting
2 < fc < 4 interesting
fc > 4 very interesting

Why log2 ?  







)(
)(2log

2 Navg
Tavg

mean(tumor) mean(normal) mean(t) /
mean(n)

FC

gene x 16 1 16 16

gene y 0.0624 1 1/16 16
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Fold Change– Advantages / Disadvantages

+ intuitive measure
- independent of scatter

- independent of absolut values 

→ score based only on the mean of the groups not optimal, include variance! 

S

Exp Exp

Exp Exp

2-fold

2-fold
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T-test – Hypothesis testing 

Hypothesis  
H0 Null hypothesis (the one we want to reject)
H1 Alternative hypothesis (logical opposite of H0)

Test statistic
Function of the sample that summarizes the characteristics of the latter
into one number with a known distribution.

Significance level
Probability for a false positive outcome of the test, 
the error of rejecting a null hypothesis when it is actually true 

P-Value
Probability of obtaining the observed test-statistic or higher under
the assumption, that the null hypothesis holds.
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Hypothesis testing – p value

p value/2
p value/2
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T-test (Welch-test) 

Assumption: The values are normally distributed (note that for the normal t-test 
equal variances are assumed)

Teststatistik:

the greater | t |, the greater the differential expression of gene X . 

From t statistic to p value: t-value and significance level determine the p value
(look-up tables)

( )

n
Tsd

m
Nsd

TmeanNmeant
22 )()(
)(

+

−=
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Example

                     

               
  

0:0 =− TNH µµ0:1 ≠− TNH µµ

{ }5,9,6,7,5=N { }3,5,3,4,2=T  

05.0=α

0126.0=− valuep

( ) 3129.3
)()(

)(
22

=
+

−=

n
Tsd

m
Nsd

TmeanNmeant

Hypothesis  

Test statistic

Significance level

P-Value



Ulf Leser and Karin Zimmermann: Bioinformatics, Sommersemester 2011 13

Example
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Further Methods

ANOVA – comparing more than one group as well as 
different factors.

SAM – Significance analysis of Microarrays. An 
'improvement' of the t-test, as small variances can lead to 
very significant results without a considerable fold change. 

Rank Produkt – sort genes by expression and determine 
Geometric mean of rank.
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Multiple Testing Correction

Problem: Microarrays contain up to 20 000 genes, thus an α=0.05 
   leads to 20 000 * 0.05 = 1000 FPs.

Solution: Multiple testing correction. Two basic approaches:

1. Family wise error rate (FWER) , the probability of having at 
least one false positive in the set of results considered 
as significant.
2. False discovery rate (FDR), the expected proportion of true 
null hypotheses rejected in the total number of            

    rejections.(FDR measures the expected proportion of incorrectly 
rejected null hypotheses, i.e. type I errors).
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Bonferoni (FWER)

Let N be the number of genes tested and p the p-value of a given probe, 
one computes an adjusted p-value using:

p
adjusted

 = p*N 

Only if the adjusted p-value is smaller than the pre-chosen significance 
value, the probe is considered differentially expressed.

Very conservative test, rarely used in practice.
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Benjamini – Hochberg (FDR)

1. choose a specific α (e.g. α=0.05)

2. rank all m p-values from smallest to largest

3. correct all p-values:  BH(p
i
)

i=1,...,m
 = p

i
 * m/i

4. BH (p) = significant if BH(p) ≤  α

Genes p-value rank BH(p) Significant?
(α=0.05)

Gene A 0.00001 1 1000/1*0.00001=0.01 yes

Gene B 0.0004 2 1000/2*0.0004=0.02 yes

Gene C 0.01 3 1000/3*0.01=3.33 no
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Clustering - Motivation

High dimensional data possibly containing all kinds of patterns and 
behavior of subgroups which might represent biolmedical phenomena.
(explorative) 

Clustering for quality control.

Expression patterns similar in spacial and temporal 
behavior → co-regulated / expressed genes (e.g. genes  
controlled by the same transkriptionfactor).

Discover new disease subtypes by clustering samples.
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Clustering 

Ramaswamy 
& Golub 2002
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Clustering - Overwiev

Clustering 
(Unsupervised learning)

Classification 
(Supervised learning)

SOMSVM k-meanshierarchicalBayes classifier KNN
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Clustering - Overwiev

Clustering 
(Unsupervised learning)

Classification 
(Supervised learning)

SOMSVM k-meanshierarchicalBayes classifier KNN
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Clustering - Example
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Hierarchical Clustering - Algorithm

1. choose a distance measure (e.g. euclidean, Pearson, etc.)
2. compute similarity matrix S
3. compute all pairwise distances in the matrix
4. while |S|>1

5. determine pair (X,Y) with minimal distance
6. compute new value Z = avg (X,Y), (single, average, or complete linkage)
7. delete X and Y in S, insert Z in S
8. compute new distances of Z to all elements in S
9. visualize X and Y as pair
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Hierarchical Clustering - graphical
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Hierarchical Clustering – real data
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HC 

Result: binary tree, clusters have to be determined by the user.

For a easier determination of clusters: length of branch is set in relation to the difference of the 
leafs.

The quality of the clustering can (then) be determined by the ratio of the mean distance in the 
cluster to the mean distance to points not in the cluster. Can be used as a measure for the 
cluster borders.

Dendrogram not unambiguous, 2n possibilities. An O(n4) algorithm is known to optimize the 
dendrogram.
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K means

1. choose k random cluster centers μ
1
,...μ

k
.

2. for all x in the dataset S compute nearest cluster center
3. for all Clusters C

i
 compute its cost: 

cost(Ci)=∑r=1...|Ci|(d(μ
i
,x

r,i
))

4. compute a new center μ
i 
for every cluster C

i

c(Ci)=1/|Ci|∑
r=1

|Ci|xri

5. repeat 2.-3. until cluster  centers do not change
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K means

http://www.itee.uq.edu.au/~comp4702/lectures/k-means_bis_1.jpg
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K means 

Convergence is not assured.

Cluster quality can be computed by determining the mean distance of a 
gene to its clustercenters for all clusters.

Number of clusters has to be chosen in advance. 

The initialization of the cluster centers has a great impact on the 
clustering quality, compute more than one initial constellation



Ulf Leser and Karin Zimmermann: Bioinformatics, Sommersemester 2011 30

Standards

To determine the comparability of different experiments detailed information on the 
 different steps is necessary. 

RNA extraction, 
cDNA rewriting, 
labeling,
hybridization to microarray, 
scanning, 
spot detection, 
spot intensity to numeric values, 
normalization
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MIAME

MIAME describes the Minimum Information About a Microarray 
Experiment that is needed to enable the interpretation of the 
results of the experiment unambiguously and potentially to 
reproduce the experiment.

MIAME does not specify a particular format (→ use MAGE-TAB or 
MAGE-ML)

MIAME does not specify any particular terminology (use MGED-
ontology)
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MIAME Specification

1. raw data (.CEL, .gpr)

2. final processed (normalized) data

3. sample annotation (incl. Experimental factors and their values)

4. experimental design including sample data relationships 
(e.g.,hybridisations technical or biological replicates)

5. annotation of the array (e.g., gene identifiers, genomic coordinates, 
probe oligonucleotide sequences )

6. laboratory and data processing protocols (e.g., what 
normalisation method)
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Standards - Overview
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Standards - Overview

DNA 
Microarray  

Data

High-
throughput  
Sequencing 

Data

In Situ Hy-
bridization  

and Im-
munohisto-
chemistry 

Data

Tissue 
Microarray 

Data

Proteomics  
Data

Minimum 
Information 

Specifi-
cation

MIAME MINSEQE MISFISHIE ??? MAIPE

Data Model MAGE-OM ? ? TMA-OM PSI-OM

XML format MAGE-ML ? ? TMA-DES PSI-ML

TAB-del. 
format

MAGE-TAB ? ? TMA-TAB ?

Controlled 
vocabulary

MGED-
ontology

? ? ? ?
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Databases

GEO (Gene Expression Omnibus)
Array Express 



Ulf Leser and Karin Zimmermann: Bioinformatics, Sommersemester 2011 36

GEO – Gene Expression Omnibus

NCBI public repository
RDBMS schema

GDS
grouping of 
experiments

GSE
grouping of chip data,
a single experiment

GSM
raw-processed 

intensities from a 
single or chip

GPL
platform description

submitted by
manufacturer

submitted by
experimentalist

curated by
NCBI
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GEO
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GEO
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ArrayExpress (EMBL-EBI)
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GEO vs. ArrayExpress

- both encompass MIAME compliance

- both provide a good possibility for making data publicly 
availabe as often requested by journals 

- GEO contains more data

- ArrayExpress provides analysis tools (and seq data?)   
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DLBCL Subtypes

germinal center B-cell-like (GCB), activated B-cell-like (ABC) 
with 5-year survival rates of 59% and 30%

   

Wright 2003



Ulf Leser and Karin Zimmermann: Bioinformatics, Sommersemester 2011 42

DLBCL Subtypes

   

Wright 2003
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DLBCL Subtypes

40 Exon arrays of DLBCL patients, subtype unknown. 
Do we see the division in subgroups with a different 

technology and different probes?
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DLBCL Subtypes
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DLBCL Subtypes
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Summary

Combine t-test and fold change for optimal detection of 
differential expression.

More explorative analysis like clustering can detect patterns 
inherent in the expression data like co-regulated genes or 
new disease subtypes.

Public repositories like GEO and ArrayExpress offer a rich 
fundus of data.
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