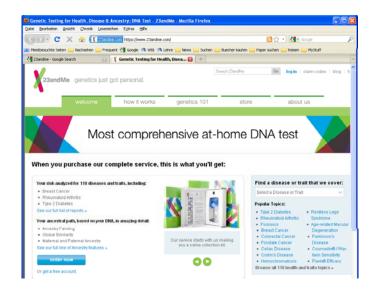

Introduction to Bioinformatics

Ulf Leser

Bioinformatics

Ulf Leser: Bioinformatics, Summer Semester 2011



Things you can do with it

- 2002
 - 2 companies
 - 32 Tests
 - Price: 100-1400€

Indikation*	Anbieter**	Untersuchungsgegenstand	Preis (inkl. MwS				
Alkoholverträglichkeit	2	keine Angaben (k. A.)	207,79				
Alzheimer	2	k. A.	134,06				
	1	E4-Allel des Apolipoprotein-E-Gens auf Chromosom 10	650,00				
Angelman-Syndrom 21	1	Deletion auf dem Chromosom 15	850,00				
Anti-Aging-Risikoprofil	2	k. A.	653,61				
Arteriosklerose/Herzinfarkt/Schlage	2	k. A.	512,81				
apettine	1	31 Mutationen einschließlich einer 5T-Variante auf dem CFTR-Gen auf dem Chromosom 7	850,00				
Bluthochdruck	2	k. A.	127,40 439,24				
en ter ber li	2	k. A.	127,40 194,39				
Dickdarmkrebs ^₃	1	MLH1- und MSH2-Mutationen	1600,00				
Entgiftungsfähigkeit	2	k. A.	811,10				
Faktor V Leiden-Mutation	1	Gerinnungsfaktor-V auf dem langen Arm von Chromosom 1	400,00				
Familiäre Hypercholesterinämie	1	Mutationen im Low-Density-Lipoprotein-Rezeptor-Gen und im Exon 26 Apolipoprotein-B-Gen					
Familiäre Hyperlipoproteinämie Typ III	1	E2-Allel des Apolipoprotein-E-Gens auf Chromosom 19	500,00				
Familiärer Brustkrebs ®	1	BCRA1- und BCRA2-Mutationen	1400,00				
Fettgen/Adipositas	2	k. A.	241,35 576,44				
Fettstoffwechsel/Cholesterin	2	k. A.	395,48				
Fragiles X-Syndrom 4	1	FMR1-(fragile X mental retardation-)Gen des X-Chromosoms (Region Xq27.3)	950,00				
Hämochromatose	2	k. A.	207,84				
Hämochromatose	1	Austausch der DNS-Basen Guanin zu Adenin an der Position 845 und von Cytosin zu Guanin an der Position 187 des HFE-Gens auf dem Chromosom 6	500,00				
Hyperhomocysteinämie	1	k. A.	550,00				
Mukoviszidose (Cystische Fibrose)	1	Mutation eines Gens auf Chromosom 7	850,00				
Muskeldystrophie	1	Deletionen (Verlust von DNA-Teilsequenzen) im Dystrophin-Gen auf dem X-Chromosom	850,00				
Osteoporose	2	k. A.	103,89 191,01				
Osteoporose	1	Mutation (Basenaustausch von Guanin zu Thymin) im Intron 1 des Kollagen Typ I Alpha 1-Gens	650.00				
Ovarialkarzinom [®]	1	BCRA1- und BCRA2-Mutationen	850,00				
Persönliches Ernährungsprofil	2	k. A.	841,32				
Prader-Willi-Syndrom	1	Deletion oder Translokation auf dem langen Arm des Chromosoms 15 (15q11)	850,00				
Derek and mattern	1	Austausch der DNS-Basen Guanin zu Adenin an der Position 20210 des Prothrombingens auf dem Chromosom 11	550,00				
Risiko Alkohol- und Drogenabhängigkeit	2	k. A.	274,86				
Thrombose	2	k. A.	134,06 281 52				

State of the "Art"

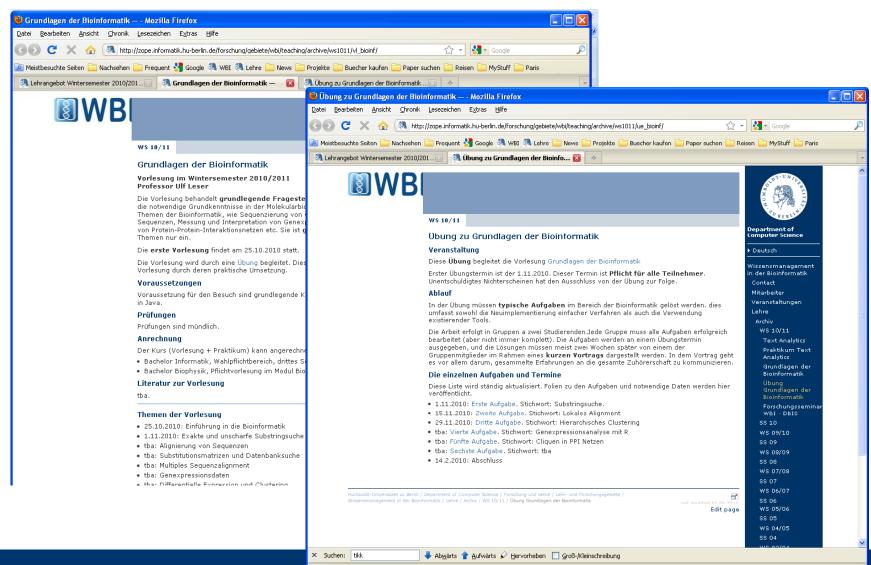
- 6/2010: "Gentest-Firma vertauscht DNA-Ergebnisse ihrer Kunden" (Nature Blog)
- 7/2010: US general accounting office compared 15 (4) companies: totally contradicting results

- Formal stuff
- A very short introduction in Molecular Biology
- What is Bioinformatics?
 - And an example
- Topics of this course

- Is mandatory for students of Biophysics Bachelor
- Is open for Bachelor students in computer science
- Brings 5 SP and will be held as 2+2
- Does not assume much knowledge in computer science
- Does not assume knowledge in biology
- Will not teach programming you need to know it already
- Is introductory many topics, often not much depth
 - Visit "Algorithmische Bioinformatik" afterwards ...
- Ask questions! Leser (a) informatik.hu ... berlin...

Exercises

- Taught by Samira Jaeger
- Registration through Goya
- There will be 6 assignments
- We build teams of 2 students
- No grades
- System
 - First week: 2-3 presentations of results of previous assignment and discussion of new assignment
 - Next week: Questions
 - ...
- You need to pass all but one assignment to be admitted to the exam


Exams

- Examination will be oral
- 20-30 minutes per student
- Days will be set in June

Literature

- For algorithms
 - Gusfield (1997). "Algorithms on Strings, Trees, and Sequences", Cambridge University Press
 - Böckenhauer, Bongartz (2003). "Algorithmische Grundlagen der Bioinformatik", Teubner
- For other topics
 - Lesk (2005). "Introduction to Bioinformatics", Oxford Press
 - Cristianini, Hahn (2007). "Introduction to Computational Genomics A Case Study Approach", Cambridge University Press
 - Merkl, Waack (2009). "Bioinformatik Interaktiv", Wiley-VCH Verlag.
- For finding motivation and relaxation
 - Gibson, Muse (2001). "A Primer of Genome Science", Sinauer Associates.
 - Krane, Raymer (2003). "Fundamental Concepts of Bioinformatics", Benjamine Cummings.
- These slides

Web Side

Ulf Leser: Bioinformatics, Summer Seme

Ihr Feedback

1	Atter	Geschlecht		Teilnehmerzat.	Warum kommers	Fachsemace			Sprache	P _{räsentation}	Beispie _{le}			Neue Erkenntnic	Kritische Ausein	Nützlich ^{wrandersetz}	Lemziele	Mat _{erialien}		Schwierigkeit			V _{orlesung}	
2	22	W	0	-	1	7	5,00	5,00	6,00	5,00	3,00	4,00	5,00	6,00	4,00	5,00		5,00	3,00	3,00	3,00	2,00	2,00	
3	22	W	0	3	1	5	5,00	5.00	5,00	5,00	5,00	6,00	6,00	5,00	5,00	4,00	5,00	5,00	3,00	3,00	5,00	2,00	2,00	
4	22	W	0	4	1	5	5,00	5,00	6,00	6,00	6,00	6,00	6,00	6,00	5,00		5.00	5,00	3,00	3,00	4,00	1,00	2,00	
5	22	W	1	3	1,2	5	5,00	5,00	5,00	4,00	5,00	5,00	4,00	5,00	4,00	4,00	5,00	5,00	4,00	3,00	3,00	2,00	2,00	
6	22		0	3	1,2	5	6,00	6,00	6,00	6,00	5,00	6,00	6,00	4,00	5,00	5,00	6,00	5.00	3,00	3,00	3,00	1,00	1,00	
7	35	M	0	3	1,3	15	6,00	6,00	6,00	4,00	2,00	4,00	5,00	6,00	5,00	5,00		5,00	5,00	4,00	4,00	1,00	3,00	
8	22	M	0	4	1	5	6,00	6,00	6,00	6,00	6,00	5,00	6,00	6,00	5,00	6,00	6,00	0.00	3,00	4,00	3,00	1,00	2,00	
9	22	W	0	3	1,2	5	6,00	5,00	6,00	6,00	6,00	6,00	6,00	5,00	4,00	4,00	5,00	6,00	3,00	3,00	3,00	1,00	1,00	
10	25	M	2	3	1,2,3	5	6,00	6,00	6,00	5,00	4,00	6,00	5,00	5,00	6,00	4,00	5,00	5,00	3,00	3,00	4,00	1,00	2,00	
11	23	M	2	2	1,2	5	6,00	6,00	6,00	5,00	4,00	6,00	6,00	6,00	4,00	4,00	0.00	5,00	3,00	3,00	4,00	2,00	2,00	
12	20	M	0	3	1,2	0 5	6,00	6,00	5,00	5,00	5,00	6,00	6,00	6,00	6,00	5,00	6,00	5,00	3,00	3,00	4,00	1,00	1,00	
13	21	W		3	1,2	c	5,00	5,00	5,00	6,00	5,00	4,00	4,00	5,00	5,00	5,00	5,00	4,00	3,00	3,00	3,00	2,00	2,00	
14	23,2		0,5	3,1	1,0	6,0	5,58	5,55	5,67	5,25	4,67	5,33	5,42	5,42	4,83	4,64	5,38	5,00	3,25	3,17	3,58	1,42	1,83	_
15				3,0			6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	6,00	3,00	3,00	3,00	1,00	1,00	
16				####			0,42	0,45	0,33	0,75	1,33	0,67	0,58	0,58	1,17	1,36	0,63	1,00	-0,25	-0,17	-0,58	-0,42	-0,83	
17							0,4	0,5	0,3	0,8	1,3	0,7	0,6	0,6	1,2	1,4	0,6	1,0	0,3	0,2	0,6	0,4	0,8	9,6

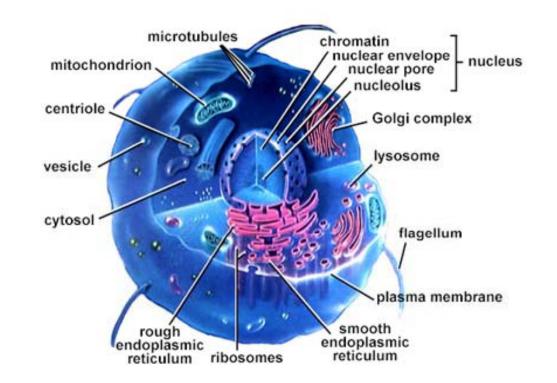
- Schlecht: Mehr Beispiele, nicht übermäßig nützlich
- Gut: Vieles (Freundlich, Fragen, Sprache, Tempo, Schwierigkeit, Dozent)

- Datenbanken f
 ür
 Übungen werden in
 Übungen kurz vorgestellt
- Erste Übung: Schnellkurs in praktischer Softwareentwicklung mit Java
 - Kein Java-Kurs!
- Geringe Verkürzung des Vorlesungsstoffs

Wissensmanagement in der Bioinformatik

- Who am I?
- Our topics in research
 - Management of biomedical data and knowledge
 - Scientific database systems
 - Text Mining
 - Biomedical data analysis
- Our topics in teaching
 - Algorithmische Bioinformatik
 - Text Analytics
 - Data Warehousing und Data Mining
 - Informationsintegration

Questions?


Ulf Leser: Bioinformatics, Summer Semester 2011

My Questions

- Diplominformatiker?
- Bachelor Informatik?
- Kombibachelor?
- Biophysik?
- Other?
- Semester?
- Prüfung?
- Spezielle Erwartungen?

- Formal stuff on the course
- A very short introduction in Molecular Biology
- What is Bioinformatics?
- Topics of this course

Cells and Bodies

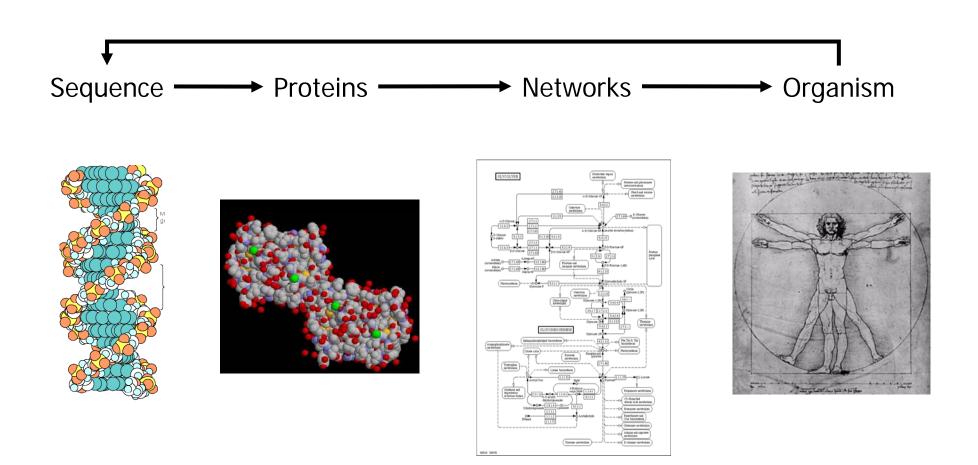
- App. 75 trillion cells in a human body
- App. 250 different types: nerve, muscle, skin, blood, ...

DesoxyriboNucleicAcid

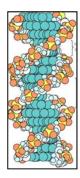
- DNA: Desoxyribonukleinsäure
 - Four different molecules
 - The DNA of all chromosomes in a cell forms its genome
 - All cells in a (human) body carry the same genome
 - All living beings are based on DNA for proliferation
 - There are always always always exceptions

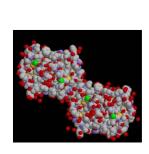
DesoxyriboNucleicAcid

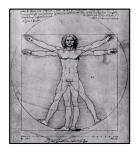
- DNA: Desoxyribonukleinsäure
 - Four different molecules (one swapped in RNA)
 - The DNA of all chromosomes in a cell together with the mitochondria-DNA forms its genome
 - Almost all cells in a (human) body carry almost the same genome
 - All living beings are based on DNA (or RNA) for proliferation


The Human Genome

- 23 chromosomes
 - Most in pairs
- ~3.000.000.000 letters
- ~50% are repetitions of 4 identical subsequences
 - --100.000 genes-
 - ~56.000 genes
 - - <u>30.000 genes</u>--
 - - 24.000 genes -
- ~20.000 genes


1 1 7	2 2 8	3 9	4 4 10	5 5 11	6 12
13	0 0 14	15	16	6 6 7 7 17	18
19	20	21	22		X Y


(Protein-Coding) Genes



Computer Science in Molecular Biology / Medicine

Genomics

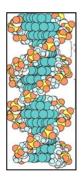
Sequencing Gene prediction Evolutionary relationships Motifs - TFBS Transcriptomics RNA folding

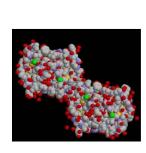
Proteomics

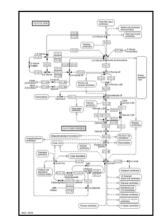
Structure prediction ... comparison Motives, active sites Docking Protein-Protein Interaction Proteomics

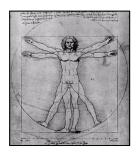
Systems Biology

Pathway analysis Gene regulation Signaling Metabolism Quantitative models Integrative analysis


. . .


Medicine


Phenotype – genotype Mutations and risk Population genetics Adverse effects


. . .

This Lecture

Genomics Sequencing Gene prediction Evolutionary relationships Motifs - TFBS Transcriptomics RNA folding

Proteomics Structure prediction

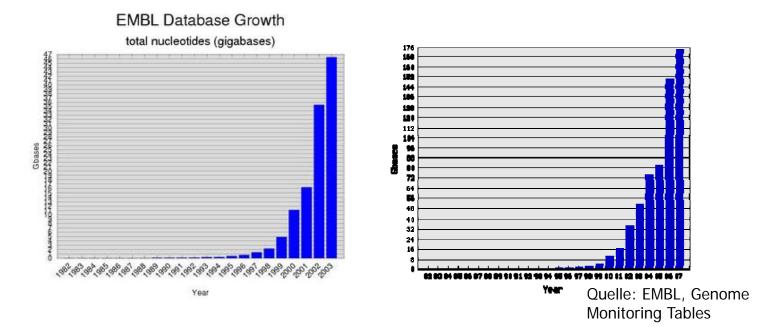
... comparison Motives, active sites Docking Protein-Protein Interaction Proteomics Systems Biology Pathway analysis Gene regulation Signaling Metabolism Quantitative models Integrative analysis

. . .

Medicine Phenotype – genotype Mutations and risk Population genetics

Adverse effects

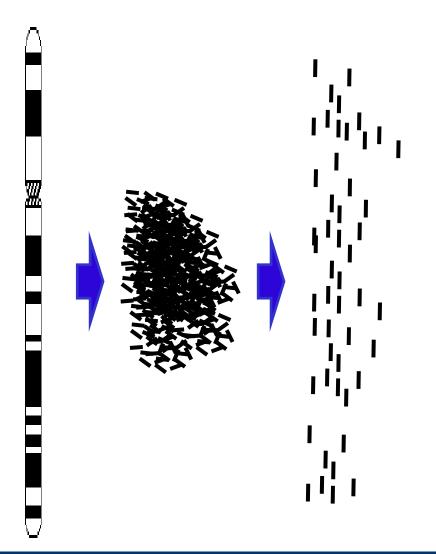
. . .


- Formal stuff on the course
- A very short introduction in Molecular Biology
- What is Bioinformatics?
 - And an example
- Topics of this course

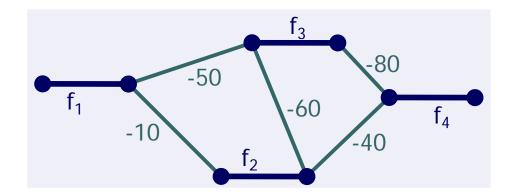
Bioinformatics / Computational Biology

- Computer Science methods for
 - Solving biologically relevant problems
 - Analyzing and managing experimental data sets
- Empirical: Data from high throughput experiments
- Mostly focused on developing algorithms
- Problem are typically complex, data full of errors importance of heuristics and approximate methods
- Strongly reductionist Strings, graphs, sequences
- Interdisciplinary: Biology, Computer Science, Physics, Mathematics, Genetics, ...

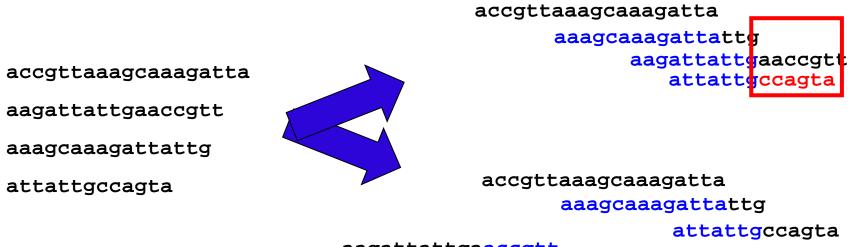
History


- First protein sequences: 1951
- Sanger sequencing: 1972
- Exponential growth of available data since end of 70th
 - Bioinformatics is largely data-driven new methods yield new data requiring new algorithms

- First papers on sequence alignment
 - Needleman-Wunsch 1970, Gibbs 1970, Smith-Waterman 1981, Altschul et al. 1990
- Large impact of the Human Genome Projekt (~1990)
- Only 14 mentions of "Bioinformatics" before 1995
- "Journal of Computational Biology" since 1994
- First professorships in Germany: end of 90th
- First university programs: ~2000
- First German book: 2001
- Commercial hype: 1999 2004

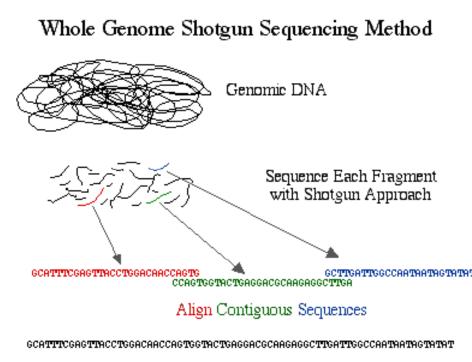

A Concrete Example: Sequencing a Genome

- Chromosomes (yet) cannot be sequenced entirely
 - Instead: Only small fragments can be sequenced
- But: Chromosomes cannot be cut at position X, Y, ...
 - Instead: Chromosomes only can be cut at certain subsequences
- But: We don't know where in a chromosome those subsequences are
 - Sequence assembly problem


Problem

- Given a large set of (sub)sequences from randomly chosen positions from a given chromosome of unknown sequence
- Assembly problem: Determine the sequence of the original chromosome
 - Everything may overlap with everything to varying degrees
 - Let's forget about orientation and sequencing errors

- Take one sequence and compute overlap with all others
- Keep the one with largest overlap and align
- Repeat such extensions until no more sequences are left
 - Note: This would work perfectly if all symbols of the chromosome were distinct


aagattattgaaccgtt

Abstract Formulation

SUPERSTRING

- Given a set S of strings
- Find string t such that
 - (a) ∀s∈S: s∈t
 - (b) $\forall t'$ for which (a) holds: $|t| \leq |t'|$ (t ist minimal)
- (all s are substrings of t)
- Problem is NP-complete
 - Very likely, there is no algorithm that solves the problem in less than $k_1 k_2^n$ operations, where $k_1 k_2$ are constants and n = |S|
 - We need exponentially many operations
 - Exact solution not computable for n>20 ...
- Bioinformatics: Find clever heuristics
 - Solve the problem "good enough"
 - Finish in reasonable time

Dimension

Generate Finished Sequence

- Whole genome shotgun
 - Fragment an entire chromosome in pieces of 1KB-100KB
- Sequence start and end of all fragments
 - Homo sap.: 28 million reads
 - Drosophila: 3.2 million reads
- Eukaryotes are very difficult to assemble because of repeats
 - A random sequence is easy

- Formal stuff on the course
- A very short introduction in Molecular Biology
- What is Bioinformatics?
 - And an example
- Topics of this course

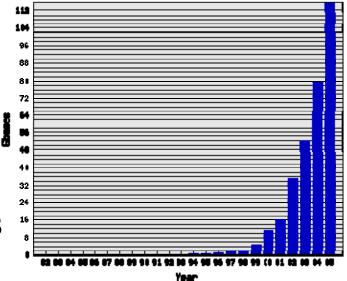
Plan

- 22.04.2011: Bank Holiday
- Björn: Substringssuche • 29.04.2011:
- 06/13.05.2011 Ulf: Editabstand,
- 20/27.05.2011 Karin/Philippe: Genexpression
- 03/10.06.2011 Ulf: PAM, BLAST, MSA
- 17.06.2011
- Samira: Protein-Protein-Interaktionnetze • 24.06.2011
- 01.07.2011
- 08.07.2011
- 15.07.2011

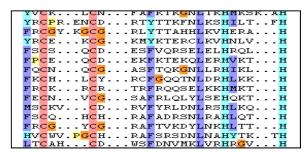
Ulf: Proteinsekundärstruktur

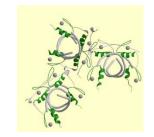
- **Ulf:** Proteomics
- Michael: Metabolische Netzwerke
 - Ulf: Abschluss, Reserve

Searching Sequences (Strings)


- A chromosome is a string
- Substrings may represent biologically important areas
 - Genes on a chromosome
 - Transcription factor binding sites
 - Overlapping sequences in assembly
 - Same gene in a different species
 - Similar gene in a different species

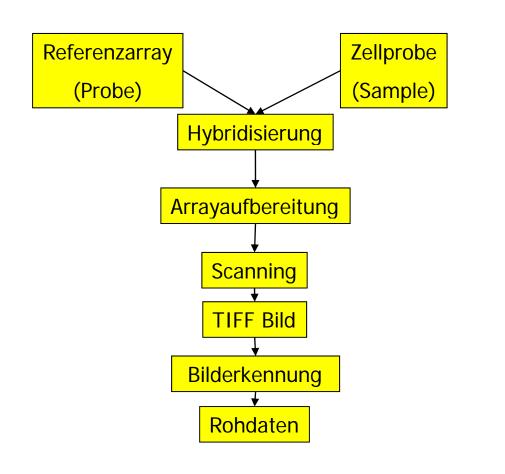
— ...


- Exact or approximate string search
 - Naive and Boyer-Moore algorithm
 - Approximate gap-free matching


Searching a Database of Strings

- Comparing two sequences is costly
 s, t: O(|s|*|t|)
- Given s, assume we want to find the most similar s' in a database of all known sequences
 - Naïve: Compare s with all strings in DB
 - Will take years and years
- BLAST: Basic local alignment search tool
 - Ranks all strings in DB according to similarity to s
 - Similarity: High is s, s' contain substrings that are highly similar
 - Heuristic: Might miss certain similar sequences
 - Extremely popular: You can "blast a sequence"

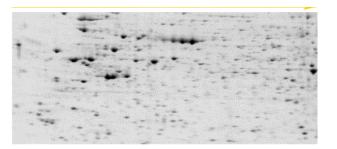
- Given a set S of sequences: Find an arrangement of all strings in S in columns such that there are (a) few columns and (b) columns are maximally homogeneous
 - Additional spaces allowed

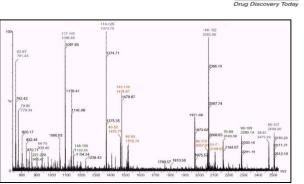


Source: Pfam, Zinc finger domain

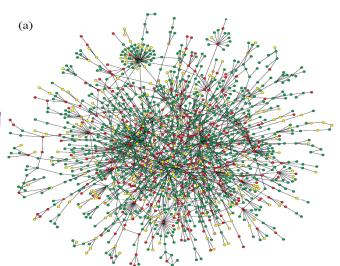
- Goal: Find commonality between a set of functionally related sequences
 - Proteins are composed of different functional domains
 - Which domain performs a certain function?

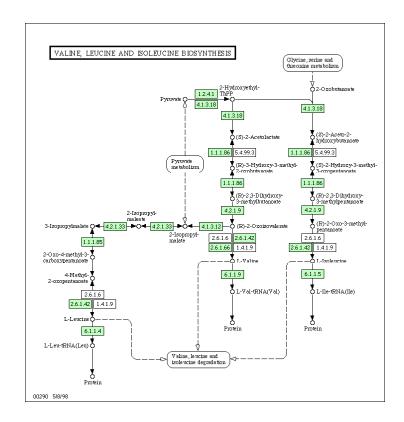
Microarrays / Transcriptomics





- The real workhorses in a cell are proteins
 - Differential splicing, post-translational modifications, degradation rates, various levels of regulation, ...
- But: Much more difficult to study (compared to mRNA)
- Separation of proteins
 - 2D page, GC / LC


Mass-spectrometry


Protein-Protein-Interactions

- Proteins do not work in isolation but interact with each other
 - Metabolism, complex formation, signal transduction, transport, ...
- PPI networks
 - Neighbors tend to have similar function
 - Interactions tend to be evolutionary conserved
 - Dense subgraphs (cliques) tend to perform distinct functions
 - Are not random at all

Systems Biology

- Biological networks are more than edges and nodes
- Example: Metabolic networks
 - Graphs capturing biochemical reactions
 - Can be described quantitatively: $N_2 + 3H_2 \rightarrow 2NH_3$
 - Can be analyzed (Balanced flux? Elements never produced / consumed? ...)
- Dynamic modeling: Kinetics

