Algorithms and Data Structures

Data Types

Ulf Leser
Content of this Lecture

- Data Structures Again
- Abstract Data Types
- Realization in Java
Modern Problem

- Suppose you are in the centre of Hamburg and are looking for the next (i.e., closest) laptop repair shop.
- Fortunately, your mobile knows your position and has a list of laptop repair shops in Hamburg.
- How does your mobile find the closest shop?
Classical Post-Box Problem

- Suppose a city with \(n \) boxes located at arbitrary positions
- You wake up in the middle of the city with a letter in your hand; the letter should be thrown in the closest post-box
- How do you find the closest post-box?
 - You have a list with locations of all post boxes
- Looking at a map is not the answer!
- Devise an algorithm

\[
S: \text{set of coordinates;}
\]
\[
c: \text{coordinate} \ (x, y)
\]
...
Simple Solution

• How much work?

Input

\begin{verbatim}
S: set_of_coordinates;
c: coordinate (x,y); # your loc
t: coordinate; # closest
m: real := MAXREAL;
for each c' \in S do
 if m > distance(c,c') then
 m := distance(c,c');
 t := c';
 end if;
end for;
return t;
\end{verbatim}
Simple Solution

- How much work?
- Clearly, we can save the second call to "distance"
- Thus, we need to compute $|S|$ distances, make $|S|$ comparisons, and perform at most $2\times|S|$ assignments

```
Input
S: set_of_coordinates;
c: coordinate (x,y);  # your loc
t: coordinate;       # closest
m: real := MAXREAL;
for each c' \in S do
  if m > distance(c,c') then
    m := distance(c,c');
    t := c';
  end if;
end for;
return t;
```
Simple Solution

• How much work?
• Clearly, we can save the second call to “distance”
• Thus, we need to compute $|S|$ distances, make $|S|$ comparisons, and perform at most $2\times|S|$ assignments
• Euclidian distance
 - 6 arithmetic ops per distance

$$\text{dist}((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
Not the only Option

- How much work?
- Clearly, we can save the second call to “distance”
- Thus, we need to compute $|S|$ distances, make $|S|$ comparisons, and perform at most $2*|S|$ assignments
- **Manhattan distance**
 - 5 operations, and different ones

$$\text{dist}((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$
Data Structure Point of View

• Data structures
 – We need a list of coordinates
 – The algorithm must iterate over the elements of this list
 – A linked list would suffice

• Now assume we need to perform searches very often
 – Can we represent \(S \) in another way \((S') \), such that searching requires less work?
 – Note: Time for computing \(S' \) from \(S \) may be ignored
 • Performed before searching starts
 • Assuming that \(S \) does not change

```
input
  S: set_of_coordinates;
  c: coordinate (x,y);
  t: coordinate;
  m: real := MAXREAL;
For each c' ∈ S do
  if m > dist(c,c') then
    m := dist(c,c');
    t := c';
  end if;
end for;
return t;
```
Voronoi Diagrams

• Compute for every point \(s \in S \) its Voronoi area, i.e., the area in which all points have \(s \) as nearest point from \(S \)
• This is not easy, but can be achieved in \(O(|S| \cdot \log(|S|)) \) time
• Nearest-neighbor search using Voronoi diagrams is \(O(\log(|S|)) \)
• Finding a proper data structure does pay off
More Abstract

• From an abstract point-of-view, we want a piece of software T that
 - ... can store a list of coordinates
 - ... can compute the nearest point to a given point c

• Thus, T must support (at least) two operations
 - T.init (S: list_of_coordinate)
 - T.nearestNeighbor (c: coordinate)

• T apparently uses another data type: “coordinate”

• Such combinations of object sets and operations on these sets are called a data type

• If we abstract from the implementation and only look at the sets and operations, we call this an abstract data type
Content of this Lecture

- Data Structures Again
- Abstract Data Types
- Realization in Java
Abstract Data Types (ADT)

- **Description (not a definition)**
 - An ADT represents a model of a data structure
 - It does so mostly indirectly: By specifying the *operations* on the *sets of objects* forming data structure
 - Or on *multiple sets* of objects
 - An ADT is **independent of a realization/implementation**
 - Different data structures to represent the objects
 - Different algorithms to implement the operations
 - In particular, an ADT is independent of any programming language
 - It **encapsulates its data**: Access only possible through operations
- **The set of operations of an ADT is called its **signature**
- **An implementation of a ADT is called a **concrete data type**
Example

```plaintext
type points
import coordinate;
operators
   add: points x coordinate → points;
   neighbor: points x coordinate → coordinate;
```

- ADT that we could use for our app for searching shops
- We only need **two operations**
 - A way to insert shops (with their coordinates)
 - A way to get the nearest shop with respect to a given location
- Not the only way ...
Modeling More Details

```java
type shop
import
    coordinate;
    string;
operators
    getName: shop → string;
    getCoor: shop → coordinate;
```

```java
type shops
import
    shop;
operators
    add: shops x shop → shops;
    neighborC: shops x coordinate → coordinate;
    neighborN: shops x coordinate → string;
    neighborS: shops x coordinate → shop;
```

- An ADT defines at least **what is necessary**
 - No “create” syntax (**abstract** data types)
 - We assume primitive data types to be given (**string**)

- Design of ADT is a **modeling decision** – your competence
 - Shop owner? Laptop models being repaired? Opening hours?
 - Depends on necessity, design choices, understandability, extensibility, personal preferences, existing ADTs, …
Exploiting Existing ADTs

- For implementing points (or shops), it would be helpful to import something that can hold a set of coordinates
- We need a list – an ADT in itself
 - A parameterized ADT – a list of elements of an arbitrary ADT T
 - For our ADT points, T will be coordinate

```cpp
type list( T)
import
    integer, bool;
operators
    isEmpty:  list  →  bool;
    add:      list  x  T  →  list;
    delete:   list  x  T  →  list;
    contains: list  x  T  →  bool;
    length:   list  →  integer;
```
What we Know about a List

• We expect operations on lists to have a certain semantic
 – Adding an element increases length by one
 • Aha – we assume bag semantics
 – Deleting an element that doesn’t exist creates an error
 – If a list is empty, its length is 0
 – …

```plaintext
type list(T)
import
  integer, bool;
operators
  isEmpty: list -> bool;
  add:      list x T -> list;
  contains: list x T -> bool;
  delete:   list x T -> list;
  length:   list -> integer;
axioms: ∀ l: list, ∀ t: T
  length( add(l, t)) = length( l) + 1;
  delete( l, t) ∧ ¬contains(l, t) => ERROR;
  length( l)=0 => isEmpty(l);
```

Quite informal
List versus Points

```plaintext
import coordinate, bool, list( coordinates);

Operators
contains: points x coordinate → bool;
   # Implement as list.contains
add:    points x coordinate → points;
   # Implement as list.add
neighbor: points x coordinate → coordinate;
   # Not implemented in list!

axioms ∀ p:points
   neighbor( p, c) = {x| contains(p, x) ∧ ∀x’: contains(p, x’):
                                distance( x, c) ≤ distance( x’, c);}
```

• What’s wrong?
 - What happens if multiple x have the same distance to c?

• Cure?
List versus Points

type points
import
 coordinate, bool, 2Dspace;
Operators
 contains: points x coordinate → bool;
 add: points x coordinate → points;
 neighbor: points x coordinate → points;
axioms ∀ p:points
 neighbor(p, c) = {x| contains(p, x) ∧ ∀x’: contains(p, x’):
 distance(x, c) ≤ distance(x’, c);
Lists, Stacks, Queues

- We looked at a data type (points, shop) which essentially is a list with one special operation: nearestNeighbour
 - Canonical list operations: insert, search, delete, update, length

- There are many ways to implement the general ADT list
 - Array, linked lists, double-linked lists, trees, ...

- Two types of lists are of exceptional importance in computer science: Stacks and Queues
 - Both support mostly two operations
 - These suffice for surprisingly many problems and applications
 - Can be implemented very efficiently
Queues

- Operations: enqueue, dequeue
- Special semantic: First in, first out (FIFO)
- Breadth-first traversal, shortest paths, BucketSort, …
Stacks

- Operations: push, pop
- Special semantic: Last in, first out (LIFO)
- Call stacks, backtracking, “Kellerautomaten”, ...
As Abstract Data Types

```plaintext

type stack( T)
import
    bool;
operators
    isEmpty: stack → bool;
    push:    stack x T → stack;
    pop:     stack → stack;
    top:     stack → T;

```

```plaintext

type queue( T)
import
    bool;
operators
    isEmpty: queue → bool;
    enqueue: queue x T → queue;
    dequeue: queue → queue;
    head:    queue → T;
```

• Where’s the difference?

Ulf Leser: Alg&DS, Summer semester 2011 23
Signature does not Suffice

- Where’s the difference?
- From the signature alone, there is no difference
- Yet – we expect a different behavior
Defining the Difference

Type stack (T)
- **import**
 - bool;
- **operators**
 - isEmpty: stack \(\rightarrow\) bool;
 - push: stack \(\times\) T \(\rightarrow\) stack;
 - pop: stack \(\rightarrow\) stack;
 - top: stack \(\rightarrow\) T;
- **axioms** \(\forall q:\text{stack}, \forall t:T\)
 - top(push(s, t)) = t;
 - pop(push(s, t)) = s;

Type queue (T)
- **import**
 - bool;
- **operators**
 - isEmpty: queue \(\rightarrow\) bool;
 - enqueue: queue \(\times\) T \(\rightarrow\) queue;
 - dequeue: queue \(\rightarrow\) queue;
 - head: queue \(\rightarrow\) T;
- **axioms** \(\forall q:\text{queue}, \forall t:T\)
 - head(enqueue(q, t)) =
 - if isEmpty(q): t
 - else head(q);
 - dequeue(enqueue(q, t)) =
 - if isEmpty(q): q
 - else enqueue(dequeue(q), t);

Long version:
- \(\text{push}(s,t) \circ \text{top}(s) = t' \Rightarrow t=t'\)
- \(\text{push}(s,t) \circ \text{pop}(s) = s' \Rightarrow s=s'\)
type queue(T)
...
 dequeue(enqueue(q,t)) =
 if isEmpty(q): q
 else enqueue(dequeue(q), t);
We Stop Here

• There are various ways to formally specify the behavior of operations of an ADT

• In this lecture, we only look at signature
 - No semantic at all (except parameters of operations)
 - Supported by most programming languages (e.g. Java)

• Algebraic specification
 - Define an algebra over the objects sets of the ADT
 - Includes axioms defining the semantics of operations
 - Axioms are essential to proof aspects of a system’s behavior
 - Supported by very few programming languages
 • Ideally, one only specifies and never programs

• See lecture on “Modellierung und Spezifikation”
Content of this Lecture

- Data Structures Again
- Abstract Data Types
- Realization in Java
ADTs in Java

• Recall
 - An ADT summarizes the essential operations on a set of objects
 - An ADT is independent of a realization/implementation
 - Any implementation of a ADT is called a concrete data type

• Realization in Java?

• Interfaces
 - Only exhibit the essential operations on a class of objects
 - Can have different implementations
 - Can be implemented by a concrete class
Remarks

• Java **does not support axioms** on interfaces
 - Some other languages do, e.g. contracts in Eiffel

• Java adds functionality we mostly ignore, such as
 - Inheritance (syntactic sugar)
 - Different levels of visibility: Public, protected, private, ...
 - Overloading

• Historically, **ADTs are a predecessor** of classes in programming languages

• ADTs can be realized at least in all OO languages
 - Critical: **encapsulation** - you must not see anything of an object / do anything with an object that is not represented in its (public) interface
Summary

- ADT’s specify the possible operations on a data structure
- ADT’s are free of implementation details
- We often discuss pros/contras of different ways to implement a given ADT
- (Formal) ADTs can be used for much more
 - Proving properties of a data type
 - Proving that a concrete data type implements a ADT
 - Proving that an implementation does not hurt axioms
 - Program verification