

## PAM and BLAST

Ulf Leser

## This Lecture

- Substitution Matrices
- PAM distance
- PAM matrices
- Scaling up Local Alignments
- BLAST


## Substitution Matrices

- Recall
- A scoring function is a function s: $\Sigma^{\prime} x \Sigma^{\prime} \rightarrow$ Integer
- We also call $s$ a substitution matrix
- Direct similarity

$$
\operatorname{sim}^{\prime}(A, B)=\sum_{i=1}^{n} s(A[i], B[i])
$$

- DNA: symmetric, simple matrices
- Protein sequences are different
- Very heterogeneous properties
- Very different impact on folding
- Substitutions may change the 3D structure completely or not at all



## Amino Acids



## Example

Where do all these numbers come from?


## Is it Really Necessary?

| Code | Häufig- <br> keit | Mutier- <br> barkeit |
| :---: | :---: | :---: |
| L | 0.091 | 54 |
| A | 0.077 | 100 |
| G | 0.074 | 50 |
| S | 0.069 | 117 |
| V | 0.066 | 98 |
| E | 0.062 | 77 |
| K | 0.059 | 72 |
| T | 0.059 | 107 |
| I | 0.053 | 103 |
| D | 0.052 | 86 |
| P | 0.051 | 58 |
| R | 0.051 | 83 |
| N | 0.043 | 104 |
| Q | 0.041 | 84 |
| F | 0.040 | 51 |
| Y | 0.032 | 50 |
| M | 0.024 | 93 |
| H | 0.023 | 91 |
| C | 0.020 | 44 |
| W | 0.014 | 25 |
|  |  |  |

- We count how often a particular AA was replaced by any other AA
- Using "sure" sequence alignments
- Replacement rate of Alanin (A) := $100 \%$
- Obviously no equal distribution
- Even if we assume that mutations happen more or the less at the same rate
- ... they obviously don't survive with the same probability
- Mutations are suppressed to different degrees
- W (Tryptophan): Strong suppression
- S (Serin): Little suppression (less than A)


## Filling a Substitution Matrix

- We need app. 200 values
- Assuming a symmetric matrix
- Possibility 1: Analytical
- Capture weight, polarity, size, ...
- Find a scoring scheme to measure the difference between two AA
- Needs to produce a single value per AA pair
- Not used in practice
- Possibility 2: Empirical
- Count which substitutions survived at which frequency in reality
- Needs true alignments: Pairs of homologues and aligned sequences


## Margaret O. Dayhoff

- Goal: "Deduce evolutionary relationships of the biological kingdoms, phyla, and other taxa from sequence evidence"
- Collection of all known protein sequences
- First edition: 65 proteins
- Several releases followed
- Resulted in the Protein Information Resource (PIR)


Thanks to Antje Krause

## PAM: Point-Accepted Mutations

- Dayhoff, M. O., R. V. Eck, C. M. Park. (1972) A model of evolutionary change in proteins. in M. O. Dayhoff (ed.), Atlas of Protein Sequence and Structure Vol. 5.
- PAM has two meanings
- 1 PAM - Unit for measuring the similarity of two AA sequences
- PAM-X matrix - Substitution matrix to use when aligning two sequences that are X PAM distant


## PAM as Distance Measure

- Definition

Let $S_{1}, S_{2}$ be two protein sequences with $\left|S_{1}\right|=\left|S_{2}\right|$. We say $S_{1}$ and $S_{2}$ are $x$ PAM distant, iff. $S_{1}$ most probably was produced from $S_{2}$ with x mutations per 100 AAs

- Remarks
- PAM is motivated by evolution
- Assumptions: Mutations happen with the same rate at every position of a sequence
- If mutation rate is high, mutations will occur again and again at the same position
- PAM $=$ \%-sequence-identity


Observed substitutions

## PAM as Distance Measure

- No INSDELS, only replacements
- The PAM distance d of two sequences can be derived analytically from their \%-sequence-similarity $p$
- d = $-3 / 4^{*} \ln \left(1-4 / 3^{*} \mathrm{p}\right)$
- Derivation skipped
- Pairs with PAM >250 are probably not homologues
- For those pairs, \%-sequence-identity < 20\%
- Twilight zone
- Which \%-sequence-identity will two random protein sequences have?
(Jukes-Cantor model)



## Generating a PAM Matrix

- The PAM-X matrix contains measures for the probability that a given AA was replaced by another given AA in two sequences that are x PAM distant
- Estimated from data
- Let $\left(\mathrm{S}_{1,1}, \mathrm{~S}_{2,1}\right), \ldots,\left(\mathrm{S}_{1, n} \mathrm{~S}_{2, n}\right)$ by n pairs of aligned sequences
- Each x PAM distant
- Compute $f(i)$, the relative frequency of $A A A_{i}$ in all pairs
- Compute $f(i, j)$, the relative replacement frequency from $A_{i}$ to $A_{j}$
- Number of positions $k$ in any of the aligned pairs with $\mathrm{S}_{1,2}{ }^{\top}[\mathrm{k}]=\mathrm{A}_{\mathrm{i}}$ and $\mathrm{S}_{2,2}{ }^{\top}[\mathrm{k}]=\mathrm{A}_{\mathrm{j}}$ or vice versa
- Then

$$
M_{x}(i, j)=\log \left(\frac{f(i, j)}{f(i)^{*} f(j)}\right)
$$

## Some Explanations

- Again: A log-likelihood ratio, combining
- Expectation: chances to generate this mutation by chance given the relative frequencies of the two involved AAs
- Observation: observed frequency of this mutation

$$
M_{x}(i, j)=\log \left(\frac{f(i, j)}{f(i)^{*} f(j)}\right)
$$

- Meaning
- $M(i, j)=0$ : No selection
- $M(i, j)<0$ : Negative selection, suppression of mutation
$-M(i, j)>0$ : Positive selection, mutation is favored


## Example

| $S_{1,1}:$ | ACGGTGAC |
| :--- | :--- |
| $S_{2,1}:$ | AGG_TGCC |
| $S_{1,2}:$ | GTT_AGCTA |
| $S_{2,2}:$ | TTTCAG_TA |
| $S_{1,3}:$ | GGTCAA |
| $S_{2,3}:$ | AGTC_A |

Relative frequencies

| A: $11 / 42$ | C: 8/42 | G: 12/42 | T: $11 / 42$ |
| :---: | :---: | :---: | :---: |



Mutation rates

|  | A | C | G | T |
| :--- | :---: | :---: | :---: | :---: |
| A | $4 / 19$ | $1 / 19$ | $1 / 19$ | $0 / 19$ |
| C |  | $2 / 19$ | $1 / 19$ | $0 / 19$ |
| G |  |  | $4 / 19$ | $1 / 19$ |
| T |  |  |  | $5 / 19$ |

Matrix

|  | $A$ | $C$ | $G$ | $T$ |
| :--- | :---: | :---: | :---: | ---: |
| $A$ | 0,48 | 0,02 | $-0,15$ | - |
| $C$ |  | 0,46 | $-0,01$ | - |
| $G$ |  |  | 0,41 | $-0,15$ |
| $T$ |  |  |  | 0,58 |

## Problems

- Depends on predefined alignments
- We need a substitution matrix to find optimal alignments
- A hen-egg problem
- Alternative: Do it manually using experience, 3D-structure, ..
- Makes several assumptions
- Mutations are equally likely at every position in a sequence
- Mutations are equally likely independent from AA neighbors


## Real Substitution Matrices

- PAM requires large n for each x to adequately capture rare mutations
- Cure: Molecular clock assumption
- Assume that mutations appear with equal rate over time
- Then the frequencies of PAM-x mutations depend linearly on the frequencies of PAM-1 mutations
- PAM-x matrices are computed by repeated matrix multiplication of PAM-1 with itself
- Complete procedure
- Choose set of $n$ pairs with small distance and align manually
- Use these alignments to compute $M_{1}$
- Compute $M_{x}=\left(M_{1}\right)^{x}$


## BLOSUM

- PAM is a bit old-fashioned
- BLOSUM: BLOcks SUbstitution Matrix
- Henikoff and Henikoff, 1993
- Removes assumption of equal mutation rates across each sequence position by considering conserved blocks
- Direct estimation for different PAM distances instead of errorpropagating self multiplication


## This Lecture

- Substitution Matrices
- PAM distance
- PAM matrices
- Scaling up Local Alignments
- BLAST


## Growth of EMBL



## Scaling Up Local Alignment



- Searching similar sequences (with a high local alignment score) is a fundamental operation in Bioinformatics
- Sequence databases grow exponentially
- Naïve method does not scale at all
- We need faster algorithms, even if they sometimes fail


## Similarity Search Problems and their Accuracy

- Task: Given a sequence s and a database D, find all sequences $T$ in $D$ that are sufficiently similar to $s$
- Often, exactly computing T is not feasible and not necessary (think of the WWW)
- Assume a method that finds a set $X$ of answers for $s$
- How good is this method?
- Some sequences will be in $X$ and $T$ - true positives
- Some will be in $X$ but not $T$ - false positives
- Some will be in $T$ but not $X$ - false negatives
- Some will be neither in X nor T - true negatives

Prediction

| Reality |  |  |
| :---: | :---: | :---: |
|  | + | - |
| + | TruePositive <br> (TP) | FalsePositive <br> (FP) |
| - | FalseNegative <br> (FN) | TrueNegative <br> (TN) |

## Precision and Recall

- Precision = TP/(TP+FP)
- What is the fraction of correct answers in X?
- Related to specificity

- Recall = TP/(TP+FN)
- Which fraction of correct answers from $T$ are also in X?
- Also called sensitivity
- Trade-Offs
- Usual methods compute a score per element of D
- All sequences with a score above a threshold $t$ are returned as X
- Increasing t : higher precision, lower recall
- Lowering t: lower precision, higher recall
- ... if the score correlates with correctness ...


## Example

- Let $|\mathrm{DB}|=1000,|\mathrm{X}|=15,|\mathrm{~T}|=20,|\mathrm{X} \cap \mathrm{T}|=9$

|  | Real: Positive | Real: Negative |
| :--- | :--- | :--- |
| Alg: Positive | $\mathrm{TP}=9$ | $\mathrm{FP}=6$ |
| Alg: Negative | $\mathrm{FN}=11$ | $\mathrm{TN}=974$ |

- Precision $=T P /(T P+F P)=9 / 15=60 \%$
- Recall $=T P /(T P+F N)=9 / 20=45 \%$
- Assume we increase $t:|X|=10,|X \cap T|=7$

|  | Real: Positive | Real: Negative |
| :--- | :--- | :--- |
| Alg: Positive | $\mathrm{TP}=7$ | $\mathrm{FP}=3$ |
| Alg: Negative | $\mathrm{FN}=13$ |  |

- Precision: $70 \%$, recall $=35 \%$


## BLAST

- Altschul, Gish, Miller, Myers, Lipman: „Basic Local Alignment Search Tool", J Mol Bio, 1990
- A heuristic algorithm for sequence similarity search
- Very fast, high recall, but not perfect
- Very successful: You "blast" a sequence
- NCBI runs thousands of BLAST searches every day
- A family of tools
- Gapped-BLAST, PSI-BLAST, MegaBlast, BLAST-ALL, PATHBLAST, Name-BLAST, ...
- BLAST for DNA, protein, DNA-protein, protein-DNA, ...
- We only look at the simple DNA-DNA version
- We skip several heuristic and domain-specific tricks


## Fundamental Idea

- Fundamental idea : If two sequences have a good local alignment, then this area contains, with very high probability, a smaller area where the match is even better (or even exact)
- These sub-areas are called seeds

> TTGACTCGATTATAGTCGCGGATATACTATCG CCTATCACAAGAATATAGTCCCTGATCCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG
CCTATCACAA GAATATAGTCCCTGAT CCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

## Algorithm

- Given query sequence s and sequence database $D=\left\{d_{i}\right\}$
- 1. Compute all substrings $s_{i}$ of $s$ of length $q$
- Also called q-grams
- How many?
- 2. Find all approximate occurrences of all $s_{i}$ in all $d_{j}$
- Gap-free alignment with matrix; score must be above threshold t
- Hits are called seeds -approx. occurrences of some $s_{i}$ in some $d_{j}$
- 3. Extend seeds to left and right in $\mathrm{s}_{\mathrm{i}}$ and $\mathrm{d}_{\mathrm{j}}$ until
- [Constantly update the similarity score]
- ... the score drops sharply
- ... $\mathrm{s}_{\mathrm{i}}$ or $\mathrm{s}_{\mathrm{j}}$ ends
- ... the score gets too bad compared to other hits found earlier


## Example

```
q=5, t= 3, Matrix: M=+1, R=-1
s=ACGTGATA
d=GATTGACGTGACTGCTAGTGATACTATAT
```

$$
\begin{aligned}
& s_{1}=A C G T G \\
& s_{2}=\text { CGTGA } \\
& s_{3}=\text { GTGAT } \\
& s_{4}=\text { TGATA }
\end{aligned}
$$



## Visualization



## Properties

- Finding seeds efficiently requires more work
- Pre-compute all q-grams of all $d_{i}$
- Group by q-gram
- Called a hash-index (should be kept in main memory)
- Lookup: Given s, find all matching q-grams (as seeds)
- Exclusion method
- Vast majority of all sequences in DB are never looked at because they do not contain a seed
- The "seed" idea is the basis of nearly all fast alignment methods
- Where it fails
- Sensitive to t: Too high - missing hits; too low - slow
- Does not consider gaps


## Speed - Precision - Recall

- Increasing t
- Higher requirements for any seed
- Less seeds, less extensions
- Lower recall, higher speed, precision stays
- Increasing q (and adapting t)
- Higher requirements for any seed
- Less seeds, less extensions
- Lower recall, higher speed, precision stays


## BLAST Screenshots



## BLAST-2

- Altschul, Madden, Schaffer, Zhang, Zhang, Miller, Lipman: „Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NAR, 1997
- Faster
- BLAST: 90\% of time spend in extensions
- BLAST2: Two seeds in short distance
- Needs a decrease in t
- Higher recall
- BLAST didn't even consider gaps in the extension phase
- BLAST2: Full local alignment starting from seeds
- Allows an increase of $t$



## Further Reading

- Substitution matrixes: Krane \& Raymer, Chapter 3
- BLAST, BLAST2: Merkl \& Waack, Chapter 12

