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This Lecture

• Exact substring searchExact substring search
– Naïve
– Boyer-Moore

• Searching with profiles
– Sequence profiles
– Ungapped approximate search
– Statistical evaluation of search results
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„Searching Strings“ (aka Pattern Matching)g g ( g)

• Exact matchingExact matching
– Given strings s and t: Find all occurrences of s in t
– Given S and t: Find all occurrences of any s∈S in t

• Approximate matching
– Given s and t: Find all approximate occurrences of s in t

• With or without gaps? With or without specific replacement scores?

– Given s and t: Find s’, t’ such that s’ similar to t’ and s’ is a 
substring of s and t’ is a substring of tg g

– Given s and T
• Find all t∈T that are similar to s

Fi d ll t T t i i t’ i il t ’ t i d i• Find all t∈T containing a t’ similar to a s’ contained in s

• Many more variants …
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Stringsg

• A string (or sequence) S is an ordered list of charactersA string (or sequence) S is an ordered list of characters 
from an alphabet Σ
– |S| is the length of S 
– S[i] is the character at position i in S
– S[i..j] is the substring from position i to position j in S

S[i j] i t t i if i > j– S[i..j] is an empty string if i > j 
– S[1..i] is a prefix of S ending at position i
– S[i..] is a suffix of S starting at position iS[i..] is a suffix of S starting at position i

• Alphabet
– Usually: Σ={A, C, G, T}y { , , , }
– Often, we need blanks: Σ’={A, C, G, T, _}

• Lower/upper case: S may denote a set of strings, or a 
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Exact Matchingg

• Given P, T with |P| << |T|, | | | |
• Find all occurrences of P in T
• Example of application: Restriction enzymes

– Cut at precisely defined sequence motifs of length 4-10
– Are used to generate fragments (for later sequencing)
– Example: Eco RV - GATATC

tcagcttactaattaaaaattctttctagtaagtgctaagatcaagaaaataaattaaaaataatggaacatggcacattttcctaaactcttcacagattgctaatgat
tattaattaaagaataaatgttataattttttatggtaacggaatttcctaaaatattaattcaagcaccatggaatgcaaataagaaggactctgttaattggtactat

– Example: Eco RV - GATATC

tattaattaaagaataaatgttataattttttatggtaacggaatttcctaaaatattaattcaagcaccatggaatgcaaataagaaggactctgttaattggtactat
tcaactcaatgcaagtggaactaagttggtattaatactcttttttacatatatatgtagttattttaggaagcgaaggacaatttcatctgctaataaagggattacga
aaaactttttaataacaaagttaaataatcattttgggaattgaaatgtcaaagataattacttcacgataagtagttgaagatagtttaaatttttctttttgtattac
ttcaatgaaggtaacgcaacaagattagagtatatatggccaataaggtttgctgtaggaaaattattctaaggagatacgcgagagggcttctcaaatttattcagaga
tggatgtttttagatggtggtttaagaaaagcagtattaaatccagcaaaactagaccttaggtttattaaagcgaggcaataagttaattggaattgtaaaagatatct
aattcttcttcatttgttggaggaaaactagttaacttcttaccccatgcagggccatagggtcgaatacgatctgtcactaagcaaaggaaaatgtgagtgtagacttt

ttttt tt t ttt t t ttt t tt ttt tt t t t ttt t tt t tt t t t ttaaaccatttttattaatgactttagagaatcatgcatttgatgttactttcttaacaatgtgaacatatttatgcgattaagatgagttatgaaaaaggcgaatatatta
ttcagttacatagagattatagctggtctattcttagttataggacttttgacaagatagcttagaaaataagattatagagcttaataaaagagaacttcttggaatta
gctgcctttggtgcagctgtaatggctattggtatggctccagcttactggttaggttttaatagaaaaattccccatgattgctaattatatctatcctattgagaaca
acgtgcgaagatgagtggcaaattggttcattattaactgctggtgctatagtagttatccttagaaagatatataaatctgataaagcaaaatcctggggaaaatattg
ctaactggtgctggtagggtttggggattggattatttcctctacaagaaatttggtgtttactgatatccttataaataatagagaaaaaattaataaagatgatat
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How to do it?

• The straight-forward way (naïve algorithm)The straight forward way (naïve algorithm)
– We use two counter: t, p
– One (outer, t) runs through T
– One (inner, p) runs through P
– Compare characters at position T[t+p] and P[p]

for t = 1 to |T| - |P| + 1
match := true;
p := 1;
while ((match) and (p <= |P|))

if (T(t + p - 1) <> P(p)) then
match := false;

else
+ 1p := p + 1;

end while;
if (match) then

-> OUTPUT t
end for;
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Examplesp

Worst caseTypical case

ctgagatcgcgta
t

T
P

Worst case

aaaaaaaaaaaaaaT
P

Typical case

gagatc
gagatc
gagatc
gagatc
gagatc

P aaaaat
aaaaat
aaaaat
aaaaat

P

gagatc
gatatc

gatatc
gatatc

aaaaat
... 

• How many comparisons do we need in the worst case?
• t runs through T

th h th ti P f l f t• p runs through the entire P for every value of t
• Thus: |P|*|T| comparisons
• Indeed: The algorithm has worst-case complexity O(|P|*|T|)
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Other Algorithmsg

• Exact substring search has been researched for decadesExact substring search has been researched for decades
– Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, …
– All have WC complexity O(|P| + |T|)
– Real performance depends much on size of alphabet and 

composition of strings (most have their strength in certain settings)

• In practice our naïve algorithm is quite competitive for• In practice, our naïve algorithm is quite competitive for 
random strings and non-trivial alphabets (e.g., DNA)

• But we can do better: Boyer-Moore• But we can do better: Boyer-Moore
– We present a simplified form
– BM is among the fastest algorithms in practiceg g p

• Note: Much better performance possible if T maybe 
preprocessed (up to O(|P|))
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This Lecture

• Exact substring searchExact substring search
– Naïve
– Boyer-Moore

• Searching with profiles
– Sequence profiles
– Ungapped approximate search
– Statistical evaluation of search results
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Boyer-Moore Algorithmy g

• R.S. Boyer /J.S. Moore. „A Fast String SearchingR.S. Boyer /J.S. Moore. „A Fast String Searching 
Algorithm“, Communications of the ACM, 1977

• Main idea
– Again, we use two counters (inner loop, outer loop)
– Inner loop runs from right-to-left
– If we reach a mismatch, we know

• The character in T we just haven’t seen
– This is captured by the bad character ruleThis is captured by the bad character rule 

• The suffix in P we just have seen
– This is captured by the good suffix rule

• Use this knowledge to make longer shifts in T
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Bad Character Rule

• Setting 1Setting 1
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P

• We saw n-i+1 matches before

– Let x be the character at the corresponding pos (t-n+i) in T
Candidates for matching x in P– Candidates for matching x in P

• Case 1: x does not appear in P at all – we can move t such that t-n+i
is not covered by P anymore

xabxfabzzabxzzbzzb
b b

T
P

xabxfabzzabwzzbzzb
b b

T
PabwxyabzzP abwxyabzzP

What next?
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Bad Character Rule 2

• Setting 2Setting 2
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P
– Let x be the character at the corresponding pos (t-n+i) in T
– Candidates for matching x in P

• Case 1: x does not appear in P at all• Case 1: x does not appear in P at all
• Case 2: Let j be the right-most appearance of x in P and let j<i – we 

can move t such that j and i align

xabxkabzzabwzzbzzb
abzwyabzz

T
P

xabxkabzzabwzzbzzb
abzwyabzz

T
PabzwyabzzP abzwyabzzP

What next?j i
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Bad Character Rule 3

• Setting 3Setting 3
– We are at position t in T and compare right-to-left
– Let i by the position of the first mismatch in P
– Let x be the character at the corresponding pos (t-n+i) in T
– Candidates for matching x in P

• Case 1: x does not appear in P at all• Case 1: x does not appear in P at all
• Case 2: Let j be the right-most appearance of x in P and let j<i
• Case 3: As case 2, but j>i – we need some more knowledge

xabxkabzzabwzzbzzbT xabxkabzzabwzzbzzb
abzwyabzz

T
P
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Preprocessing 1p g

• In case 3, there are some “x” right from position iIn case 3, there are some x  right from position i
– For small alphabets (DNA), this will almost always be the case
– Thus, this case 3 is the usual one

• These are irrelevant – we need the right-most x left of i
• This can (and should!) be pre-computed

– Build a two-dimensional array A[|∑|,|P|]
– Run through P from left-to-right (pointer i)

If h t t iti i t ll A[ j] i f ll j i– If character c appears at position i, set all A[c,j]:=i for all j>=i
– Needs time (complexity?), but negligible because 

• P is smallP is small
• Complexity is independent from T

• Array: Constant lookup, needs some space (lists …)
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(Extended) Bad Character Rule( )

• Simple, effective for larger alphabetsSimple, effective for larger alphabets 
• For random DNA, average shift-length is 4

– Expected distances to the next match using EBCR p g
– Thus, n# of comparisons down to |P|*|T|/4

• Worst-Case complexity does not change
– Why?
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(Extended) Bad Character Rule( )

• Simple, effective for larger alphabetsSimple, effective for larger alphabets 
• For random DNA, average shift-length should be 4

– Thus, n# of comparisons down to |P|*|T|/4, p | | | |/

• Worst-Case complexity does not change
– Why?

gggggggggggggggggggggggggggggggggggggggggT ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

P aggggggggggg
aggggggggggg
agggggggggggaggggggggggg
aggggggggggg
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Good-Suffix Rule

• Recall: If we reach a mismatch, we knowRecall: If we reach a mismatch, we know
– The character in T we just haven’t seen
– The suffix in P we just have seen

• Good suffix rule
– We have just seen some matches in P (S)
– Where else does S appear in P?
– If we know the right-most appearance S’ of S in P, we can 

immediately align S’ with the current match in Timmediately align S  with the current match in T
– If S does not appear once more in P, we can shift t by |P|

T

P Sy

x S

S‘

x S

SyS‘
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Good-Suffix Rule – One Improvementp

• Actually, we can do a little bettery,
• Not all S‘ are of interest to us
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Good-Suffix Rule – One Improvementp

• Actually, we can do a little bettery,
• Not all S‘ are of interest to us

T x t x t

P tyt‘ tyt‘≠y

• We only need S‘ whose next character to the left is not y
Why don‘t we directly require that this character is x?• Why don‘t we directly require that this character is x?
– Of course, this could be used for further optimization
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Concluding Remarksg

• Preprocessing 2Preprocessing 2
– For the GSR, we need to find all occurrences of all suffixes of P in P
– This can be solved using our naïve algorithm for each suffix
– Or, more complicated, in linear time (not this lecture)

• WC complexity of Boyer-Moore is still O(|P|*|T|)
– But average case is sub-linear
– WC complexity can be reduced to linear (not this lecture)

• Faster variants• Faster variants
– Often, using the GSR does not pay-off
– BM-Horspool: Instead of looking at the mismatch character x,BM Horspool: Instead of looking at the mismatch character x, 

always look at the symbol in T aligned to the last position of P
• Generates longer shifts on average (i is maximal)
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Examplep
b b bbbbbbb ccc a a a a a a a a ag g ggg c g bbc a a a bc a

bbbc a a a aga

b b bbbbbbb ccc a a a a a a a a ag g ggg c g bbc a a a bc a

bbbc a a a a agEBCR i

b b bbbbbbb ccc a a a a a a a a ag g ggg c g bbc a a a bc a

bbbc a a a a agEBCR wins

b b bbbbbbb ccc a a a a a a a a ag g ggg c g bbc a a a bc a

bbbc a a a a agGSR wins

g g ggg g

b b bbbbbbb bb b

bbbc a a a a agGSR wins

b b bbbbbbb ccc a a a a a a a a ag g ggg c g bbc a a a bc a

Match Good suffix bbbc a a a a ag
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This Lecture

• Exact substring searchExact substring search
– Naïve
– Boyer-Moore

• Searching with profiles
– Splicing
– Position Specific Weight Matrices
– Likelihood scores
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Approximate Search (First Instantiation)pp ( )

• Requiring an exact match is too strict in many applicationsRequiring an exact match is too strict in many applications
– And in most bioinformatics applications

• More often, one is interested in matches similar to P,
– Or can describe P only vaguely

• Many definitions of “similar” are possible

• For now: Searching with Position Specific Weight Matrices 
– Also called profiles
– Powerful tool for many bioinformatics applications

W d l h id i l k f S l– We develop the idea using an example taken from Spang et al. 
“Genome Statistics”, Lecture 2003/2005, FU Berlin
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Splicingp g

• Not all DNA of a “gene” are translated into amino acidNot all DNA of a gene  are translated into amino acid
• Splicing: Removal of introns
• Alternative splicing: Removal of (some) exonsAlternative splicing: Removal of (some) exons
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Diversityy

• From a gene with n exons, alternativeFrom a gene with n exons, alternative 
splicing can create 2n-1 proteins

• Example: Troponin T (muscle protein)p p ( p )
– 18 exons
– 64 different isoforms
– 10 exons present in all isoforms

S E t Alt ti S li i “
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Recognizing Splice Sitesg g p

• A special enzyme (spliceosome) very precisely recognizesA special enzyme (spliceosome) very precisely recognizes 
exon-intron boundaries in mRNA

• To this end, it scans the sequences and is triggered by , q gg y
certain motifs

• How are these motifs characterized? Can we find them?
– Very often, introns start with GT (GU) and end with AG
– But that is not specific enough - why?

I d t GT (AT) t 16th iti– In random sequences, we expect a GT (AT) at every 16th position
– Thus, the average distance between a GT and an AT is 16, and we 

find such pairs very oftenp y
– But: Introns typically are larger than 100 bases
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Context of a Splice Sitep

• Observing real splice sites, we find no crisp context
• But: columns are not composed at random either
• How can we capture this knowledge? 
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Position-Specific Weight Matricesp g

• Count in every column the frequencies of all bases
• Store the relative frequencies in an array of size |P|*|∑|q y | | |∑|

– With |P| being the size of the context around the splice sites

• At “GT”, all values except one are 0% and one is 100%p
– Actually, GT is not perfectly conserved in real sequences

• In random sequences, all values should  be 25%
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Vizualization: Sequence Logosq g

• Very popularVery popular
• Based on information content of each base at each position

– Which, in turn, is based on the entropy of the columns, , py
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Scoring with a PSWMg

• Eventually, we want to find potential splice sites in aEventually, we want to find potential splice sites in a 
genome G (e.g. to do gene prediction)

• We need a way to decide, given a sequence S and a PSWM y , g q
A (both of the same length): Does S match A?
– We want to assign a score to S given A
– Knowing this, we can score all subsequences of length |A| in G 
– Subsequences above a given threshold are considered candidates

• We give this question a probabilistic interpretation• We give this question a probabilistic interpretation
– Assume, for each column, a dice which four faces; each face is 

thrown with the relative frequency as given in A for this columnq y g
– How high is the probability that this dice generates S?
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Examplesp

• In random sequences, all values in A are 25%, and allIn random sequences, all values in A are 25%, and all 
possible S would get the same probability: ¼|S|

• But

• 1st sequence (S) matches A much better than the others do

Ulf Leser: Bioinformatics, Summer Semester 2011 31



This Lecture

• Exact substring searchExact substring search
– Naïve
– Boyer-Moore

• Searching with profiles
– Splicing
– Position Specific Weight Matrices
– Likelihood scores
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I am not Convinced (yet)(y )

• Is S actually a match for A?Is S actually a match for A?
• Observations

– The first S from the previous slide is about as good as it can get: p g g
The best possible sequence would get a score of 0.025 (compared 
to 0.023)

– If S is not a splice site it is an “ordinary” sequence How likely is it– If S is not a splice site, it is an ordinary  sequence. How likely is it 
that S is generated under this “zero model”? 

• “Zero model” means: Equal probability for all bases
• p(S|”zero”) = ¼9 ~ 3.8E-6
• Thus, is it much more likely (app. 6000 times more likely) that S was 

generated under the “A model” than that is was generated under the 
“zero model”
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Likelihood (Odds) Ratios( )

• Given two models A, Z. The likelihood ratio score s of aGiven two models A, Z. The likelihood ratio score s of a 
sequence S is the ratio of p(S|A) / p(S|Z)

– s(AAGGTACGT) ~ 6000
– S(CCCGTCCCC) ~ 140

s(CTGGTCCGA) 3– s(CTGGTCCGA) ~ 3
– S(TCCGTCCCC) < 1

• Also called odds score
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Matching with a PSWMg

• Given G, A, Z: find all S in G with s(S)>t
• Straight-forward: Compute all S of length |A|, compute s(S) for each

– This requires |G|*|A| divisions and multiplications 
– Divisions can be saved easily (how?)Divisions can be saved easily (how?)

• Can we do better?
– Not easily
– Trick: The number of match-situations are limited. Pre-compute all 

possible matches between q-grams and lookup values during the scan
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More Stable and Faster

• Values get quite small (close to 0) for longer AValues get quite small (close to 0) for longer A
• This yields problems with numeric stability in programs
• Better: Compute log-likelihood score s’=log2(s)Better: Compute log likelihood score s log2(s)

– Also faster: Replace multiplication with addition
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Beware

• Assume a perfectly conserved motif of length 8Assume a perfectly conserved motif of length 8 
– The chance for a given S to match is  0.000015 – low
– But |G|=3.000.000.000
– Only by change, we will have ~45000 matches of S in G

• For PSWM, the chances for finding false hits depend on the 
tti f th th h ld tsetting of the threshold t

– Higher t: Stricter search, less false hits, but may incur misses
– Lower t: Less strict less misses but many false hits– Lower t: Less strict, less misses, but many false hits

• A match is only an hypothesis that needs further analysis
– By additional knowledge (e.g.: is S part of a gene?)By additional knowledge (e.g.: is S part of a gene?) 
– By experimentation (can we find an isoform spliced at S)?
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Pattern Matchingg

• We discussed exact matching and matching with a PSWMWe discussed exact matching and matching with a PSWM
• But motifs also may look quite differently

– Motifs (domains) in protein sequences( ) p q
– Some important positions and much “glue” of unspecified length
– Pattern here may be: [AV].*[QSA]FGK.*[IV]…
– Which positions in S should we compare to which columns in P?
– How can we compute P given S1-S6?

S1: M---AIDE----NKQKALAAALGQ--KQFGKGSIMRLGEDR-SMDVETISTGSLSLDI

S2: MSDN--------KKQQALELALKQI-KQFGKGSIMKLGDG-ADHSIEAIPSGSIALDI

S3: M----AINTDTSGKQKALTMVLNQIERSFGKGAIMRLGDA-TRMRVETISTGALTLDL3

S4: M-----------DRQKALEAAVSQ--RAFGKGSIM-LGGKD---ETEVVSTRILGLDV

S5: M------DE---NKKRALAAALGQI-KQFGKGAVMRMGDHE-RQAIPAISTGSLGLDI

S6: MD---------------------K-EKSFGKGSIMRMGEE-VVEQVEVIPTGSIA---
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Further Readingg

• On string matching algorithmsOn string matching algorithms
– Gusfield

• On sequence logos and TFBS-identificationq g
– Christianini & Hahn, chapter 10
– Merkl & Waack, chapter 10
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