

Searching (Sub-)Strings

Ulf Leser

This Lecture

- Exact substring search
 - Naïve
 - Boyer-Moore
- Searching with profiles
 - Sequence profiles
 - Ungapped approximate search
 - Statistical evaluation of search results

",Searching Strings" (aka Pattern Matching)

- Exact matching
 - Given strings s and t: Find all occurrences of s in t
 - Given S and t: Find all occurrences of any $s{\in}S$ in t
- Approximate matching
 - Given s and t: Find all approximate occurrences of s in t
 - With or without gaps? With or without specific replacement scores?
 - Given s and t: Find s', t' such that s' similar to t' and s' is a substring of s and t' is a substring of t
 - Given s and T
 - Find all $t\!\in\!T$ that are similar to s
 - Find all $t {\in} \mathsf{T}$ containing a t' similar to a s' contained in s
- Many more variants ...

- A string (or sequence) S is an ordered list of characters from an alphabet Σ
 - |S| is the length of S
 - S[i] is the character at position i in S
 - S[i..j] is the substring from position i to position j in S
 - S[i..j] is an empty string if i > j
 - S[1..i] is a prefix of S ending at position i
 - S[i..] is a suffix of S starting at position i
- Alphabet
 - Usually: $\Sigma = \{A, C, G, T\}$
 - Often, we need blanks: $\Sigma' = \{A, C, G, T, _\}$
- Lower/upper case: S may denote a set of strings, or a sequence of characters (a string)

Exact Matching

- Given P, T with |P| << |T|
- Find all occurrences of P in T
- Example of application: Restriction enzymes
 - Cut at precisely defined sequence motifs of length 4-10
 - Are used to generate fragments (for later sequencing)
 - Example: Eco RV GATATC

How to do it?

- The straight-forward way (naïve algorithm)
 - We use two counter: t, p
 - One (outer, t) runs through T
 - One (inner, p) runs through P
 - Compare characters at position T[t+p] and P[p]

Examples

	Typical case	Worst case			
Т	ctgagatcgcgta	Т	aaaaaaaaaaaaaaaa		
Ρ	gagatc gagatc	Р	aaaaat		
	gagate		aaaaat		
	gagatc		aaaaat		
	gagatc gatatc		aaaaat		
	gatate gatate gatate		•••		

- How many comparisons do we need in the worst case?
 - t runs through T
 - p runs through the entire P for every value of t
 - Thus: |P|*|T| comparisons
 - Indeed: The algorithm has worst-case complexity O(|P|*|T|)

- Exact substring search has been researched for decades
 - Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, ...
 - All have WC complexity O(|P| + |T|)
 - Real performance depends much on size of alphabet and composition of strings (most have their strength in certain settings)
- In practice, our naïve algorithm is quite competitive for random strings and non-trivial alphabets (e.g., DNA)
- But we can do better: Boyer-Moore
 - We present a simplified form
 - BM is among the fastest algorithms in practice
- Note: Much better performance possible if T maybe preprocessed (up to O(|P|))

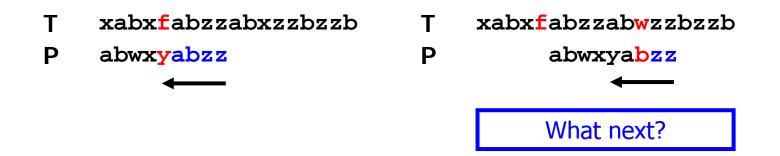
This Lecture

- Exact substring search
 - Naïve
 - Boyer-Moore
- Searching with profiles
 - Sequence profiles
 - Ungapped approximate search
 - Statistical evaluation of search results

- R.S. Boyer /J.S. Moore. "A Fast String Searching Algorithm", Communications of the ACM, 1977
- Main idea
 - Again, we use two counters (inner loop, outer loop)
 - Inner loop runs from right-to-left
 - If we reach a mismatch, we know
 - The character in T we just haven't seen
 - This is captured by the bad character rule
 - The suffix in P we just have seen
 - This is captured by the good suffix rule
- Use this knowledge to make longer shifts in T

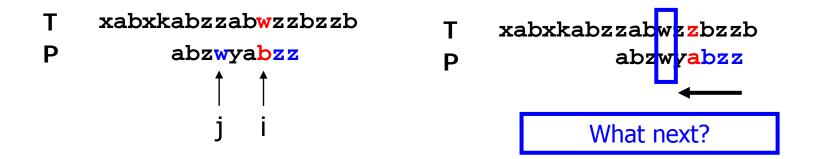
Bad Character Rule

- Setting 1
 - We are at position t in T and compare right-to-left
 - Let i by the position of the first mismatch in P
 - We saw n-i+1 matches before
 - Let x be the character at the corresponding pos (t-n+i) in T
 - Candidates for matching x in P
 - Case 1: x does not appear in P at all we can move t such that t-n+i is not covered by P anymore



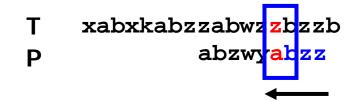
Bad Character Rule 2

- Setting 2
 - We are at position t in T and compare right-to-left
 - Let i by the position of the first mismatch in P
 - Let x be the character at the corresponding pos (t-n+i) in T
 - Candidates for matching x in P
 - Case 1: x does not appear in P at all
 - Case 2: Let j be the right-most appearance of x in P and let j<i we can move t such that j and i align



Bad Character Rule 3

- Setting 3
 - We are at position t in T and compare right-to-left
 - Let i by the position of the first mismatch in P
 - Let x be the character at the corresponding pos (t-n+i) in T
 - Candidates for matching x in P
 - Case 1: x does not appear in P at all
 - Case 2: Let j be the right-most appearance of x in P and let j<i
 - Case 3: As case 2, but j>i we need some more knowledge



Preprocessing 1

- In case 3, there are some "x" right from position i
 - For small alphabets (DNA), this will almost always be the case
 - Thus, this case 3 is the usual one
- These are irrelevant we need the right-most x left of i
- This can (and should!) be pre-computed
 - Build a two-dimensional array $A[|\Sigma|, |P|]$
 - Run through P from left-to-right (pointer i)
 - If character c appears at position i, set all A[c,j]:=i for all j>=i
 - Needs time (complexity?), but negligible because
 - P is small
 - Complexity is independent from T
- Array: Constant lookup, needs some space (lists ...)

(Extended) Bad Character Rule

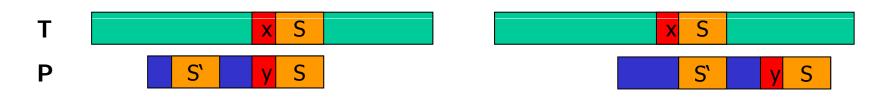
- Simple, effective for larger alphabets
- For random DNA, average shift-length is 4
 - Expected distances to the next match using EBCR
 - Thus, n# of comparisons down to |P|*|T|/4
- Worst-Case complexity does not change
 - Why?

(Extended) Bad Character Rule

- Simple, effective for larger alphabets
- For random DNA, average shift-length should be 4
 - Thus, n# of comparisons down to $|P|^*|T|/4$
- Worst-Case complexity does not change
 - Why?

Good-Suffix Rule

- Recall: If we reach a mismatch, we know
 - The character in T we just haven't seen
 - The suffix in P we just have seen
- Good suffix rule
 - We have just seen some matches in P (S)
 - Where else does S appear in P?
 - If we know the right-most appearance S' of S in P, we can immediately align S' with the current match in T
 - If S does not appear once more in P, we can shift t by |P|



Good-Suffix Rule – One Improvement

- Actually, we can do a little better
- Not all S' are of interest to us

Good-Suffix Rule – One Improvement

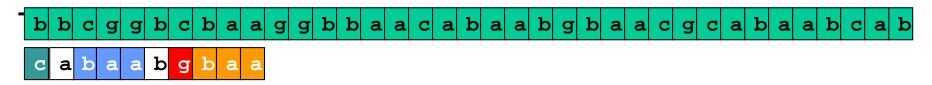
- Actually, we can do a little better
- Not all S' are of interest to us

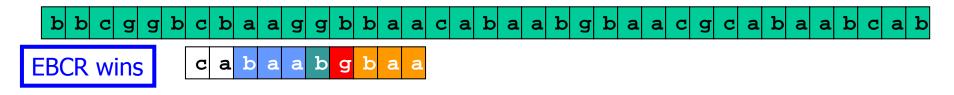
- We only need S' whose next character to the left is not y
- Why don't we directly require that this character is x?
 - Of course, this could be used for further optimization

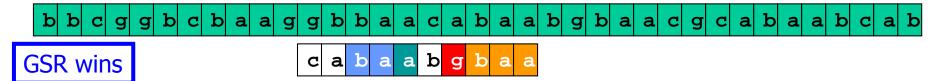
Concluding Remarks

- Preprocessing 2
 - For the GSR, we need to find all occurrences of all suffixes of P in P
 - This can be solved using our naïve algorithm for each suffix
 - Or, more complicated, in linear time (not this lecture)
- WC complexity of Boyer-Moore is still O(|P|*|T|)
 - But average case is sub-linear
 - WC complexity can be reduced to linear (not this lecture)
- Faster variants
 - Often, using the GSR does not pay-off
 - BM-Horspool: Instead of looking at the mismatch character x, always look at the symbol in T aligned to the last position of P
 - Generates longer shifts on average (i is maximal)

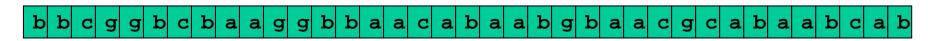
Example







b b a b b b a b b c a b b b b C a g а а a а C g C a a C g g g C а а g b а b b b g a a a C GSR wins



MatchGood suffixc a b a a b g b a aMismatchExt. Bad character

This Lecture

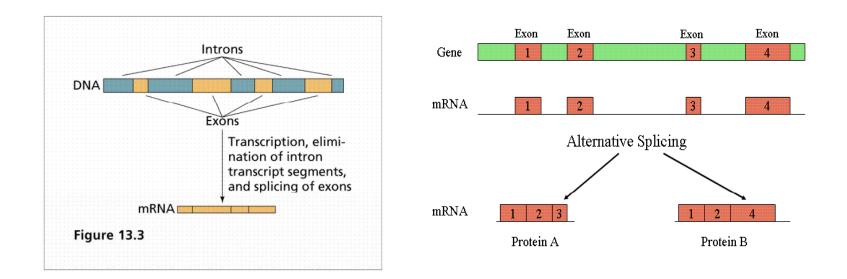
- Exact substring search
 - Naïve
 - Boyer-Moore
- Searching with profiles
 - Splicing
 - Position Specific Weight Matrices
 - Likelihood scores

Approximate Search (First Instantiation)

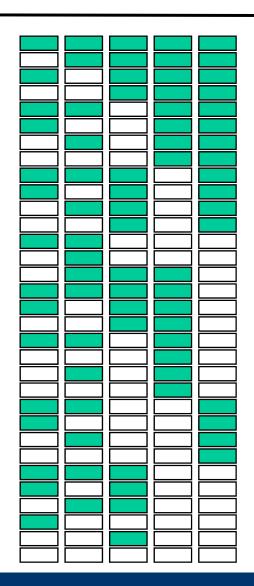
- Requiring an exact match is too strict in many applications
 - And in most bioinformatics applications
- More often, one is interested in matches similar to P
 - Or can describe P only vaguely
- Many definitions of "similar" are possible
- For now: Searching with Position Specific Weight Matrices
 - Also called profiles
 - Powerful tool for many bioinformatics applications
 - We develop the idea using an example taken from Spang et al.
 "Genome Statistics", Lecture 2003/2005, FU Berlin

Splicing

- Not all DNA of a "gene" are translated into amino acid
- Splicing: Removal of introns
- Alternative splicing: Removal of (some) exons



Diversity



- From a gene with n exons, alternative splicing can create 2ⁿ-1 proteins
- Example: Troponin T (muscle protein)
 - 18 exons
 - 64 different isoforms
 - 10 exons present in all isoforms

Source: Eurasnet, "Alternative Splicing"

Recognizing Splice Sites

- A special enzyme (spliceosome) very precisely recognizes exon-intron boundaries in mRNA
- To this end, it scans the sequences and is triggered by certain motifs
- How are these motifs characterized? Can we find them?
 - Very often, introns start with GT (GU) and end with AG
 - But that is not specific enough why?
 - In random sequences, we expect a GT (AT) at every 16th position
 - Thus, the average distance between a GT and an AT is 16, and we find such pairs very often
 - But: Introns typically are larger than 100 bases

Context of a Splice Site

CTCCGAAGTAGGATT	CTCCGAAGTAGGATT
TCAGAAG <mark>GT</mark> GAGGGC	TCAGAAGGTGAGGGC
TTGGAAG <mark>GT</mark> TCGCAG	TTGGA <mark>AGGT</mark> TC <mark>G</mark> CAG
TACTCAGGTACTCAC	TACTCAGGTACTCAC
CGCCCAG <mark>GT</mark> GACCGG	CGCCC <mark>AGGT</mark> GACCGG
AGAAAGAGTAAGCTC	AGAAAGA <mark>GTA</mark> AGCTC
CAATGCT <mark>GT</mark> ATGTGT	CAATGCT <mark>GTA</mark> TGTGT
GGTCTCG <mark>GT</mark> AACTGC	GGTCTC <mark>GGTA</mark> ACTGC
CCTGCTGGTAAGGCC	CCTGCTGGTAAGGCC
TGTTGCG <mark>GT</mark> AGGTCC	TGTTGC <mark>GGTA</mark> GGTCC

- Observing real splice sites, we find no crisp context
- But: columns are not composed at random either
- How can we capture this knowledge?

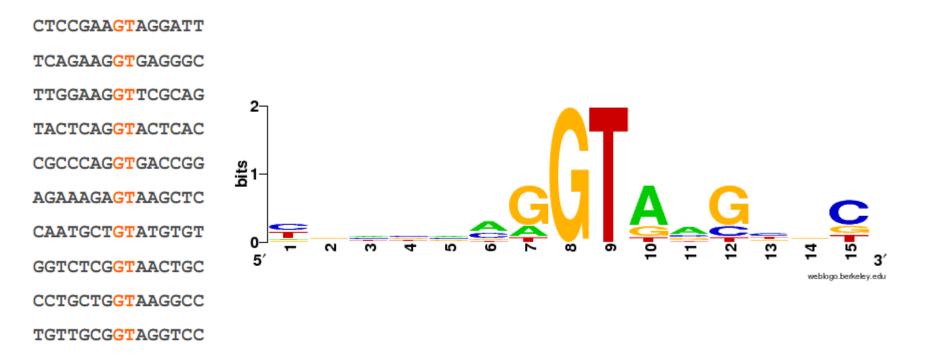
Position-Specific Weight Matrices

#	DONOR	FREQUENCY	MATRIX	from htt	p://geno	mic.sang	er.ac.uk	/spldb/Sp	pliceDB.h	tml
	1	2	3	4	5	6	7	8	9	
A	34.08	60.36	9.14	0.00	0.00	52.57	71.26	7.08	15.98	
С	36.24	12.90	3.27	0.00	0.00	2.82	7.56	5.50	16.46	
G	18.31	12.48	80.34	100.00	0.00	41.94	11.76	81.35	20.90	
т	11.38	14.25	7.24	0.00	100.00	2.55	9.29	5.88	46.16	

- Count in every column the frequencies of all bases
- Store the relative frequencies in an array of size $|P|^*|\Sigma|$
 - With |P| being the size of the context around the splice sites
- At "GT", all values except one are 0% and one is 100%
 Actually, GT is not perfectly conserved in real sequences
- In random sequences, all values should be 25%

Vizualization: Sequence Logos

- Very popular
- Based on information content of each base at each position
 - Which, in turn, is based on the entropy of the columns



- Eventually, we want to find potential splice sites in a genome G (e.g. to do gene prediction)
- We need a way to decide, given a sequence S and a PSWM A (both of the same length): Does S match A?
 - We want to assign a score to S given A
 - Knowing this, we can score all subsequences of length |A| in G
 - Subsequences above a given threshold are considered candidates
- We give this question a probabilistic interpretation
 - Assume, for each column, a dice which four faces; each face is thrown with the relative frequency as given in A for this column
 - How high is the probability that this dice generates S?

Examples

- In random sequences, all values in A are 25%, and all possible S would get the same probability: ¹/₄|^{S|}
- But

	1	2	3	4	5	6	7	8	9
A	34.08	60.36	9.14	0.00	0.00	52.57	71.26	7.08	15.98
С	36.24	12.90	3.27	0.00	0.00	2.82	7.56	5.50	16.46
G	18.31	12.48	80.34	100.00	0.00	41.94	11.76	81.35	20.90
т	11.38	14.25	7.24	0.00	100.00	2.55	9.29	5.88	46.16

- 1. P (AAGGTACGT) $\approx 0.34*0.6*0.8*1*1*0.53*0.71*0.81*0.46 = 0.023$
- 2. P (CCCGTCCCC) ≈ 0.36*0.13*0.03*1*1*0.03*0.08*0.05*0.16 = 2.7e-08
- 3. P (CTGGTCCGA) ≈ 0.36*0.14*0.8*1*1*0.03*0.08*0.81*0.16 =1.25e-05
- 4. P (TACCTCCGT) = 0
- 1st sequence (S) matches A much better than the others do

This Lecture

- Exact substring search
 - Naïve
 - Boyer-Moore
- Searching with profiles
 - Splicing
 - Position Specific Weight Matrices
 - Likelihood scores

I am not Convinced (yet)

- Is S actually a match for A?
- Observations
 - The first S from the previous slide is about as good as it can get: The best possible sequence would get a score of 0.025 (compared to 0.023)
 - If S is not a splice site, it is an "ordinary" sequence. How likely is it that S is generated under this "zero model"?
 - "Zero model" means: Equal probability for all bases
 - $p(S|''zero'') = \frac{1}{4}^9 \sim 3.8E-6$
 - Thus, is it much more likely (app. 6000 times more likely) that S was generated under the "A model" than that is was generated under the "zero model"

Likelihood (Odds) Ratios

- Given two models A, Z. The likelihood ratio score s of a sequence S is the ratio of p(S|A) / p(S|Z)
 - s(AAGGTACGT) \sim 6000
 - S(CCCGTCCCC) \sim 140
 - s(CTGGTCCGA) ~ 3
 - S(TCCGTCCCC) < 1

	1	2	3	4	5	6	7	8	9
A	34.08	60.36	9.14	0.00	0.00	52.57	71.26	7.08	15.98
С	36.24	12.90	3.27	0.00	0.00	2.82	7.56	5.50	16.46
G	18.31	12.48	80.34	100.00	0.00	41.94	11.76	81.35	20.90
т	11.38	14.25	7.24	0.00	100.00	2.55	9.29	5.88	46.16

- 1. P (AAGGTACGT) $\approx 0.34*0.6*0.8*1*1*0.53*0.71*0.81*0.46$ =0.023
- 2. P (CCCGTCCCC) ≈ 0.36*0.13*0.03*1*1*0.03*0.08*0.05*0.16 =2.7e-08
- 3. P (CTGGTCCGA) ≈ 0.36*0.14*0.8*1*1*0.03*0.08*0.81*0.16 =1.25e-05
- 4. P(TACCTCCGT) = 0
- Also called odds score

- Given G, A, Z: find all S in G with s(S)>t
- Straight-forward: Compute all S of length |A|, compute s(S) for each
 - This requires $|G|^*|A|$ divisions and multiplications
 - Divisions can be saved easily (how?)
- Can we do better?
 - Not easily
 - Trick: The number of match-situations are limited. Pre-compute all possible matches between q-grams and lookup values during the scan

- Values get quite small (close to 0) for longer A
- This yields problems with numeric stability in programs
- Better: Compute log-likelihood score s'=log₂(s)
 - Also faster: Replace multiplication with addition

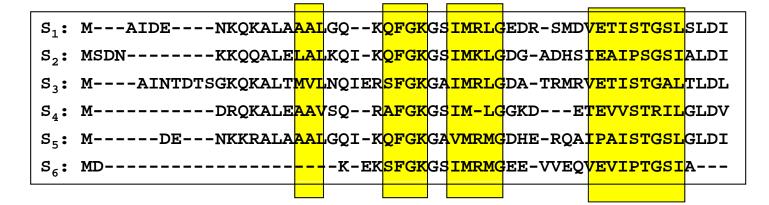
$$s'(S) = \log\left(\frac{p(S \mid A)}{p(S \mid Z)}\right) = \log\left(\frac{p(S_1 \mid A_1) * ... * p(S_n \mid A_n)}{p(S_1 \mid Z_1) * ... * p(S_n \mid Z_n)}\right)$$
$$= \log\left(\frac{p(S_1 \mid A_1)}{p(S_1 \mid Z_1)}\right) + ... + \log\left(\frac{p(S_n \mid A_n)}{p(S_n \mid Z_n)}\right)$$

Beware

- Assume a perfectly conserved motif of length 8
 - The chance for a given S to match is 0.000015 low
 - But |G|=3.000.000.000
 - Only by change, we will have ~45000 matches of S in G
- For PSWM, the chances for finding false hits depend on the setting of the threshold t
 - Higher t: Stricter search, less false hits, but may incur misses
 - Lower t: Less strict, less misses, but many false hits
- A match is only an hypothesis that needs further analysis
 - By additional knowledge (e.g.: is S part of a gene?)
 - By experimentation (can we find an isoform spliced at S)?

Pattern Matching

- We discussed exact matching and matching with a PSWM
- But motifs also may look quite differently
 - Motifs (domains) in protein sequences
 - Some important positions and much "glue" of unspecified length
 - Pattern here may be: [AV].*[QSA]FGK.*[IV]...
 - Which positions in S should we compare to which columns in P?
 - How can we compute P given S_1 - S_6 ?



Further Reading

- On string matching algorithms
 - Gusfield
- On sequence logos and TFBS-identification
 - Christianini & Hahn, chapter 10
 - Merkl & Waack, chapter 10