

Analysis of gene expression data

Ulf Leser and Philippe Thomas

This Lecture

- Protein synthesis
- Microarray
 - Idea
 - Technologies
 - Applications
 - Problems
- Quality control
- Normalization
- Analysis next week!

Protein synthesis

- Gene expression has 2 phases:
 - Transcription (DNA -> mRNA) (40 nt /second)
 - Translation (mRNA -> protein) (40 aa/second)

AG:Proteomics Algorithms and Simulations

Tübingen

mRNA quantification

- Reporter Gene (GFP)
- Northern blotting
- Real time PCR
- Microarray
 - High throughput (multiple genes with one experiment)

http://www.agilent.com/about/newsroom/

http://www.dddmag.com/uploaded1mages/ rticles/2007 10/dd7odisnp5.ipg

Isca/imagelibrary/images/Isca_160_Array_Slide.jpg

This Lecture

- Protein synthesis
- Microarray
 - Idea
 - Technologies
 - Applications
 - Problems
- Quality control
- Normalization
- Analysis next week!

Microarray Experiment I

- Comparative
 - Between experiment not between gene
- Measure mRNA expression
 - For all genes
 - At a specific time point
 - One sample
- Assumes that mRNA expression correlates with protein synthesis
 - Not entirely true
- Trend towards next generation sequencing
 - But: Microarrays are an important and prominent technology

Microarray Experiment II

- Find differentially expressed genes between groups
 - Healthy vs. sick
 - Tissue /Cell types
 - Development state
 - Embryo, Child, Adolescent, Adult,
 - Cell development
 - Environment
 - Heat shock, Nutrition, Therapy
 - Disease subtypes
 - ALL vs. AML
 - 40% chemotherapy resistant in colon cancer
- Co-regulation of genes
 - Similar gene-pattern -> similar function?
 - Similar gene-pattern -> similar regulation?

Hybridization is the process of unifying two complementary singlestranded chains of DNA or RNA two one doublestranded molecule.

http://encyclopedia2.thefreedictionary.com/micro+array

RNA fragments with fluorescent tags from sample to be tested

Application flow

Ulf Leser: Bioinformatics, Wintersemester 2010/2011

Probe preparation

- Replicate cDNA library (PCR)
- Spot on array
- Each spot represents a transcript/gene (idealized)
- Array-Layout: Redundancy, controls, maximum number of spots, ...

	S1	S2	S 3	S 4	S 5	S 6	•••
Z1	G11	G11	G21				
Z2	G12						
Z3	G13						
Z4	G14						
Z5	G15						
Z6	G16						

- Isolate cells in condition X
- RNA extraction
- Synthesize to cDNA
- cDNA labeling with colorized nucleotides
 - Labeled nucleotides
 - Biotinylated Oligo-dT
- RNA-Hybridisation

- Spotted on a microscope slide
- Spacing between two spots is ~120um
- 5ng of DNA/spot needed
- Many labs have required equipment
- Customization of probes (selection according to user need)
- Fewer Probes/Genes represented
- Probes are longer

Differences in Technology – Two Color Array I

- Two samples with one array
 - Two different colors Cy3 / Cy5
 - Laser uses two different wave length
- Usually spotted
- Cross hybridisation between the two samples possible

Sample B (Green) Channel

Ulf Leser: Bioinformatics, Wintersemester 2010/2011

- Sample A: red
- Sample B: green
- Ratio Red/Green
 - Black: No signal in both samples
 - Red: High expression in A
 - **Green**: High expression in B
 - Yellow: Equal expression

- Robustness between one array type
- Often one sample/chip
 - Twice as many chips as two-color
 - No cross hybridization between samples
- Short Probes (25nt 80nt)
 - 11 20 Probes is one probeset
 - represent one gene transcript
 - scattered over array
 - Up to 4 Mio probes / Chip
 - Perfect match and mismatch probes

Differences in Technology – Oligo Microarray

http://www.koreanbio.org/Biocourse/images/e/e0/Photolithography.gif

- Good quality control
- No customization of probes
- Selection of good oligos is difficult
 - Probe self-hybridization
 - Probe should be unique for a transcript
 - Minimize the number of light expose cycles (reduce cost)

Comparison

- Oligo Chips
 - Densely packed
 - Companies sell "kits" for every use case
 - Robust \rightarrow reproducible results
 - Easy to handle in tools like R (probe annotation)
 - No customization of probes
 - Not available for all species
- cDNA Arrays
 - cDNA covers a longer mRNA fragment
 - Good customization
 - Very time intensive
 - Less spots / genes \rightarrow limited redundancy
 - Error prone workflow
 - Results difficult to compare
 - Only available for species with EST (cDNA transcripts)

In order to exclude technical or biological bias, replicated measurements are exploited:

- Technical Replicates:
 - Same sample hybridized against several arrays
 - Statistical estimation of systematic effects
- Biological Replicates:
 - Different sample sources are used
 - They allow to estimate biological noise and reduce the randomness of the measurement.

- Gene-Expression profiling
 - Usually referred to as Microarray or GeneChip
 - Measure expression level of all genes
- Exon array
 - Each exon of a gene is measured individually
- SNP array
 - Identifying single nucleotide polymorphism among alleles within or between populations.
- ChIP-on-chip
 - Detects DNA fragments specifically bound to a protein (e.g. transcription factor)

Advances in technology

Challenges

- Patient data has a high variance
 - Different genetic background
 - Mixture of cells from different tissues
 - Cells are in different stages (cell cycle; cell development)
- Gene representation
 - Very low mRNA level
 - Gene active during a short life time (embryonic stage, M-stage)
 - Genes not represented on Microarray
 - Annotation of a genome evolves over time; oligo-array is constant
- Environment has influence on hybridization quality
- Noise: Technical replicates never produce the same data

Challenges

- Transient data
 - Select appropriate time point
 - Signaling might be very fast for some processes
 - Intermediate steps are lost
- Cause end effect
 - Tumors have high cell proliferation
- Biological interpretation difficult
- High number of transcripts
 - Multiple test correction
 - Choice of statistical test
- Time series results in day/night work and might result in a completely lost data set

This Lecture

- Protein synthesis
- Microarray
 - Idea
 - Technologies
 - Applications
 - Problems
- Quality control
- Normalization
- Analysis next week!

Data visualization, quality control

- Boxplot
 - Estimate the homogeneity of data

Data visualization, quality control

- Scatter plot
 - Each point represents one transcript in two experimental settings

MA-Plot I

- Fold Change or m-value
 - Fold change is the log2-ratio between two values
 - Log-values are symmetric
 - Visual interpretation (Difference between 4 to 16 vs. 0.25 to 0.0625)
 - Mathematical issues

$$FC(Value_1/Value_2) = \log_2\left(\frac{Value_1}{Value_2}\right)$$

• For example:

$$FC(512/1024) = \log_2\left(\frac{512}{1024}\right) = -1$$
$$FC(123/123) = \log_2\left(\frac{123}{123}\right) = 0$$
$$FC(512/256) = \log_2\left(\frac{512}{256}\right) = +1$$

$$FC(512/1024) = \left(\frac{512}{1024}\right) = \underline{0.5}$$
$$FC(123/123) = \left(\frac{123}{123}\right) = \underline{1}$$
$$FC(512/256) = \left(\frac{512}{256}\right) = \underline{2}$$

MA-Plot II

A-Value is the logged intensity mean value

$$A = \frac{1}{2} \times \left(\log_2(Value_1) + \log_2(Value_2) \right)$$

 Note that this scatter plot is a 45° rotated version with subsequent scaling of the normal scatter plot.

This Lecture

- Protein synthesis
- Microarray
 - Idea
 - Technologies
 - Applications
 - Problems
- Quality control
- Normalization
- Analysis next week!

- Microarrays are comparative experiments
 - Distinguish between biological from technical variation
- Measurements between two experiments are not directly comparable
- Minimize the influence systematic errors on the experiment
 - Sample preparation
 - Different quantities of RNA
 - Probe affinity
 - Fluorescence detection non-linear
 - self fluorescence of microarray surface
 - Experimentator variability
- No method to handle bad RNA quality

mathworks.com (based on Naef and Magnasco, Phys. Rev., 2004)

Normalization

- G and C bindings have a higher energy than A and T bindings.
- Furthermore, the binding specificity depends on the nucleotide positions in the probe.

- mRNA in a sample
 - Assumption: "cells contain same proportion of RNA"
 - Measure total mRNA
 - Divide intensities by this value
- Reference gene
 - Assumption: "These genes are similar expressed across tissue"
 - Selection of "Housekeeping" genes
 - Divide intensities by this value

- Dye-bias in two color array
 - Green channel appears consistently brighter then red channel
 - Intensity based
- Fit simple models to localized subsets
 - Needs no global function of any form to fit a model to the data
 - It requires large, densely sampled data sets in order to produce good models

Non linear methods – Lowess II

- Impose same empirical distribution of entities to each array
- Each hybridization is thus the transformation of an underlying common distribution
- Usually outperforms linear methods
 - Sophisticated methods like RMA use quantile normalization

- 1. Given a matrix X where p x n where each array is a column and each transcript is a row
- 2. Sort each column of X separately to give X_{sort}
- 3. Take the mean, across rows, of X_{sort} and create X'_{sort}
- 4. Get X_n by rearranging each column of X'_{sort} to have the same ordering as the corresponding input vector

Quantile normalization III

1. Given a matrix X where p x n where each array is a column and each transcript is a row

		Array 1	Array 2	Array 3
Sort by column	Gene1	1	6	8
	Gene2	2	5	9
	Gene 3	3	4	7

	Array 1	Array 2	Array 3		
Gene1	1	4	7		
Gene2	2	5	8		
Gene 3	3	6	9		

	Array 1	Array 2	Array 3	
Gene1	4	4	4	
Gene2	5	5	5	
Gene 3	6	6	6	

	Array 1	Array 2	Array 3
Gene1	4	6	5
Gene2	5	5	6
Gene 3	6	4	4

Ulf Leser: Bioinformatics, Wintersemester 2010/2011

Before

	Array 1	Array 2	Array 3
Gene1	1	6	8
Gene2	2	5	9
Gene 3	3	4	7

After

	Array 1	Array 2	Array 3
Gene1	4	6	5
Gene2	5	5	6
Gene 3	6	4	4

Quantile normalization V

Ulf Leser: Bioinformatics, Wintersemester 2010/2011

Gene expression matrix

Sample

Ulf Leser: Bioinformatics, Wintersemester 2010/2011

Conclusion

- Different techniques
 - cDNA: cDNA library
 - Oligo: artificial Oligos
- Problems
 - Image recognition
 - Normalization
- Comparative tool
- Findings about interplay of genes in pathways
- Often used

This Lecture

- Protein synthesis
- Microarray
 - Idea
 - Technologies
 - Applications
 - Problems
- Quality control
- Normalization
- Analysis next week!