

PAM and BLAST

This Lecture

- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST

Substitution Matrices

- Recall
 - A scoring function is a function s: $\Sigma' x \Sigma' \rightarrow$ Integer
 - We also call s a substitution matrix
 - Direct similarity

$$sim'(A,B) = \sum_{i=1}^{n} s(A[i], B[i])$$

- DNA: symmetric, simple matrices
- Protein sequences are different
 - Very heterogeneous properties
 - Very different impact on folding
 - Substitutions may change the 3D structure completely or not at all

Amino Acids

Example

Where do all these numbers come from?

R N G H ILKM F Ρ S т Y V B Z D E W C 0 -2 1 0 -2 -1 4 **R** -1 **5** -2 0 -2 Ν 0 0 6 D -2 -2 1 1 6 C 0 -3 3 0 -1 5 -2 0 E 2 **5** -1 0 -3 1 4 G 6 -2 n н -2 0 -2 8 0 n 0 I -1 -3 4 -3 -3 2 L 2 4 -3 K -3 -2 <u>5</u>-1 1 -3 0 Μ 2 - 15 3 -1 F -3 0 6 -3 Ρ -4 7 -1 S -2 4 -3 0 Т 0 -1 1 .5 -1 W -3 -2 11 -3 Y 2 -2 V 0 -3 -1 4 -2 0 В -3 -3 . 4 7. -3 -2

Is it Really Necessary?

Code	Häufig- keit	Mutier- barkeit
L	0.091	54
А	0.077	100
G	0.074	50
S	0.069	117
v	0.066	98
Е	0.062	77
K	0.059	72
Т	0.059	107
Ι	0.053	103
D	0.052	86
Р	0.051	58
R	0.051	83
N	0.043	104
Q	0.041	84
F	0.040	51
Y	0.032	50
М	0.024	93
Н	0.023	91
С	0.020	44
W	0.014	25

- We count how often a particular AA was replaced by any other AA
 - Using "sure" sequence alignments
- Replacement rate of Alanin (A) := 100%
- Obviously no equal distribution
- Even if we assume that mutations happen more or the less at the same rate
- ... they obviously don't survive with the same probability
 - Mutations are suppressed to different degrees
 - W (Tryptophan): Strong suppression
 - S (Serin): Little suppression (less than A)

Filling a Substitution Matrix

- We need app. 200 values
 - Assuming a symmetric matrix
- Possibility 1: Analytical
 - Capture weight, polarity, size, ...
 - Find a scoring scheme to measure the difference between two AA
 - Needs to produce a single value per AA pair
 - Not used in practice
- Possibility 2: Empirical
 - Count which substitutions survived at which frequency in reality
 - Needs true alignments: Pairs of homologues and aligned sequences

Margaret O. Dayhoff

- Goal: "Deduce evolutionary relationships of the biological kingdoms, phyla, and other taxa from sequence evidence"
- Collection of all known
 protein sequences
 - First edition: 65 proteins
 - Several releases followed
 - Resulted in the Protein
 Information Resource (PIR)

Thanks to Antje Krause

- Dayhoff, M. O., R. V. Eck, C. M. Park. (1972) *A model of evolutionary change in proteins.* in M. O. Dayhoff (ed.), Atlas of Protein Sequence and Structure Vol. 5.
- PAM has two meanings
 - 1 PAM Unit for measuring the similarity of two AA sequences
 - PAM-X matrix Substitution matrix to use when aligning two sequences that are X PAM distant

• Definition

Let S_1 , S_2 be two protein sequences with $|S_1| = |S_2|$. We say S_1 and S_2 are x PAM distant, iff. S_1 most probably was produced from S_2 with x mutations per 100 AAs

- Remarks
 - PAM is motivated by evolution
 - Assumptions: Mutations happen with the same rate at every position of a sequence
 - If mutation rate is high, mutations will occur again and again at the same position
 - PAM \neq %-sequence-identity

- No INSDELS, only replacements
- The PAM distance d of two sequences can be derived analytically from their %-sequence-similarity p
 - d = -3/4*ln(1-4/3*p)
 - Derivation skipped
- Pairs with PAM >250 are probably not homologues
 - For those pairs,%-sequence-identity < 20%
 - Twilight zone
 - Which %-sequence-identity will two random protein sequences have?

(Jukes-Cantor model)

- The PAM-X matrix contains measures for the probability that a given AA was replaced by another given AA in two sequences that are x PAM distant
- Estimated from data
 - Let $(S_{1,1}, S_{2,1})$, ..., $(S_{1,n}, S_{2,n})$ by n pairs of aligned sequences
 - Each x PAM distant
 - Compute f(i), the relative frequency of AA A_i in all pairs
 - Compute f(i,j), the relative replacement frequency from A_i to A_i
 - Number of positions k in any of the aligned pairs with S_{1,z}`[k]=A_i and S_{2,z}`[k]=A_i or vice versa

- Then

$$M_{x}(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

- Again: A log-likelihood ratio, combining
 - Expectation: chances to generate this mutation by chance given the relative frequencies of the two involved AAs
 - Observation: observed frequency of this mutation

$$M_{x}(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

- Meaning
 - M(i,j) = 0: No selection
 - M(i,j) < 0: Negative selection, suppression of mutation
 - M(i,j) > 0: Positive selection, mutation is favored

Example

- Depends on predefined alignments
- We need a substitution matrix to find optimal alignments
 - A hen-egg problem
 - Alternative: Do it manually using experience, 3D-structure, ..
- Makes several assumptions
 - Mutations are equally likely at every position in a sequence
 - Mutations are equally likely independent from AA neighbors

Real Substitution Matrices

- PAM requires large n for each x to adequately capture rare mutations
- Cure: Molecular clock assumption
 - Assume that mutations appear with equal rate over time
 - Then the frequencies of PAM-x mutations depend linearly on the frequencies of PAM-1 mutations
 - PAM-x matrices are computed by repeated matrix multiplication of PAM-1 with itself
- Complete procedure
 - Choose set of n pairs with small distance and align manually
 - Use these alignments to compute M_1
 - Compute $M_x = (M_1)^x$

- PAM is a bit old-fashioned
- **BLOSUM: BLOcks SUbstitution Matrix**
 - Henikoff and Henikoff, 1993
 - Removes assumption of equal mutation rates across each sequence position by considering conserved blocks
 - Direct estimation for different PAM distances instead of errorpropagating self multiplication

This Lecture

- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST

Growth of EMBL

Scaling Up Local Alignment

- Searching similar sequences (with a high local alignment score) is a fundamental operation in Bioinformatics
- Sequence databases grow exponentially
- Naïve method does not scale at all
- We need faster algorithms, even if they sometimes fail

Similarity Search Problems and their Accuracy

- Task: Given a sequence s and a database D, find all sequences T in D that are sufficiently similar to s
 - Often, exactly computing T is not feasible and not necessary (think of the WWW)
 - Assume a method that finds a set X of answers for s
- How good is this method?
 - Some sequences will be in X and T true positives
 - Some will be in X but not T false positives
 - Some will be in T but not X false negatives
 - Some will be neither in X nor T true negatives

Reality			
		+	-
Prediction	+	TruePositive	FalsePositive
		(TP)	(FP)
	-	FalseNegative	TrueNegative
		(FN)	(TN)

Precision and Recall

- Precision = TP/(TP+FP)
 - What is the fraction of correct answers in X?
 - Related to specificity
- Recall = TP/(TP+FN)
 - Which fraction of correct answers from T are also in X?
 - Also called sensitivity
- Trade-Offs
 - Usual methods compute a score per element of D
 - All sequences with a score above a threshold t are returned as X
 - Increasing t : higher precision, lower recall
 - Lowering t: lower precision, higher recall
 - ... if the score correlates with correctness ...

		Reality	
		+	-
Prediction	+	TruePositive	FalsePositive
		(TP)	(FP)
	-	FalseNegative	TrueNegative
		(FN)	(TN)

• Let |DB| = 1000, |X|=15, |T|=20, $|X \cap T|=9$

	Real: Positive	Real: Negative
Alg: Positive	TP = 9	FP = 6
Alg: Negative	FN = 11	TN= 974

- Precision = TP/(TP+FP) = 9/15 = 60%
- Recall = TP/(TP+FN) = 9/20 = 45%
- Assume we increase t: |X|=10, $|X \cap T|=7$

	Real: Positive	Real: Negative
Alg: Positive	TP = 7	FP = 3
Alg: Negative	FN = 13	

- Precision: 70%, recall = 35%

- Altschul, Gish, Miller, Myers, Lipman: "Basic Local Alignment Search Tool", J Mol Bio, 1990
 - A heuristic algorithm for sequence similarity search
 - Very fast, high recall, but not perfect
 - Very successful: You "blast" a sequence
 - NCBI runs thousands of BLAST searches every day
- A family of tools
 - Gapped-BLAST, PSI-BLAST, MegaBlast, BLAST-ALL, PATHBLAST, Name-BLAST, ...
 - BLAST for DNA, protein, DNA-protein, protein-DNA, ...
 - We only look at the simple DNA-DNA version
 - We skip several heuristic and domain-specific tricks

- Fundamental idea : If two sequences have a good local alignment, then this area contains, with very high probability, a smaller area where the match is even better (or even exact)
 - These sub-areas are called seeds

TTGACTCGATTATAGTCGCGGATATACTATCG CCTATCACAAGAATATAGTCCCTGATCCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

Algorithm

- Given query sequence s and sequence database $D = \{d_i\}$
- 1. Compute all substrings s_i of s of length q
 - Also called q-grams
 - How many?
- 2. Find all approximate occurrences of all s_i in all d_i
 - Gap-free alignment with matrix; score must be above threshold t
 - Hits are called seeds –approx. occurrences of some s_i in some d_i
- 3. Extend seeds to left and right in s_i and d_i until
 - [Constantly update the similarity score]
 - ... the score drops sharply
 - $\dots s_i$ or s_j ends
 - ... the score gets too bad compared to other hits found earlier

Example

Visualization

Properties

- Finding seeds efficiently requires more work
 - Pre-compute all q-grams of all d_i
 - Group by q-gram
 - Called a hash-index (should be kept in main memory)
 - Lookup: Given s, find all matching q-grams (as seeds)
- Exclusion method
 - Vast majority of all sequences in DB are never looked at because they do not contain a seed
 - The "seed" idea is the basis of nearly all fast alignment methods
- Where it fails
 - Sensitive to t: Too high missing hits; too low slow
 - Does not consider gaps

- Increasing t
 - Higher requirements for any seed
 - Less seeds, less extensions
 - Lower recall, higher speed, precision stays
- Increasing q (and adapting t)
 - Higher requirements for any seed
 - Less seeds, less extensions
 - Lower recall, higher speed, precision stays

BLAST Screenshots

Ulf Leser: Bioinformatics, Summer Semester 2011

BLAST-2

- Altschul, Madden, Schaffer, Zhang, Zhang, Miller, Lipman: "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NAR, 1997
- Faster
 - BLAST: 90% of time spend in extensions
 - BLAST2: Two seeds in short distance
 - Needs a decrease in t
- Higher recall
 - BLAST didn't even consider gaps in the extension phase
 - BLAST2: Full local alignment starting from seeds
 - Allows an increase of t

- Substitution matrixes: Krane & Raymer, Chapter 3
- BLAST, BLAST2: Merkl & Waack, Chapter 12