Multiple Sequence Alignment
Sum-of-Pairs and ClustalW
This Lecture

- **Multiple Sequence Alignment**

- The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: ClustalW
Multiple Sequence Alignment

- We now **align multiple** \((k>2)\) **sequences**
 - Note: Also BLAST aligns only two sequences

- Why?
 - Imagine \(k\) sequences of the promoter region of genes, all regulated by the same transcription factor \(f\). Which **subsequence within the \(k\) sequences** is recognized by \(f\)?
 - Imagine \(k\) sequences of proteins that bind to DNA. Which **subsequence of the \(k\) sequences** code for the part of the proteins that performs the binding?

- General
 - We want to know the **common part(s)** in \(k\) sequences
 - “common” does not mean identical
 - This part can be anywhere within the sequences
Definition

- A multiple sequence alignment (MSA) von k Strings s_i, $1 \leq i \leq k$, is a table of k rows and l columns ($l \geq \max(|s_k|)$), such that
 - Row i contains the sequence of s_i with an arbitrary number of blanks being inserted at arbitrary positions
 - Every symbol of every s_i stands in exactly one column
 - No column contains only blanks

\[
\begin{align*}
\text{AACGTGATTGAC} & \quad \text{AACGTGATTGA} & \quad \text{C} \\
\text{TCGAGTGCTTTACAGT} & \quad \text{_TCGAGT} & \quad \text{GCTTTACAGT}_{} \\
\text{GCCGTGCTAGTCG} & \quad \text{GCCGTGCTAGT}_{} & \quad \text{C}_{} \quad \text{G} \\
\text{TTCAGTGGACGTGGTA} & \quad \text{TTCA}_{} \quad \text{GTG}_{} \quad \text{GACGTG}_{} \quad \text{GTA} \\
\text{GGTGCAGACC} & \quad \text{G}_{} \quad \text{GTGCA}_{} \quad \text{GAC}_{} \quad \text{C}_{}
\end{align*}
\]
Good MSA

- We are searching for good (optimal) MSAs
- Defining „optimal“ here is not as simple as in the k=2 case
- Intuition
 - All sequences had a common ancestor and evolved by evolution
 - We want to assume as few evolutionary events as possible
 - Thus, we want few columns (~ few INSDELs)
 - Thus, we want homogeneous columns (~ few replacements)
This Lecture

- Multiple Sequence Alignment
- The problem
- **Theoretical approach:** Sum-of-Pairs scores
- **Practical approach:** ClustalW
What Should we Count?

• For two sequences
 – We scored each column using a scoring matrix
 – Find the alignment such that the total score is maximal
• But – how do we score a column with 5*T, 3*A, 1*_?
 – We would need an exponentially big scoring matrix
• Alternative: Sum-of-Pairs Score
 – We score an entire MSA
 – We score the alignment of each pair of sequences in the usual way
 – We aggregate over all pairs to score the MSA
 – We need a clever algorithm to find the MSA with the best score
Formally

- **Definition**
 - Let M be a MSA for the set S of k sequences $S = \{s_1, \ldots, s_k\}$
 - The alignment of s_i with s_j induced by M is generated as follows
 - Remove from M all rows except i and j
 - Remove all columns that contain only blanks
 - The *sum-of-pairs score (sop)* of M is the sum of all pair-wise induced alignment scores
 - The *optimal MSA for S wrt. to sop* is the MSA with the highest sop-score over all possible MSA for S
Example

- Given a MSA over k sequences of length l – how complex is it to compute its sop-score?
- How do we find the best MSA?
Analogy

- Think of the $k=2$ case
- Every alignment is a path through the matrix
- The three possible directions (down, right, down-right) conform to the three possible constellations in a column ($XX, X_, _X$)
- With growing paths, we align growing prefixes of both sequences
Analogy

- Assume $k=3$
- Think of a 3-dimensional cube with the three sequences giving the values in each dimension
- Now, we have paths aligning growing prefixes of three sequences
- Every column has seven possible constellations (XXX, $XX__$, X_X, $XX___$, $X__$____$, $__X$_, $______X$)
Dynamic Programming in two Dimensions

• We compute the best possible alignment \(d(i,j)\) for every pair of prefixes (lengths \(i,j\)) using the following formula:

\[
d(i, j) = \min \begin{cases}
 d(i, j - 1) + 1 & \text{Insertion in one seq} \\
 d(i - 1, j) + 1 & \text{Insertion in the other seq} \\
 d(i - 1, j - 1) + t(i, j) & \text{Match or mismatch}
\end{cases}
\]
Dynamic Programming in three Dimensions

- We compute the best possible alignment $d(i,j,k)$ for every triple of prefixes (lengths i,j,k) using the following formula:

$$d(i,j,k) = \min \begin{cases}
 d(i-1,j-1,k-1) + c_{ij} + c_{ik} + c_{jk} & \text{Three (mis)matches} \\
 d(i-1,j-1,k) + c_{ij} + 2 & \text{One (mis)match, two ins} \\
 d(i-1,j,k-1) + c_{ik} + 2 & \\
 d(i,j-1,k-1) + c_{jk} + 2 & \\
 d(i-1,j,k) + 2 & \\
 d(i,j-1,k) + 2 & \\
 d(i,j,k-1) + 2 & \\
 d(i,j,k) + 2 &
\end{cases}$$

Let $c_{ij} = 0$, if $S_1(i) = S_2(j)$, else 1
Let $c_{ik} = 0$, if $S_1(i) = S_3(k)$, else 1
Let $c_{jk} = 0$, if $S_2(j) = S_3(k)$, else 1
All Possible Steps

- $d(i-1,j-1,k-1)$
- $d(i,j-1,k-1)$
- $d(i,j,k-1)$
- $d(i,j-1,k)$
- $d(i,j,k)$
- $d(i-1,j-1,k)$
- $d(i-1,j,k)$
- $d(i-1,j,k-1)$
Concrete Examples

- Best sop-score for $d(i,j-1,k)$ is known
- We want to compute $d(i,j,k)$
- This requires to align one symbol with two blanks (blank/blanks does not count)
- $d(i,j,k) = d(i,j-1,k) + 2$

- Best sop-score for $d(i-1,j,k-1)$ is known
- We want to compute $d(i,j,k)$
- This requires aligning a blank with $s_1[i-1]$ and with $s_3[k-1]$ and to align $s_1[i-1]$ and $s_3[k-1]
- $d(i,j,k) = d(i-1,j,k-1) + 2 + c_{ik}$
Initialization

- We need to start somewhere

- Of course, we have $d(0,0,0)=0$

- Aligning in **one dimension**: $d(i,0,0)=2*i$
 - Dito for $d(0,j,0)$, $d(0,0,k)$

- Aligning in **two dimensions**: $d(i,j,0)=...$
 - Let $d_{a,b}(i,j)$ be the alignment score for $S_a[1..i]$ with $S_b[1..j]$
 - $d(i, j, 0) = d_{1,2}(i, j) + (i+j)$
 - $d(i, 0, k) = d_{1,3}(i, k) + (i+k)$
 - $d(0, j, k) = d_{2,3}(j, k) + (j+k)$
Algorithm

initialize matrix d;
for $i := 1$ to $|S_1|$
 for $j := 1$ to $|S_2|$
 for $k := 1$ to $|S_3|$
 if ($S_1(i) = S_2(j)$) then $c_{ij} := 0$; else $c_{ij} := 1$;
 if ($S_1(i) = S_3(k)$) then $c_{ik} := 0$; else $c_{ik} := 1$;
 if ($S_2(j) = S_3(k)$) then $c_{jk} := 0$; else $c_{jk} := 1$;
 $d_1 := d[i-1,j-1,k-1] + c_{ij} + c_{ik} + c_{jk}$;
 $d_2 := d[i-1,j-1,k] + c_{ij} + 2$;
 $d_3 := d[i-1,j,k-1] + c_{ik} + 2$;
 $d_4 := d[i,j-1,k-1] + c_{jk} + 2$;
 $d_5 := d[i-1,j,k] + 2$;
 $d_6 := d[i,j-1,k] + 2$;
 $d_7 := d[i,j,k-1] + 2$;
 $d[i,j,k] := \min(d_1, d_2, d_3, d_4, d_5, d_6, d_7)$;
 end for;
 end for;
end for;
Bad News – Complexity

• For 3 sequences of length n, we have to perform
 – There are n^3 cells in the cube
 – For each cell (top-left-front corner), we need to look at 7 corners
 – Together: $O(7\times n^3)$ computations

• For k sequences of length n
 – There are n^k cell corners in the cube
 – For each corner, we need to look at 2^{k-1} other corners
 – Together: $O(2^k \times n^k)$ computations

• Actually, the problem is NP-complete
This Lecture

- Multiple Sequence Alignment
- The problem
- Theoretical approach: Sum-of-Pairs scores
- Practical approach: ClustalW
Scoring a MSA

- Let’s take one step back
- What happened during evolution?

• Real number of events: 8
• sop-score: $2+3+6+6+2+…$
 - Everything is counted multiple times
Different Scoring Function

- If we knew the phylogenetic tree of the k sequences
 - Align every parent with all its children
 - Aggregate all alignment scores
 - This gives the “real” number of evolutionary operations
- But: Finding the true phylogenetic tree requires a MSA
 - Not be covered here
- Use a heuristic: ClustalW
ClustalW

- **Main idea**
 - Compute a “good enough” phylogeny – the guide tree
 - Use the guide tree to iteratively align small MSA to larger MSA
 - Starting from single sequences
 - To escape the curse of dimensionality, compute MSA iteratively
 - “Progressive” MSA
 - Does not necessarily find the best solution
 - Needs a fast method to align two MSAs

- **Works quite well in practice**

- **Many other, newer (better) proposals**
 - DAlign, T-Coffee, HMMT, PRRT, MULTALIGN, ...
Step 1: Compute the Guide Tree

- Compute all pair-wise alignments and store in similarity matrix M
 - $M[i,j] = \text{sim}(s_i, s_j)$
- Compute the guide tree using hierarchical clustering
 - Choose the smallest $M[i,j]$
 - Let s_i and s_j form a new (next) branch of the tree
 - Compute the distance from the ancestor of s_i and s_j to all other sequences as the average of the distances to s_i and s_j
 - Set $M' = M$
 - Delete rows and columns i and j
 - Add a new column and row (ij)
 - For all $k \neq ij$: $M'[ij,k] = (M[i,k] + M[j,k]) / 2$
 - Iterate until M' has only one column / row
Sketch

A
B
C
D
E
F
G

ABCDEF

A
B
C
D
E
F
G

ACGabc
A
C.
G...
a...
b....

acd
a
c.
d..

A
B
C
D
E
F
G

ACEFGa
A
B
C
D
E
F
G

(a,e)→f

A
B
C
D
E
F
G

Ulf Leser: Bioinformatics, Summer Semester 2011
Example

Table 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>59</td>
<td>59</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>37</td>
<td>61</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>13</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>77</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>53</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th></th>
<th>CD</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>31</td>
<td>65</td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>
Once a gap, always a gap
Step 2: Progressive MSA

- Pair-wise alignment in the order given by the guide tree
- Aligning a MSA M_1 with a MSA M_2
 - Use the usual (global) alignment algorithm
 - To score a column, compute the average score over all pairs of symbols in this column

- Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

Score of this column

\[
\text{Score} = \frac{2 \times s(P, A) + s(P, Y) + 2 \times s(G, A) + s(G, Y) + 2 \times s(P, A) + s(P, Y)}{9}
\]
Issues

• There is a lot to say about whether hierarchical clustering actually computes the “correct” tree
 – See phylogenetic algorithms, „Algorithms in Bioinformatics“

• Clustal-W actually uses a different, more accurate algorithm called “neighbor-joining”

• Clustal-W is fast (O(k^2*log(k))
 – For k sequences; plus cost for computing alignments, especially M

• Idea behind progressive alignment
 – Find strong signals (highly conserved blocks) first
 – Outliers are added last
 – Increases the chances that conserved blocks survive
 – Several improvements to this scheme are known
Problems with progressive MSA

CLUSTALW (Score=20, Gop=-1, Gep=0, M=1)

CORRECT (Score=24)

Source: Cedric Notredame, 2001
Further Reading

- Merkl & Waack, chapter 13
- Böckenhauer & Bongartz, chapter 5.3