Algorithms and Data Structures

Open Hashing

Ulf Leser
Open Hashing

- **Open Hashing**: Store all values inside hash table A
- **General framework**
 - No collision: Business as usual
 - Collision: Chose another index and probe again (is it “open”?)
 - As second index might be full as well, probing must be iterated
- **Many suggestions on how to chose the next probe index**
- **In general, we want a strategy (probe sequence) that**
 - ... ultimately visits any index in A (and few twice before)
 - ... is deterministic – when searching, we must follow the same order of indexes (probe sequence) as for inserts
Reaching all Indexes of A

• Definition

Let A be a hash table, $|A|=m$, over universe U and h a hash function for U into A. Let $I=\{0, ..., m-1\}$. A probe sequence is a deterministic, surjective function $s: U \times I \rightarrow I$

• Remarks

– We use j to denote elements of the sequence: Where to jump after $j-1$ probes
– s need not be injective – a probe sequences may cross itself
 • But it is better if it doesn’t
– We typically use $s(k, j) = (h(k) - s'(k, j)) \mod m$ for a properly chosen function s'

• Example: $s'(k, j) = j$, hence $s(k, j) = (h(k) - j) \mod m$
Searching

- Let $s'(k, 0) := 0$
- We assume that s cycles through all indexes of A
 - In whatever order
- Probe sequences longer than $m-1$ usually make no sense, as they necessarily look into indexes twice
 - But beware of non-injective functions

```c
1. func int search(k int) {
2.   j := 0;
3.   first := h(k);
4.   repeat
5.     pos := (first-s'(k, j) mod m;
6.     j := j+1;
7.   until (A[pos]=k) or
8.     (A[pos]=null) or
9.     (j=m)
10.   if (A[pos]=k then
11.     return pos;
12.   else
13.     return -1;
14. end if;
15.}
```
Deletions

- Deletions are a problem
 - Assume \(h(k) = k \mod 11 \) and \(s(k, j) = (h(k) + 3\times j) \mod m \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ins(1); ins(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ins(23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ins(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>23</td>
<td></td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>del(23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>search(12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>?</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>
Remedies

• **Leave a mark** (tombstone)
 – During search, jump over tombstones
 – During insert, tombstones may be replaced

• **Re-organize list**
 – Keep pointer p to index where a key should be deleted
 – Walk to end of probe sequence (first empty entry)
 – Move *last non-empty entry* to index p
 – Requires to completely run through the probe sequence for every deletion (otherwise only n/2 on average)
 – **Not compatible** with strategies that keep probe sequences sorted
 • See later
Open versus External collision handling

• Pro
 – We do not need more space than reserved – more predictable
 – A typically is filled more homogeneously – less wasted space

• Contra
 – More complicated
 – Depending on method, we get worse average-case / worst-case complexities for insertion/deletion/sort
 • Especially deletions have overhead
 – A gets full; we cannot go beyond $\alpha = 1$
 – If A gets very large, we can elegantly store overflow chains on external memory
Overview

- We will look into **three strategies**
 - **Linear probing**: \(s(k, j) := (h(k) - j) \mod m \)
 - **Double hashing**: \(s(k, j) := (h(k) - j \cdot h'(k)) \mod m \)
 - **Ordered hashing**: Any \(s \); values in probe sequence are kept sorted

- **Others**
 - **Quadratic hashing**: \(s(k, j) := (h(k) - \text{floor}(j/2)^2 \cdot (-1)^j) \mod m \)
 - Less vulnerable to local clustering than linear hashing
 - **Uniform hashing**: \(s \) is a random permutation of \(I \) dependent on \(k \)
 - High administration overhead, guarantees shortest probe sequences
 - **Coalesced hashing**: \(s \) arbitrary; entries are linked by add. pointers
 - Like overflow hashing, but overflow chains are in \(A \); needs additional space for links
Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Ordered Hashing
Linear Probing

- Probe sequence function: \(s(k, j) := (h(k) - j) \mod m \)
 - Assume \(h(k) = k \mod 11 \)

\[
\begin{array}{cccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]

\[\text{ins(1); ins(7); ins(13)}\]

\[\begin{array}{cccccccccc}
& & 1 & 13 & & & & & & 7 & \\
\end{array}\]

\[\text{ins(23)}\]

\[\begin{array}{cccccccccc}
23 & 1 & 13 & & & & & & 7 & \\
\end{array}\]

\[\text{ins(12)}\]

\[\begin{array}{cccccccccc}
23 & 1 & 13 & & & & & & 7 & 12 \\
\end{array}\]

\[\text{ins(10)}\]

\[\begin{array}{cccccccccc}
23 & 1 & 13 & & & & & & 7 & 10 & 12 \\
\end{array}\]

\[\text{ins(24)}\]

\[\begin{array}{cccccccccc}
23 & 1 & 13 & & & & & & 7 & 24 & 10 & 12 \\
\end{array}\]
Analysis

- The longer a chain ...
 - the more different values of h(k) it covers
 - the higher are the chances to produce more collisions
 - the faster it will grow, the faster it will merge with other chains

- Assume an empty position p left of a chain of length n and an empty position q with an empty cell to the right
 - Also assume h is uniform
 - Chances to fill q with next insert: 1/m
 - Chances to fill p with the next insert: n/m

- Linear probing tends to quickly produce long, completely filled stretches of A with high collision probabilities
In Numbers (Derivation of Formulas Skipped)

- Scenario: Some inserts, then many searches
 - Expected number of probes per search are most important

\[C_n \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)} \right) \]

\[C'_n \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2} \right) \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(C_n) (erfolgreich)</th>
<th>(C'_n) (erfolglos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>0.90</td>
<td>5.5</td>
<td>50.5</td>
</tr>
<tr>
<td>0.95</td>
<td>10.5</td>
<td>200.5</td>
</tr>
<tr>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: S. Albers / [OW93]
Quadratic Hashing

erfolgreiche Suche:

\[
C_n \approx 1 - \frac{\alpha}{2} + \ln\left(\frac{1}{1 - \alpha}\right)
\]

erfolglose Suche:

\[
C'_n \approx \frac{1}{1 - \alpha} - \alpha + \ln\left(\frac{1}{1 - \alpha}\right)
\]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(C_n) (erfolgreich)</th>
<th>(C'_n) (erfolglos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.44</td>
<td>2.19</td>
</tr>
<tr>
<td>0.90</td>
<td>2.85</td>
<td>11.40</td>
</tr>
<tr>
<td>0.95</td>
<td>3.52</td>
<td>22.05</td>
</tr>
<tr>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: S. Albers / [OW93]
Discussion

- Disadvantage of linear (and quadratic) hashing: Problems with the original hash function h are preserved
 - Probe sequence only depends on $h(k)$, not on k
 - $s'(k, j)$ ignores k
 - All synonyms k, k' will create the same probe sequence
 - Two keys that form a collision are called synonyms
 - Thus, if h tends to generate clusters (or inserted keys are non-uniformly distributed in U), also s tends to generate “clusters” (i.e., sequences filled from multiple keys)
Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Ordered Hashing
Double Hashing

- **Double Hashing**: Use a second hash function h'
 - $s(k, j) := (h(k) - j \cdot h'(k)) \mod m$ (with $h'(k) \neq 0$)
 - Further, we want that $-h'(k) \not| m$ (done if m is prime)
- h' should spread h-synonyms
 - If $h(k) = h(k')$, then hopefully $h'(k) \neq h'(k')$
 - Otherwise, we preserve problems with h
 - Optimal case: h' statistically independent of h, i.e.,
 - $p(h(k) = h(k') \land h'(k) = h'(k')) = p(h(k) = h(k')) \cdot p(h'(k) = h'(k'))$
 - If both are uniform: $p(h(k) = h(k')) = p(h'(k) = h'(k')) = \frac{1}{m}$
- **Example**: If $h(k) = k \mod m$, then $h'(k) = 1 + k \mod (m-2)$
Example (Linear Probing produced 9 collisions)

- \(h(k) = k \mod 11; \quad h'(k) = 1 + k \mod 9 \)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

- \(h(k) = 1; \quad h'(k) = 6 \)
 \[s(k, 1) = 5 \]

- \(h(k) = 1; \quad h'(k) = 4 \)
 \[s(k, 1) = 3 \]

- \(h(k) = 2; \quad h'(k) = 7 \)
 \[s(k, 1) = 5 \]
 \[s(k, 2) = 1 \]
 \[s(k, 3) = 8 \]
Analysis

• Would need a lengthy proof

\[C' \leq \frac{1}{1 - \alpha} \]

\[C_n \approx \frac{1}{\alpha} \times \ln\left(\frac{1}{(1 - \alpha)}\right) \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(C_n) (erfolgreich)</th>
<th>(C'_n) (erfolglos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.39</td>
<td>2</td>
</tr>
<tr>
<td>0.90</td>
<td>2.56</td>
<td>10</td>
</tr>
<tr>
<td>0.95</td>
<td>3.15</td>
<td>20</td>
</tr>
<tr>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Another Example

ins(23); ins(13)

ins(34)
h(k)=1; h'(k)=8
s(k, 1)=7

ins(12)
h(k)=1; h'(k)=4
s(k, 1)=3

ins(10)

ins(24)
h(k)=2; h'(k)=7
s(k, 1)=5
Observation

- We change the order of insertions (and nothing else)

\[
\begin{align*}
\text{ins}(34); \text{ins}(13) & : 34 & 13 & \quad 34 & 13 \\
\text{ins}(23) & : 34 & 13 & 23 \\
& h(k)=1; h'(k)=6 \\
& s(k, 1)=5 \\
\text{ins}(12) & : 34 & 13 & 12 & 23 \\
& h(k)=1; h'(k)=4 \\
& s(k, 1)=3 \\
\text{ins}(10) & : 34 & 13 & 12 & 23 & 10 \\
\text{ins}(24) & : 34 & 13 & 12 & 23 & 24 & 10 \\
& h(k)=2; h'(k)=7 \\
& s(k, 1)=5 \\
& s(k, 2)=1 \\
& s(k, 3)=8
\end{align*}
\]
Observation

- The number of collisions depends on the order of inserts
 - Because \(h' \) spreads \(h \)-synonyms differently for different values of \(k \)
- We cannot change the order of inserts, but ...
- Observe that when we insert \(k' \) and there already was a \(k \) with \(h(k)=h(k') \), we actually have two choices
 - Until now we always looked for a new place for \(k' \)
 - Why not: set \(A[h(k')]=k' \) and find a new place for \(k \)?
 - If \(s(k',1) \) is filled but \(s(k,1) \) is free, then the second choice is better
 - Insert is faster, searches will be faster on average
Brent’s Algorithm

- **Brent’s algorithm:**
 Upon collision, propagate key for which the next index in probe sequence is free; if both are occupied, propagate \(k' \)
- Improves only successful searches
 - Otherwise we have to follow the chain to its end anyway
- One can show that the average-case probe length for successful searches now is **constant** (\(\sim 2.5 \) accesses)
 - Even for relatively full tables
Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Ordered Hashing
Idea

• Can we do something to improve unsuccessful searches?
 – Recall overflow hashing: If we keep the overflow chain sorted, we can stop searching after \(n/2 \) comparisons on average

• Transferring this idea: We must keep the keys in any probe sequence ordered
 – We have seen with Brent’s algorithm that we have the choice which key to propagate whenever we have a collision
 – Thus, we can also choose to always propagate the smaller of both keys – which generates a sorted probe sequence

• Result: Unsuccessful are as fast as successful searches
 – Note: This trick cannot be combined with Brent’s algorithm – conflicting rules
Details

- In Brent’s algorithm, we only replace a key if we can insert the replaced key directly into A.
- Now, we must replace keys even if the next slot in the probe sequence is occupied:
 - We run through probe sequence until we meet a key that is smaller.
 - We insert the new key here.
 - All subsequent keys must be replaced (moved in probe sequence).
- Note that this doesn’t make inserts slower than before:
 - Without replacement, we would have to search the first free slot.
 - Now we replace until the first free slot.
• Imagine ins(6) would first probe position 1, then 4
• Since 6<9, 9 is replaced; imagine the next slot would be 8
• Since 9<14, 14 is replaced

• Problem
 – 14 is not a synonym of 9 – two probe sequences cross each other
 – Thus, we don’t know where to move 14 – the next position in general requires to know the “j”, i.e., the number of hops that were necessary to get from h(14) to slot 8
Solution

- Ordered hashing only works if we can compute the next offset without knowing j
 - E.g. linear hashing (offset -1) or double hashing (offset \(-h'(k)\))
- But – is the method still correct?
 - Yes (for formal proof, see [OW93])
 - The critical points are where \textit{where probe sequences cross}
 - Imagine that we had a sequence X-Y-Z (with X<Y<Z). An insert triggers a replacement of Y with some Y'.
 - This implies that Y'<Y<Z (or no replacement had happened)
 - But we don’t know if X<Y’ – can this be a problem?
 - No – X and Y’ cannot be synonyms (or no crossing had happened)
 - Thus, we cannot enter the probe sequence of X with search key Y’
 - Since Y’<Y, Y’ cannot make a search break too early
Wrap-Up

- **Open hashing** can be a good alternative to overflow hashing even if the fill grade approaches 1
 - Very little average-case cost for look-ups with double hashing and Brent’s algorithm or using ordered hashing
 - Depending which types of searchers are more frequent
- Open hashing suffers from having only static place, but guarantees to not request more space once A is allocated
 - Less memory fragmentation
Dynamic Hashing

- **Dynamic Hashing** adapts the size of the hash table
 - Once fill degree exceeds (falls under) a threshold, increase (decrease) table size

- Used a lot in databases
 - Hash table in main memory, all synonyms in one disc block
 - We increase hash table when synonym block overflows

- Main problem: **Avoid rehashing**
 - Even if |A| increases, our original hash function (using m) will never address the new slots
 - Undesirable: Create new hash function and rehash all values

- Linear hashing, extensible hashing, virtual hashing, ...