Algorithms and Data Structures

AVL: Balanced Search Trees

Ulf Leser
Content of this Lecture

- AVL Trees
- Searching
- Inserting
- Deleting
History

 - Source: http://www.wikipedia.de/
Balanced Trees

- General search trees: Searching / inserting / deleting is $O(\log(n))$ on average, but $O(n)$ in worst-case.
- Complexity directly depends on tree height.
- Balanced trees are binary search trees with certain constraints on tree height.
 - Intuitively: All leaves have "similar" depth: $\sim\log(n)$
 - Accordingly, searching / deleting / inserting is in $O(\log(n))$
 - Difficulty: Keep the height constraints during tree updates.
 - Without reorganizing the entire tree, i.e., within $O(\log(n))$
- First proposal of balanced trees is attributed to [AVL62].
- Many others since then: brother-, B-, B*- , BB-, ... trees.
AVL Trees

• Definition
 An AVL tree \(T = (V, E) \) is a binary search tree in which the following constraint holds:
 \[\forall v \in V: |\text{height}(v.\text{leftChild}) - \text{height}(v.\text{rightChild})| \leq 1 \]

• Remarks
 – AVL trees are height–balanced
 • Condition does not imply that the level of all leaves differ by at most 1
 – Will call this constraint height constraint (HC)
 – AVL trees are search trees, i.e., the search constraint (SC) must hold: Right child is larger than parent is larger than left child
Examples [source: S. Albers, 2010]

AVL? AVL? AVL?
„Unbalanced“
Worst-Case
Height of an AVL Tree

• Lemma
 An AVL tree T with n nodes has height $h \leq O(\log(n))$

• Proof by induction
 – We construct AVL trees with the minimal # of nodes (n) at a given height h
 – Let m be the number of leaves
 – $h=0 \Rightarrow m=1$
 – $h=1 \Rightarrow m=2$
 – $h=2 \Rightarrow m>3$
 – $h=3 \Rightarrow m>5$
Height of an AVL Tree

• Lemma
 An AVL tree T with n nodes has \textit{height} $h \leq O(\log(n))$

• Proof by induction
 - We construct AVL trees with the \textit{minimal} \# of nodes at a given height h
 - Let $m(h)$ be the \textit{minimal number of leaves} of an AVL tree of height h
 - It holds: $m(h) = m(h-1)+m(h-2)$

 - Such “maximally unbalanced” trees are called \textit{Fibonacci-Trees}
Proof Continued

• These are exactly the Fibonacci numbers fib
 – 0, 1, 1, 2, 3, 5, 8...

• Recall (from Fibonacci search)

\[
\text{fib}(i) \sim \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^{i+1} = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^i = c*1,61...^i
\]

• Since h “starts” at $i=2$:

\[
m(h) = \text{fib}(h+2) \sim c*1,61^{h+2} = c*1,61*1,61*1,61^h = c'*1,61^h
\]

• This yields (recall that $n=m+m-1$)

\[
\frac{n+1}{2c'} \sim 1,61^h \quad \Rightarrow \quad h \sim \log(n)
\]
Content of this Lecture

- AVL Trees
- Searching
- Inserting
- Deleting
Searching in an AVL Tree

• Searching is in $O(\log(n))$
 – Follows directly from the worst-case height

• Note: The best-case height is $\text{ceil}(\log(n))$, so best-case and worst-case asymptotically are of the same order
Inserting

- This requires more work
- The trick is to insert nodes without hurting the height constraint (HC)
- We first explain the procedure(s) and then prove that HC always holds after insertion of a node if HC held before this insertion
Framework

- Assume AVL tree $T = (V, e)$ and we want to insert k, $k \notin V$
- As usual, we first check whether $k \in V$ and end in a node v where we know that k cannot be in the subtree rooted at v
- What are the possible situations?
- This is one:
Height Constraints
How to Proof the HC

- Before insertion, HC and SC held
 - Note: k” cannot have children
- We now only look at this particular case
- Height constraint
 - The height of only one subtree changes – left child of p
 - Adding k does not hurt HC in p (because k” exists)
 - Thus, HC also holds after insertion
- Search constraint (we have k’<k<p<k”)
 - Since k is larger than k’, it must be in the right subtree of k’
 - Since k is smaller than p, it must be in the left subtree of p
 - This subtree didn’t exit and is created now
 - Thus, SC holds after insertion
The Essential Information

• Before insertion, HC and SC held
 – Note: k'' cannot have children
• We now only look at this particular case
• Height constraint
 – The height of only one subtree changes – left child of p
 – Adding k does not hurt HC in p (because k’’ exists)
 – Thus, HC also holds after insertion
• Search constraint (we have k’<k<p<k’’)
 – Since k is larger than k’, it must be in the right subtree of k’
 – Since k is smaller than p, it must be in the left subtree of p
 – This subtree didn’t exit and is created now
 – Thus, SC holds after insertion
Other Cases

- Also trivial

- Problem
 - The left subtree of k' changes its height
 - We have to look at the height of the right subtree of k' to decide what to do
 - Actually, we only need to know if it is larger, smaller, or equal in height to the left subtree (before insertion)
Abstraction

- We assume that we found the position of \(k\) such that SC holds after insertion
 - We don’t need to check from now on – its part of the case
- To check HC, we need to know the height differences in every node that is an ancestor of the new position of \(k\)
- Definition
 Let \(T=(V,E)\) be a tree and \(p \in V\). We define
 \[
 \text{bal}(p) = \text{height}(\text{right}_\text{child}(p)) - \text{height}(\text{left}_\text{child}(p))
 \]
- Clearly, if \(T\) is an AVL tree, then \(\text{bal}(p) \in \{-1, 0, 1\}\)
New Presentation
More Systematic

- Assume AVL tree $T = (V, e)$ and we want to insert $k, k \in V$
- We found the node p under which we want to insert k
- Three possible cases:

 - **Case 1: $\text{bal}(p) = +1$**
 - Then there exists a right “subtree” of p (one node only)
 - We insert k as left child
 - Height of p doesn’t change
 - Ancestors of p remain unaffected
 - Adapt $\text{bal}(p)$ and we are done
Case 2

- Assume AVL tree $T=(V, e)$ and we want to insert k, $k \notin V$
- We found the node p under which we want to insert k
- Three possible cases:

 - **Case 2: bal(p)=-1**
 - Then there exists left “subtree” of p (one node only)
 - We insert k as right child
 - Height of p doesn’t change
 - Ancestors of p remain unaffected
 - Adapt bal(p) and we are done
Case 3

- Assume AVL tree $T=(V, e)$ and we want to insert $k, k \in V$
- We found the node p under which we want to insert k
- Three possible cases:

 - **Case 3: bal(p)=0**
 - There is neither a left nor a right subtree of p (p is a leaf)
 - We insert k as left or right child
 - Height of p changes
 - Ancestors of p are affected
 - Adapt $bal(p)$ and look at parent(p)
Up the Tree

- In case 3 (bal(p)=0) we have to see if HC is hurt in any of the ancestors of p
- We call a procedure upin(p) recursively
 - We look at the parent p’ of p
 - We check bal(p’) to see if the height change in p breaks HC in p’
 - If not, we are done
 - If yes, we can either fix it locally or propagate further up the tree
- “Fixing locally” (i.e., with constant work) is the main trick behind AVL trees
- It implies that we never have to call upin(p) more than O(log(n)) times – the height of any AVL tree with n nodes
Subcases

• p can either be the left or the right child of its parent p'
• Note that bal(p) must be +1 or -1 when upin() is called
 – We call this PC, precondition of upin()
 – In the first call, bal(p)=0 before insertion, thus +1/-1 afterwards
 – In later calls: We have to check!

• Case 3.1

Ulf Leser: Alg&DS, Summer Semester 2011 26
Subcases of Case 3.1

- **Case 3.1.1**
 - Right subtree of p' is higher than left subtree
 - Left subtree has just grown by 1
 - Thus, height of p' doesn't change
 - Adapt $\text{bal}(p')$ and we are done

- **Case 3.1.2**
 - Left and right subtree of p' have same height
 - Thus, height of p' changes
 - Adapt $\text{bal}(p')$ and call $\text{upin}(p')$
 - Note that $\text{bal}(p')$ now is 1 or -1
 - PC holds
Subcases of Case 3.1

- Case 3.1.3
 - Left subtree of p’ was already higher than right subtree
 - And has even grown
 - HC is hurt in p’
 - Fix locally
 - How?

- Case 3.1.3.1

- Case 3.1.3.2
A Closer Look

- Subtree 1 contains values smaller than p (and than p')
- Subtree 2 contains values larger than p, but smaller than p'
- Subtree 3 contains values larger than p' (and than p)
- Can we rearrange the subtree rooted in p' such that FC and HC hold?
Example

- Subtree 1 contains values smaller than p (and than p’)
- Subtree 2 contains values larger than p, but smaller than p’
- Subtree 3 contains values larger than p’ (and than p)
- You may change the root node
Rotation

- We rotate nodes p and p' to the left
- Clearly, SC holds
- Impact on HC?
Rotation and HC

- HC holds after rotation
- Further, height of subtree has not changed – no need for further upin()’s
Recall ...

- **Case 3.1.3**
 - Left subtree of p' was already higher than right subtree
 - And has even grown
 - HC is hurt in p'
 - Fix locally
 - How?

- **Case 3.1.3.1**

- **Case 3.1.3.2**
More Intricate

• If we rotated to the right, p (the new root) would have a left subtree of height $h-1$ and a right subtree of height $h+1$
 – Forbidden by HC

• We have to take a closer look to “break” the subtree of height h
One More Level of Detail

- height(v) = h
- height(x) and height(y) must be h-1 or h-2
- Since the subtree rooted at p has just grown in height, this growth must have happened below v (because bal(p) = +1), so we must have height(x) ≠ height(y)
Double Rotation
Double Rotation

Ulf Leser: Alg&DS, Summer Semester 2011
AVL Constraints

- **Adaptation**
 - bal(p) ∈ \{0, -1\}
 - bal(p') ∈ \{0, +1\}
 - bal(v) ∈ \{-1, +1\}

- **Height constraint**
 - Holds in every node

- **Need to call upin(v)?**
 - No: Subtree had height h+1 and still has height h+1

- **Search constraint?**
Search Constraint
Are we Done?

• Case 3.2

• Similar solution
 – If $\text{bal}(p')=-1$, adapt and finish
 – If $\text{bal}(p')=0$, adapt and call $\text{upin}(\text{parent}(p'))$
 – If $\text{bal}(p')=+1$, then
 • Case 3.2.3.1: Rotate left in p
 • Case 3.2.3.1: Rotate right in p, then rotate left in v
Summary

• We found the node p under which we want to insert k

• **Major cases**
 - If $k < p$ and $\text{rightChild}(p) \neq \text{null}$: Insert k (new left child)
 - If $k > p$ and $\text{leftChild}(p) \neq \text{null}$: Insert k (new right child)
 - If p has no children: Insert k and call $\text{upin}(p)$

• **Procedure $\text{upin}(p)$**
 - If $p = \text{leftChild}(p')$
 • If $\text{bal}(p') = 1$: Set $\text{bal}(p') = 0$, done
 • If $\text{bal}(p') = 0$: Set $\text{bal}(p') = -1$, call $\text{upin}(p')$
 • If $\text{bal}(p') = -1$:
 - If $\text{bal}(p) = -1$: Rotate right in p, done
 - If $\text{bal}(p) = +1$: Rotate left in p, right in v, done
 - Else ($p = \text{rightChild}(p')$)
 • ...

Ulf Leser: Alg&DS, Summer Semester 2011
Example

1. Insert 9:
 - Tree before insert: 3, 10, 15
 - Tree after insert: 3, 10, 15
 - 9 is inserted as a right child of 10

2. Insert 8:
 - Tree before insert: 3, 7, 10, 15
 - Tree after insert: 3, 7, 10, 15
 - 8 is inserted as a left child of 7

- HC hurt
- Rotate left in p
Example

- p changes height
- HC hurt in p'
- Rotate left in p, then right in v (9)
Content of this Lecture

- AVL Trees
- Searching
- Inserting
- Deleting
Deleting a Key

- Follows the same scheme as insertions
- We will be a bit more sloppy than for insertions – details can be found in [OW]

- First find the node p which holds k (to be deleted)
- We will again find cases where we have to do nothing, cases where we have to rotate, and cases where we have to propagate changes up the tree
- Note: In contrast to insertion, whenever we rotate, we still have to propagate changes further
- Thus, on average deletions are more costly than insertions
Major Cases

- **Case 1**: k has no children
 - Remove k, adapt bal(p)
 - If bal(p) is set to 0, then height has shrunken by 1
 - All other cases are easily resolved locally
 - Then call upout(p)

- **Case 2**: k has only one child
 - Replace k with k'
 - k' cannot have children, or HC would not hold in k
 - Height and balance of k (now k') has changed
 - Call upout(k')
Invariant

- **Case 1: k has no children**
 - Remove k
 - If bal(p) is set to 0, then height has shrunken by 1
 - All other cases are easily resolved locally
 - Then call upout(p)
- **Case 2: k has only one child**
 - Replace k with k'
 - K' cannot have children, or HC would not hold in k
 - Height and balance of k (now k') has changed
 - Call upout(k')
Case 3

- Case 3: k has two children
 - Recall natural search trees
 - We search the symmetric predecessor q of k
 - Replace k with q and call $\text{delete}(q)$
Procedure upout(p)

- Whenever we call upout(p), then the height of p has decreased by 1 and bal(p)=0
- Let p be the left child of its parent p’
 - Again, the case of p being the right child of p’ is symmetric
- Case 1; bal(p’)=-1
Procedure upout(p)

- Whenever we call upout(p), then the height of p has decreased by 1 and bal(p)=0
- Let p be the left child of its parent p’
 - Again, the case of p being the right child of p’ is symmetric
- Case 2: bal(p’)=0
Procedure upout(p)

- Whenever we call upout(p), then the height of p has decreased by 1 and bal(p)=0
- Let p be the left child of its parent p’
 - Again, the case of p being the right child of p’ is symmetric
- Case 3: bal(p’)=+1
Subcase 1

- Case 3.1: Look at sibling q of p: \(\text{bal}(q)=0\)
- Rotate left in q

Height has not changed - done
Subcase 2

- Case 3.2: bal(q) = +1
- Rotate left in q (again)

Height has changed – upout(q)
Subcase 3

- Case 3.3: $\text{bal}(q)=-1$
- Rotate right in q, then left in z

Height has changed – $\text{upout}(z)$
Summary AVL Trees

- With a little work, we reached our goal: Searching, inserting, and deleting is possible in $O(\log(n))$
- One can also prove that ins/del are in $O(1)$ on average
 - Because reorganizations are rare and usually stop very early
- AVL trees are a “work-horse” DS for keeping a sorted list
 - JAVA uses red-black trees, a class of trees also including AVL trees
- AVL trees are bad as disk-based DS
 - Disk blocks (b) are much larger than one key, and following a pointer means one head seek
 - Better: B-Trees: Trees of order b with constant height in all leaves
 - B typically ~ 1000
 - Finding a key only requires $O(\log_{1000}(n))$ seeks