Algorithms and Data Structures

Priority Queues

Ulf Leser
Special Scenarios for Searching

- Up to now, we assumed that all elements of a list are equally important and that all of them are searched with the same probability as all others.

- What if some elements are more important than others?
 - There is a (maybe partial) order on list elements
 - The most important elements are always retrieved next
 - Priority Queues

- What if some elements are searched more often than others?
 - Popular elements should be retrieved faster
 - But popularity changes by searching
 - Self-Organizing Lists
Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
 - Classical problem: Single-Sink-Shortest-Paths
 - Famous solution: Dijkstra’s algorithm
Assumptions

- We assume that there is at least one path between X and any other node (every node is reachable from X)
- We assume strictly positive edge weights
- **Distance is the length (=sum of weights) of the shortest path**
- There might be many shortest paths, **but distance is unique**
- We only want the distance and need no “witness path”
Exhaustive Solution

• First approach: **Enumerate all paths**
 - Need to break cycles (e.g. X – K3 – K4 – X – K3 - ...)
 – K1 [BT-K2] [BT-K3] [BT-X] K6 - ...
Redundant work

- First approach: Enumerate all paths
 - Need to break cycles (e.g. X – K3 – K4 – X – K3 - ...)
Dijkstra’s Idea

- Enumerate **paths by their length** (neither DFS nor BFS)
- Assume we reach a node *Y* by a path *p* of length *l* and we have already explored all paths with length *l’ ≤ l* and that *Y* was not reached yet
 - We always mean “all paths starting from *X*”
- Then *p* must be the **shortest path** between *X* and *Y*
 - Because any *p’* between *X* and *Y* would have a **prefix of length at least l** and (a) a continuation with length >0 or (b) would not need a continuation (then *p* is as short as *p’*)
Example for Idea

- X – K3
- X – K3 – K2
- X – K1
- X – K3 – K2 – K6
- X – K3 – K4
- X – K3 – K7
- X – K3 – K4 – K5
- X – K3 – K7 – K8
- Stop (all nodes found)
- Other orders are possible (if multiple next paths with same length exist)
Algorithm

1. G = (V, E);
2. x : start_node; # x ∈ V
3. A : array_of_distances;
5. L := V;
6. A[x] := 0;
7. while L ≠ ∅
 8. k := L.get_closest_node();
 9. L := L \ k;
10. forall (k,f,w)∈E do
 11. if f∈L then
 12. new_dist := A[k]+w;
 13. if new_dist < A[f] then
 15. end if;
 16. end if;
 17. end for;
 18. end while;

- **Assumptions**
 - Nodes have IDs between 1 ... |V|
 - Edges are (from, to, weight)

- **We enumerate nodes by length of their shortest paths**
 - In the first loop, we pick x and update distances (A) to all adjacent nodes
 - When we pick a node k, we already have computed its distance to x in A
 - We adapt the current best distances to all neighbors of k we haven’t picked yet

- **Once we picked all nodes, we are done**
Example for Algorithm

- Pick x
Example for Algorithm

- Pick x
- Adapt distances to all neighbors
Example for Algorithm

- Pick K3
Example for Algorithm

- Pick K3
- Adapt distances to all neighbors
Example for Algorithm

- Pick K1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>K1</td>
<td>2</td>
</tr>
<tr>
<td>K2</td>
<td>2</td>
</tr>
<tr>
<td>K3</td>
<td>1</td>
</tr>
<tr>
<td>K4</td>
<td>4</td>
</tr>
<tr>
<td>K5</td>
<td></td>
</tr>
<tr>
<td>K6</td>
<td>5</td>
</tr>
<tr>
<td>K7</td>
<td>4</td>
</tr>
<tr>
<td>K8</td>
<td></td>
</tr>
</tbody>
</table>
Example for Algorithm

- Pick K1
- Adapt distances to all neighbors
 - There are none
Example for Algorithm

- Pick K2
• Pick K2
• Adapt distances to all neighbors
 – K1 was picked already – ignore
 – We found a shorter path to K6
Example for Algorithm

- Pick K6
Example for Algorithm

- Pick K6
- Adapt distances to all neighbors
 - There are none
Example for Algorithm

- Pick K7
Example for Algorithm

- Pick K7
- Adapt distances to all neighbors
 - K6 was visited already
Example for Algorithm

- Pick K4
Example for Algorithm

- Pick K4
- Adapt distances to all neighbors
 - X was visited already

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>K6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>K7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>K8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Example for Algorithm

- Pick K5 ... Pick K8
A Closer Look

- Algorithm seems to work
 - Formal proof and complexity analysis follows later
 - Clearly, 8 is passed-by $|V|$ times and 12 at most $|E|$ times

- Central: get_closest_node()
 - Needs to find the node k in L for which $A[k]$ is the smallest

- Data structure: Priority queue
 - List of tuples (o, v) (object,value)
 - Central operation: Return tuple where v is smallest
Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps
Priority Queues

• A **priority queue** (PQ) is an ADT with 3 essential operations
 - `add(o,v)`: Add element o with value (priority) v
 - Maybe also bulk insert – convert a list in a priority queue
 - `getMin()`: Retrieve **element with highest priority**
 - `removeMin()`: Remove element with smallest value

• Typical additional operations
 - `merge(p1, p2)`: Merge two PQs into one (properly sorted)
 - `delete(o)`: Delete o from PQ
 - `changeValue(o,v)`: Change value of o to v
Applications

- Games (e.g. chess)
 - The machine explores next movements but cannot look at them exhaustively; give each move an assumed benefit and explore moves with highest benefit first (also called A* algorithm)

- Event simulators
 - While events are handled, new events are generated for the future; manage all events in a PQ sorted by event time and always pull the next event

- Quality of Service in a network
 - When bandwidth is limited, sort all transmission requests in a PQ and transmit by highest priority

- ...

- PQs are (yet another) fundamental data structure
Naive Implementations (with $|Q|=n$)

- Using a linked list
 - `add` requires $O(1)$
 - `getMin` requires $O(n)$ [bad]
 - `deleteMin` requires $O(1)$
 - `merge` requires $O(1)$

- Using a linked list sorted by priority
 - `add` requires $O(n)$ [bad]
 - `getMin` requires $O(1)$
 - `deleteMin` requires $O(1)$
 - `merge` requires $O(n+m)$
Maybe Arrays?

- Using a sorted array
 - add requires $O(n)$ [We find the position in $\log(n)$, but then have to free a cell by moving all elements after this cell]
 - getMin requires $O(1)$
 - deleteMin requires $O(n)$

- PQs are typically used in applications where elements are inserted and removed all the time
- We need a DS that can change its size dynamically at very low cost
- We want constant or at most log-time for all operations
Content of this Lecture

- Priority Queues
- **Using Heaps**
 - Heaps
 - Operations on Heaps
 - Heap Sort
- **Using Fibonacci Heaps**
Heap-based PQ

- Unsorted lists require $O(n)$ for `getMin()`
 - We don’t know where the smallest element is
- Sorted lists require $O(n)$ for `add()`
 - We don’t know where to put the new element
- Can we find a way to keep the list “a little sorted”?
 - Actually, we only want the smallest element at a fixed position
 - All other elements can be at arbitrary places
 - `add()` / `deleteMin()` should be faster than $O(n)$, because they don’t need to keep the entire list sorted
- One such structure is called heap
Heaps

- Definition

 A heap is a labeled binary tree for which the following holds

 - Form-constraint (FC): The tree is complete except the last level
 - I.e.: Every node has exactly two children
 - Heap-constraint (HC): The value of any node is smaller than that of its children
Properties

• Order
 – A head is “a little” sorted: We know the smallest element (root)
 – We know the order for some pairs of elements (parent-successors),
 but for many pairs we don’t know which is bigger (e.g. nodes in the
 same level)

• Size
 – A complete binary tree with m levels has 2^{m-1} nodes
 – A heap with m levels thus has between $2^{m-1}+1$ and 2^m-1 nodes
 – A heap with n nodes has $\lceil \log(n+1) \rceil$ levels
Operations

• Assume we store our list as heap
• Clearly, \texttt{getMin()} is possible in $O(1)$
 \quad – Keep a pointer to the root
• But ...
 \quad – How can we turn a list into a heap?
 \quad – How can we add an element to a heap – such that the new structure again is a heap?
 \quad – How can we perform \texttt{deleteMin()} – such that the new structure again is a heap?
• We look at these operations in reverse order
DeleteMin()

- We first remove the root
 - Creates two heaps
 - Need to connect them to one
- We take the „last“ node, place it in root, and sift it down the tree
 - Last node: right-most in the last level (actually, we can take any from the last level)
 - Sifting down: Exchange with smaller of both children as long as one child is smaller than the node itself
Analysis

- Correctness – need to show that FC and HC are invariants
 - HC: We look at every point after we moved a node k. k may
 - ... be smaller than its children. Then HC holds and we are done
 - ... be larger than at least one child k2. Assume that k2 is the smaller of the two children (k1, k2) of k. We swap k and k2. The new parent (k2) now is smaller than its children (k1, k), so the HC holds
 - After the last swap, k has no children any more – HC holds
 - FC: We remove one node, then we sift down
 - Removing last node doesn’t change FC as we remove in the last level
 - Sifting does not change the topology of the tree (we only swap)

- Complexity
 - Recall that a heap with n nodes has ceil(log(n+1)) levels
 - During sifting, we perform one comparison in every level
 - Thus: $O(\text{ceil}(\log(n+1))) = O(\log(n))$
Add() on a Heap

- Cannot simply add on top
- Idea: We add new element somewhere in last level and \textit{sift up}
 - We might need a new level
 - Sifting up: Compare to parent and swap \textit{if parent is larger}
Analysis

- Correctness
 - HC
 - If parent has only one child, HC holds after each swap
 - Assume a parent k has children k1 and k2, k2 was swapped there in the last move, and k2 < k. Since HC held before, k < k1, thus k2 < k < k1. We swap k2 and k, and thus the new parent is smaller than its children. On the other hand, if k2 ≥ k, HC holds immediately (and we don’t swap).
 - FC: See deleteMin()

- Complexity: O(log(n))
 - See deleteMin()
How to Find the Next Free / Last Occupied Node

- **What do we need?**
 - For `deleteMin`, we can use the right-most leaf on the last level
 - Let’s call this the last leaf
 - For `add`, we can add after the last leaf

- **Finding the affected parent**
 - From `n`, we can compute in \(O(1)\) the position `p` of the last leaf in the last level: \(p = n - \text{floor}(\log(n+1))\)
 - The parent `p'` of `p` is the floor(`p/2`)’th node in level `d-1`
 - The parent of `p''` is the floor(floor(`p/2`)/2)’th node in level `d-2`
 - ...
 - However, we need a “guide” through the tree; in each node, we must decide to go left/right to finally find `p’`
 - Trick: Use the **binary representation** of `p`
Illustration

- For `deleteMin`, we need $x (8)$;
 for `add`, we need $y (9)$
 - $pos(y) = pos(x) + 1$
 - $8 = '1000'$, $9 = '1001'$
- Cut the first bit
- Read the rest from left-to-right
- Next bit = 0: Go left
- Next bit = 1: Go right

- Allows finding p in $O(\log(n))$
Creating a Heap

- We start with an unsorted list with n elements
- Naïve algorithm: Start with empty heap and perform n additions
 - Obviously requires O(n*\log(n))
- Better: Bottom-Up-Sift-Down
 - Build a tree from the n elements fulfilling the FC (but not HC)
 - Simple fill a tree level-by-level – this is in O(n)
 - Sift-down all nodes on the second-last level
 - Sift-down all nodes on the third-last level
 - ...
 - Sift down root
Analysis

- Correctness
 - After finishing one level, all subtrees starting in this level are heaps because sifting-down ensures FC and HC (see deleteMin())
 - Thus, when we are done with the first level, we have a heap

- Analysis
 - We look at the cost per level \(h \) (1 ... \(\log(n)=d \))
 - For every node at level \(h \), we need at most \(d-h \) operations
 - At level \(h \neq d \), there are \(2^{h-1} \) nodes
 - For nodes at level \(d \), we don’t do anything
 - Over all levels, this yields

\[
T(n) = \sum_{h=1}^{d-1} 2^{h-1} * (d - h) = \sum_{h=1}^{d-1} h * 2^{d-h-1} = 2^{d-1} \sum_{h=1}^{d-1} \frac{h}{2^h} \leq n * \sum_{h=1}^{\infty} \frac{h}{2^h} = n * 2 = O(n)
\]
Summary

<table>
<thead>
<tr>
<th></th>
<th>Linked list</th>
<th>Sorted linked list</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMin()</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>deleteMin()</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>add()</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>merge()</td>
<td>O(1)</td>
<td>O(n1+n2)</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>Space</td>
<td>n add. pointer</td>
<td>n add. pointer</td>
<td>n add. pointer</td>
</tr>
</tbody>
</table>

Heaps can be kept efficiently in an array – no extra space, but limit to heap size.

But merge() requires $O(n1+n2)$ or $O(n1 \times \log(n2+n1))$ when using an array.
Heap Sort

- Heaps also are a suitable data structure for sorting
- **Heap-Sort** (a classical one)
 - Given an unsorted list, first create a heap in \(O(n)\)
 - Repeat
 - Take the smallest element and store in array in \(O(1)\)
 - Re-build heap in \(O(\log(n))\)
 - Call \texttt{deleteMin(root)}
 - Until heap is empty – after \(n\) iterations
- Thus: \(O(n\log(n))\)
 - Worst-case; average-case only slightly better
- Can be implemented in-place when heap is stored in array
 - See [OW93] for details
Content of this Lecture

- Priority Queues
- Using Heaps
 - Using Fibonacci Heaps
Fibonacci-Heaps (very rough sketch)

- A **Fibonacci Heap (FH)** is a forest of (non-binary) heaps with disjoint values
 - All roots are maintained in a double-linked list
 - Special pointer \((\text{min})\) to the **smallest root**
 - Accessing this value \((\text{getMin()})\) obviously is \(O(1)\)

Source: S. Albers, Alg&DS, SoSe 2010
Mainteinance of a FH

- FHs are maintained in a **lazy fashion**
 - \(\text{add}(v) \): We create a new heap with a single element node with value \(v \). Add this heap to the list of heaps; adapt min-pointer, if \(v \) is smaller than previous min
 - Clearly \(O(1) \)
 - \(\text{merge}() \): Simple link the two root-lists and determine new min (as min of two mins)
 - Clearly \(O(1) \)
- **Deleting an element** (\(\text{deleteMin}() \)) needs more work
 - Until now, we just added single-element heaps
 - Thus, our structure after \(n \) \(\text{add()} \) is an **unsorted list of \(n \) elements**
 - Finding the next min element after \(\text{deleteMin}() \) in a naïve manner would require \(O(n) \)
deleteMin() on FH

- Method is not complicated
 - We first remove the min element
 - We then go through the root-list and **merge heaps with the same rank** (=# of children) until all heaps in the list have different ranks
 - Merging two heaps in O(1): (1) Find the heap with the smaller root value; (2) Add it as **child to the root of the other heap**

- But analysis is fairly complicated
 - The above method is O(n) in worst case
 - But after every clean-up, the root-list is much smaller than before
 - Subsequent clean-ups need much less time
 - **Amortized analysis** shows: Average-case complexity is O(log(n))
 - Analysis depends on the growth of the trees during merge – these grow as the **Fibonacci numbers**
Disadvantage

- Though faster on average, Fibonacci Heals have unpredictable delays
- No log(n) upper bound for every operation
- Not suitable for real-time applications etc.
Summary

<table>
<thead>
<tr>
<th></th>
<th>Linked list</th>
<th>Sorted linked list</th>
<th>Heap</th>
<th>Fibonacci Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMin()</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>deleteMin()</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
<td>O(log(n))*</td>
</tr>
<tr>
<td>add()</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
<td>O(1)</td>
</tr>
<tr>
<td>merge()</td>
<td>O(1)</td>
<td>O(n1+n2)</td>
<td>O(log(n))</td>
<td>O(1)</td>
</tr>
</tbody>
</table>