Algorithms and Data Structures

One Problem, Four Algorithms

Ulf Leser
Content of this Lecture

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution
Where is the Sun?

Source: http://www.layoutsparks.com
How can we find the Sun Algorithmically?

• Assume pixel (RGB) representation
• The sun obviously is bright
• RGB colors can be transformed into brightness scores
• The sun is the brightest spot
 – Compute an average brightness for entire picture
 – Subtract from each brightness value (will yield negative values)
 – Find the shape (spot) such that the sum of its brightness values is maximal
Size of the Spot not Pre-Determined
Example (Shapes: only Rectangles)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>6</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Avg. ~4

<table>
<thead>
<tr>
<th></th>
<th>-3</th>
<th>2</th>
<th>4</th>
<th>2</th>
<th>1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>-1</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>-1</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>
Max-Subarray Problem

• Today, we solve a simpler problem (1D versus 2D)
• Definition (Max-Subarray Problem)

Assume an array A of integers. Find the subarray A^* of A such that the sum of the values in A^* is maximal over all subarrays of A and $|A^*| > 0$.

• Remarks
 - We only want the maximal value, not the borders of A^*
 - Cells have positive and negative values
 - Length of the subarray A^* is not fixed

\[
\begin{array}{cccccccc}
-2 & 0 & 4 & 3 & 4 & -6 & -1 & 12 & -2 & 0 & 15 \\
\end{array}
\]
Types of Algorithms

• Creating an algorithm is between engineering and art
• Different **fundamental patterns** (non exhaustive list)
 - **Greedy**: Find some promising start point and expand aggressively until it complete solution is found
 • Usually fast, but doesn’t find the optimal solution
 - **Exhaustive**: Test all possible solutions and find the one that is best
 • Sometimes the only choice if optimality is asked for
 - **Divide & Conquer**: Break your problem into smaller ones until these are so easy that they can be solved directly; construct solutions for “bigger” problems from these small solutions
 - **Dynamic programming**
 - **Backtracking**
 - …
A Greedy Solution

- Promising start point: Find maximal value in A
- Aggressive expansion: Expand in both directions until sum decreases
- Complexity?
A Greedy Solution

- Promising start point: Find maximal value in array
- Aggressive expansion: Expand in both directions until sum decreases
- Complexity? (Let $n = |A|$)
 - $O(n)$ to find maximal value
 - $O(n)$ expansion steps in worst case
 - $O(n)$ together
- Correct?
A Greedy Solution

- Promising start point: Find maximal value in array
- Aggressive expansion: Expand in both directions until sum decreases
- Complexity? (Let $n=|A|$)
 - $O(n)$ together
- Correct?

\[
\begin{array}{cccccccc}
-2 & 0 & 4 & 3 & 4 & -3 & -1 & 12 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
-2 & 0 & 4 & 3 & 4 & -3 & -1 & 12 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
-2 & 0 & 4 & 3 & 4 & -3 & -1 & 12 \\
\end{array}
\]
Content of this Lecture

• The Max-Subarray Problem
• Naïve Solution
• Better Solution
• Best Solution
Exhaustive Solution

A: array_of_integer;

n := |A|;
m := -maxint;

for i := 1 ... n do
 for j := i ... n do
 s := 0;
 for k := i ... j do
 s := s + A[k];
 end for;
 if s>m then
 m := s;
 end if;
 end for;
end for;
return m;
Complexity

A: array_of_integer;
\[n := |A|; \]
\[m := -\text{maxint}; \]
for i := 1 \ldots n do
 for j := i \ldots n do
 s := 0;
 for k := i \ldots j do
 s := s + A[k];
 end for;
 if s > m then
 m := s;
 end if;
 end for;
end for;
return m;

- Outmost loop: \(n \) times
- j-loop: \(n \) times (worst-case)
- Inner loop: \(n \) times
- Together: \(\mathcal{O}(n^3) \)

- But: We are summing up the same numbers again and again
- We perform redundant work
- More clever ways?
Exhaustive Solution

- First sum: \(A[1] \)
- 4th: ...

- Every next sum actually is the previous sum plus the next cell
- How can we reuse the previous sum?
Exhaustive Solution, Improved

- Every next sum is the previous sum plus the next cell
- Complexity: $O(n^2)$
Content of this Lecture

• The Max-Subarray Problem
• Naïve Solution
• Better Solution
• Best Solution
Divide and Conquer

• Of course, we can break our problem into smaller ones by looking only at parts of the array

• One scheme: Assume $A = A_1 | A_2$
 - With “|” meaning array concatenation and $|A_1| = |A_2| (+0/1)$

• The max-subarray (msa) of A …
 - either lies in A_1 – can be found by solving $msa(A_1)$
 - or in A_2 – can be found by solving $msa(A_2)$
 - or partly in A_1 and partly in A_2
 • Can be solved by summing-up the msa in A_1/A_2 that aligns with the right/left end of A_1/A_2

• We divide the problem into smaller ones and create the “bigger” solution from the “smaller” solutions
Algorithm (for simplicity, assume $|A|=2^x$ for some x)

```plaintext
function msa (A: array_of_integer) {
    n := |A|;
    if (n=1) then
        if A[1]>0 then
            return A[1]
        else
            return 0;
        end if;
    m := n/2;  # Assume even sizes
    A1 := A[1..m];
    A2 := A[m+1..n];
    l1 := rmax(A1);
    l2 := lmax(A2);
    m := max( msa(A1), l1 + l2, msa(A2));
    return m;
}

function rmax (A: array_of_integer) {
    n := |A|;
    s := 0;
    m := -maxint;
    for i := n .. 1 do
        s := s + A[i];
        if s>m then
            m := s;
        end if;
    end for;
    return m;
}
```
Example

-2 3 1 3 4 -3 -4 2

-2 3 1 3

4 -3 -4 2

-2 3

1 3

4 -3

-4 2

• Solution 11

• Solutions 7, 4
 - rmax/lmax: 7, 4

• Solutions 3, 4, 4, 2
 - rmax/lmax: 3, 4, 4, 0
Complexity

• This time it is not so easy …
• Complexity of lmax / rmax?

```plaintext
function rmax (A: array_of_integer) {
    n := |A|;
    s := 0;
    m := -maxint;
    for i := n .. 1 do
        s := s + A[i];
        if s > m then
            m := s;
        end if;
    end for;
    return m;
}
```
 Complexity

- This time it is not so easy ...
- Complexity of lmax/lmax?
 - $O(n)$
- Let $T(n)$ be the number of steps necessary to execute the algorithm for $|A|=n$
 - In each level, $n'=n/2$
 - The two sub-solutions require $T(n')$ each
- How does $T(n)$ depend on $T(n/2)$?

```plaintext
function msa (A: array_of_integer) {
  n := |A|;
  if (n=1) then
    if A[1]>0 then
      return A[1]
    else
      return 0;
  end if;
  m := n/2;  # Assume even sizes
  A1 := A[1...m];
  A2 := A[m+1...n];
  l1 := rmax(A1);
  l2 := lmax(A2);
  m := max( msa(A1), l1+l2, msa(A2));
  return m;
}
```
function msa (A: array_of_integer) {
 n := |A|;
 if (n=1) then
 if A[1]>0 then
 return A[1]
 else
 return 0;
 end if;
 m := n/2; # Assume even sizes
 A1 := A[1..m];
 A2 := A[m+1..n];
 l1 := rmax(A1);
 l2 := lmax(A2);
 m := max(msa(A1), l1+l2, msa(A2));
 return m;
}

• For constants c_1, c_2
• $T(n) = 2 \cdot T(n/2) + c_1 \cdot n$
• Further: $T(1) = c_2$
• Iterative substitution yields

 $T(n) = 2 \cdot T(n/2) + c_2 \cdot n =$
 $= 2(2 \cdot T(n/4) + c_1 n/2) + c_1 n = 4T(n/4) + c_1 n + c_1 n =$
 $= 4(2 \cdot T(n/8) + c_1 n/2) + 2c_1 n = 8T(n/8) + 3c_1 n = ...$
 $2^{\log(n)} \cdot c_2 + c_1 n \cdot \log(n) =$
 $c_2 n + c_1 n \cdot \log(n) = O(n \cdot \log(n))$
Same Problem, Different Algorithms

- **Naive:** $O(n^3)$
- **Less naive, but still exhaustive:** $O(n^2)$
- **Divide & Conquer:** $O(n \cdot \log(n))$

- **The problem:** $O(n)$
Content of this Lecture

• The Max-Subarray Problem
• Naïve Solution
• Better Solution
• Linear Solution
Let’s Think again – More Carefully

- Let’s use another strategy for dividing the problem
- Let’s look at the solution for A[1], A[1..2], A[1..3], …
- What can we say about the msa for \(A^{i+1} = A[1..i+1] \), given the msa of \(A^i = A[1..i] \)?

\[
\begin{array}{ccccccc}
-2 & 0 & 4 & 3 & 4 & -3 & -1 & 6 \\
\end{array}
\]
Let’s Think again – More Carefully

- Let’s use another strategy for dividing the problem
- Let’s look at the solution for A[1], A[1..2], A[1..3], …
- What can we say about the msa for Ai+1=A[1..i+1], given the msa of Ai=A[1..i]?

\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
-2 & 0 & 4 & 3 & 4 \\
\hline
-3 & -1 & 6 \\
\hline
\end{tabular}
\end{center}

- msa(Ai+1) is …
 - either somewhere within Ai, which means msa(Ai)
 - or is formed by rmax(Ai)+A[i+1]
- Thus, we only need to keep msa and rmax while scanning once through A
Algorithm & Complexity

- Analyses is simple
- Obviously: O(n)
- Asymptotically optimal
 - We only look a constant number of times at every element of A
 - But we need to look at least once on every element of A
 - Thus, we need at least O(n) operations – problem is Ω(n)
Example

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-3</td>
<td>-4</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>