Text Analytics

Indexing Terms

Ulf Leser
Searching Multiple Strings

• Often, we need to search for more than one string
 – Search all gene names from a dictionary in a given text
 – We want to search for the entire dictionary at once
• Let $P = \{P_1, P_2, \ldots, P_z\}$, $n = |P_1| + |P_2| + \ldots + |P_z|$
• First attempt
 – Z-box requires $O(m + |P_i|)$ for searching for pattern P_i
 – Naïve extension to z patterns requires $O(z \cdot m + n)$
 • There is nothing we can save
• We shall improve this to $O(m + n + k)$
 – For same special definition of k - later
Example

- $P = \{\text{banane, bohne, bohnern, wohnen, bohren}\}$
Constructing a Keyword Tree

• Complexity?

• **Construction is O(n)**

 - Start with P_1

 - Constructing the “tree” needs $O(|P_1|)$

 - Take P_2. Traverse the prefix of P_2 in the tree until

 • ... there is a mismatch at position i in P_2. Insert a fork and create the branch for the rest of P_2 in $O(|P_2|-i)$

 • ... P_2 was matched completely

 • This needs $O(|P_2|)$ in either case

 - Repeat for P_3 – P_z

• Since paths are unique, there is no backtracking etc.
Failure Links

• Definition

Let K be the Keyword Tree for a set P of pattern. Let k be a node of K

- Let $\text{length}(k)$ be the length of the longest true suffix of $\text{label}(k)$ which is also a prefix of any pattern in P
 - If suffix with length >0 exists, set $\text{length}(k)=0$
- Let $\text{fl}(k)$ denote the node with:

 \[\text{label}(\text{fl}(k)) = \text{label}(k)[|\text{label}(k)|-\text{length}(k)+1 .. |\text{label}(k)|] \]
 - If $\text{length}(k)=0$, set $\text{fl}(k)=\text{root}$

• Remarks

- The link $(k, \text{fl}(k))$ is called the Failure Link for k
- $\text{label}(\text{fl}(k))$ exactly is the „longest true suffix“ of $\text{label}(k)$
- $\text{fl}(k)$ must be unique
Example

$P = \{\text{banane, nabe, abnahme, na, abgabe}\}$

FLs to root are not shown
Searching with Failure Links

- Assume we search at position j in T
- We match substring $T[j..]$ in K
 - If there is a match
 - Traverse down that match and set $j++$
 - If the reached node is marked, report the mark as match
 - If there is a mismatch at position x in T
 - Let k be the last match node
 - All children of k are mismatches for $T[j+x]$
 - Follow the failure link of k to node $fl(k)$
 - We have just seen $\text{label}(fl(k))$ in T
 - Continue matching at position $j+x$ in T and node $fl(k)$ in K
 - If we reach a leaf k at position $j+x-1$ in T
 - Report the mark of the leaf
 - Follow the failure link to node $fl(k)$
 - Continue matching at position $j+x$ in T and node $fl(k)$ in K
But ...

\[P = \{ \text{knabt, nabe, na} \} \]

\[T = \text{knabenschaft} \]

- Algorithm matches KNAB in T
- B is the last matching symbol, failure link to NAB
- Proceed to NABE, report \(P_2 \)
- Follow fl to root and match on in T with NSCHAFT
- We missed \(P_3 \) (NA)!
 - Why?: \(P_2 \) contains \(P_3 \)
 - But hold on a second
Observation

- Let’s fix a node k
- We may reach all prefixes of any pattern which are identical to a suffix of $\text{label}(k)$ by following failure links
 - The longest such prefix is $fl(k)$
 - The others are $fl(fl(k))$, $fl(fl(...))$

$P=\{\text{knabe, nabe, abe, bele}\}$
Our Problematic Case

- Patterns containing other patterns
- Solution: We construct another set of pointers called **Output Links**
- Observation
 - Let P_1 be contained in P_2
 - Then P_1 must be the suffix of a prefix $P_2[1..i]$ for some $i \geq |P_1|$.
 - If P_1 is the longest prefix ($n P$) of $P_2[1..i]$, then $fl(P_2[i]) = P_1$
 - Which doesn’t help – usually, we will not follow this link during search
 - If this is not the case, there must exist a P' with
 - P' is the longest suffix of $P_2[1..i]$
 - Thus, $fl(P_2[i]) = P'$
 - Again: P_1 is suffix of P' – but is it the longest?
 - Search recursive using failure links
 - Eventually, we must reach P_1
Example

$P = \{\text{knabe, na}\}$

$P = \{\text{eknabe, na, kna}\}$
Complexity

• During search
 - Let \(k \) be the number of matches of all patterns
 - The inner WHILE-loop is passed at most \(k \) times
 - Thus: \(O(m+k) \)

• Overall complexity
 - Build the keyword tree for \(P \) \(O(n) \) (trivial)
 - Compute failure links \(O(n) \) (BF)
 - This includes the output links
 - Search \(O(m+k) \)

• Total: \(O(n+m+k) \)
Content of this Lecture

- Inverted Files
 - Phrase and proximity search
 - Using a RDBMS
- Signature Files
 - S-Trees
Full-Text Indexing

• The fundamental operation in all our IR models: \texttt{find(q, D)}
 – Given a term, find all docs containing the term
 – Or: Given a set of terms, find all docs containing at least of them

• Can be implemented using online search
 – Boyer-Moore, Keyword-Trees, etc.

• But
 – We generally assume that \texttt{D is stable} (compared to \texttt{q})
 • Many, many queries addressing the same set of docs
 – We usually only search for terms (after tokenization)

• Both properties can be exploited to pre-compute a term-based \texttt{full-text index} over \texttt{D}
Inverted Files

- Very simple and effective **index structure** for terms \(K \) in a collection \(D \) of documents
- “Bag of words” approach
 - We give up on order of terms in docs (reappears later)
 - We cannot reconstruct docs based on index only
- Start from “docs contain terms” (~docs) and invert to “terms appear in docs” (=index)

<table>
<thead>
<tr>
<th>docs</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>D6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D7</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D8</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Doc1:
Now is the time for all good men to come to the aid of their country.

Doc2:
It was a dark and stormy night in the country manor. The time was past midnight.
Boolean Retrieval

- We can now efficiently implement Boolean queries
- For each query term k_i, look-up doc-list D_i containing k_i
- Evaluate query in the usual order
 - $k_i \land k_j : D_i \cap D_j$
 - $k_i \lor k_j : D_i \cup D_j$
 - NOT $k_i : D \backslash D_i$
- Example

\[(\text{time AND past AND the}) \ OR \ (\text{men})\]
\[= (D_{\text{time}} \cap D_{\text{past}} \cap D_{\text{the}}) \cup D_{\text{men}}\]
\[= (\{1,2\} \cap \{2\} \cap \{1,2\}) \cup \{1\}\]
\[= \{1,2\}\]
Necessary and Obvious Tricks

• Looking-up D_i by scanning the entire inverted file: $O(|K|)$
• How do we efficiently look-up doc-list D_i?
 – Bin-search on inverted file: $O(\log(|K|))$
 – Inefficient: Essentially random access on IO, improvements soon

• Computing union/intersection naively requires $O(|D_i|^2)$
• How do we support union and intersection efficiently?
 – Keep doc-lists sorted all the time
 – Intersection $D_i \cap D_j$: Sort-Merge is $O(|D_i| + |D_j|)$
 – Union $D_i \cup D_j$: Sort-Merge is $O(|D_i| + |D_j|)$
 – If $|D_i| \ll |D_j|$, use binsearch in D_j for all terms in D_i
 • Whenever $|D_i| + |D_j| > |D_i|*\log(|D_j|)$
Necessary and Less Obvious Tricks

- Doc-lists might get very large
 - Consumes considerable memory, danger of swapping
- How to keep size of intermediate results low?
 - Consider selectivity of each term in query
 - Obviously, selectivity $s(k_i) \sim \frac{DF_i}{|D|}$
- Only conjunctions
 - Sort terms in decreasing selectivity
 - Expected size of result is
 \[|q| = |D| \lor sel(q) = |D| \land \prod_{i\in q} sel(k_i) \]
 - Assuming independence of terms
 - We never need more than $O(\max(|D_i|))$ memory
- General queries
 - Optimization problem: Find optimal order of evaluation
 - $sel(D_i \cap D_j) = sel(D_i) \land sel(D_j)$
 - $sel(D_i \cup D_j) = sel(D_i) \lor sel(D_j) - (sel(D_i) \land sel(D_j))$
Adding Frequency

- Implementing the VSM using TF*IDF requires storing the term frequency of all terms in all docs in corpus.
- Split up the inverted file into a dictionary and a posting list.
Size

- **Size of the dictionary**
 - Number of different terms in $D (= O(|K|)$
 - Consequence of Zipf’s law: From a certain corpus size on, new terms appear only very infrequently
 - But there are always new terms, no matter how large D
 - Example: 1GB text (TREC-2) generates only 5MB dictionary
 - *Typically: <1 Million*
 - More in German due to “zusammengesetzte Substantive”
 - Size of the posting list
 - Much larger: Worst case is $O(|K|*|D|)$, average case is much less

- **Implementation**
 - Dictionary should always fit into *main memory*
 - Fixed size of elements, simple array-based implementation
 - Posting list remains on disk
Storing the Dictionary

- Dictionary are always kept in main memory
 - Allows very fast answers for terms that do not appear in D
- Suitable data structure?
 - Let \(|K|\) be the number of terms in K, and \(n\) there total length
- AVL-Tree: **Balanced binary tree** build over all keywords
 - Can be build in \(O(\ n*\log(n)\)\)
 - Searching costs \(O(\ \log(|K|)\)\)
- Much better
 - Keyword-tree
 - Can be build in \(O(n)\), space is \(O(n)\)
 - Since we are not looking for all keywords in a doc, but only for the pointer from a keyword to the posting file, searching is \(O(|k|)\)
 - We don’t need output / failure links
Example

This is also called a trie

<table>
<thead>
<tr>
<th>Term</th>
<th>N docs</th>
<th>IDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>aid</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>and</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>come</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>for</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>good</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>is</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>manor</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>men</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>midnight</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>night</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>now</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Posting file
Improvement: Compact Trie

- Remove all nodes with only one child
- Label edges with substrings, not single characters
- Saves pointers and jumps
 - Not too many for natural language: The tree usually is almost “full”
Storing the Posting File

- Posting file is usually kept on disk
- Thus, we need an IO-optimized data structure
- Suggestions?
- Recall DB implementation
 - Reserve large number of consecutive blocks on disk
 - Each posting has an offset
 - Reserve minimal number of bytes per posting (> one doc ID)
 - Many overflows may be handled internally
 - Upon overflow, append new posting list at the end of the file
 - Place pointer at old position – at most two access per posting
 - Again, reserve more space than immediately necessary
- Deleting docs?
 - Usually, start free-list management, but deletions are rare in IR …
INSERT d_{new}

- **What has to be done?**
 - Let $D_{\text{new}} = \{k_1, \ldots, k_m\}$, $n = |k_1| + \ldots + |k_m|$
 - Foreach k_i
 - Search k_i in dictionary trie
 - If present
 - Follow pointer to posting file
 - Add d_{new} to posting list of k_i
 - If list overflows, move posting list to end of file and place pointer
 - If not present
 - Insert k_i after *longest common prefix* in trie
 - Add new posting list \{d_{new}\} at end of posting file

- **Complexity**
 - All searching is $O(n)$ (including inserting new terms) in main mem.
 - Accessing posting is at most two IO per keyword
 - Expensive, but caching helps
Building a Large Inverted File

- Doing “INSERT D_{new}” all the time is not a good idea
 - We will search the same terms all over again
- Better: Hierarchical construction
 - Reserve “sufficient” space for expected size of dictionary
 - May be estimated: Heap’s law says that a text of n words will have \(O(k^n \beta) \) distinct words, with \(k \sim 10-20 \) and \(\beta \sim 0.4-0.6 \)
 - Repeat until D is finished
 - Add docs until memory is full
 - Postings are kept in whatever order as linked lists
 - Flush postings in sorted order
 - Merge posting lists using sort-merge
 - If we have less than \(|\text{memory}|\) files, open all and merge in one run
 - Otherwise, perform hierarchical merge
 - Also consider using larger buffers for having more sequential IO
Content of this Lecture

- Inverted Files
 - Phrase and proximity search
 - Using a RDBMS
- Signature Files
 - S-Trees
Positional Information

- What if we **search for phrases**: “Bill Clinton”, “Ulf Leser”
 - ~10% of web searches are phrase queries
- What if we **search by proximity** “car AND rent/5”
 - “We rent cars”, “cars for rent”, “special care rent”, “if you want to rent a car, click here”, “Cars and motorcycles for rent”, …
- We need to add **positional information** to the posting list

Doc1:
Now is the time for all good men to come to the aid of their country.

It was a dark and stormy night in the country manor. The time was past midnight.

<table>
<thead>
<tr>
<th>Word</th>
<th>TF</th>
<th>Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>night</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>now</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>of</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>past</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>stormy</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>the</td>
<td>1,2</td>
<td>2</td>
</tr>
<tr>
<td>their</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>time</td>
<td>1,2</td>
<td>9</td>
</tr>
<tr>
<td>to</td>
<td>1,2</td>
<td>15</td>
</tr>
<tr>
<td>was</td>
<td>1,2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>
Proximity Search

• Phrase search = proximity search with distance one
• Proximity search
 - Search doc-lists with positional information for each term
 - Upon intersection, consider doc-ID and position information
 - Can get quite involved for multi-term queries
 - “car AND rent/5 AND cheap/2 AND toyota/20” – “cheap” between 1 and 7 words from “car”, “toyota” between 1 and 22 words from rent …
 - All conditions must be satisfied
 - Higher selectivity, takes about the same time as multi-term search
• Space requirements
 - We now have one number for every term in D
 - Inverted file plus positional information is typically 30-50% larger than the document collection itself
Content of this Lecture

- Inverted Files
 - Phrase and proximity search
 - Using a RDBMS

- Signature Files
 - S-Trees
Implementing an Inverted File using a RDBMS

- A rather simple model
Example Query 1

- Boolean: All docs containing terms “night” and “to”

  ```sql
  SELECT D1.docid
  FROM terms T1, terms T2, termdoc D1, termdoc D2
  WHERE T1.term='night' AND T2.term='to' AND
  D1.termid=T1.termid AND
  D2.termid=T2.termid AND
  D1.docid = D2.docid;
  ```

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Term</th>
<th>IDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Night</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>To</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Doc-ID</th>
<th>Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term-ID</th>
<th>Doc-ID</th>
<th>TF</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Example Query 2

- **VSM queries**
 - We need to compute the inner product of two vectors
 - Query and doc
 - In the query, all TF-values of query terms are 1, others are 0
 - Thus, we only need to aggregate all TF values of query terms per document
 - We ignore normalization

- **Example:** Compute score for query “night rider” (two terms)
 - `SELECT did, sum(tf)
 FROM (SELECT D.docid did, T.term term, tf
 FROM terms T, termdoc D
 WHERE T.term='night' D.termid=T.termid) docs
 UNION
 SELECT D.docid did, T.term term, tf
 FROM terms T, termdoc D
 WHERE T.term='rider' D.termid=T.termid) docs
 WHERE docs.term in ('rider', 'night')
 GROUP BY did;`
Access Methods

- Use B*-Indices on ID columns
- Searching a term
 - Requires $O(\log(|K|))$ random-access IO
 - Mind the base of the logarithm: Block size
 - For <100M terms, this usually means at most 3 IO (top-most in cache)
 - Accessing the posting list: $O(\log(n))$ random-access IO
 - Where n is the number of term occurrences in D
 - Access is a lookup with term-ID, then seq. can along the B*-leaves
 - Compared to IR: Dictionary in memory, posting is accessed by direct link, then only sequential IO
- Advantages: Simple, easy to build
- Disadvantages: Usually slower
 - More IO, general RDBMS overhead
 - Difficult to keep exactly the dictionary in memory
Content of this Lecture

• Inverted Files
 – Phrase and proximity search
 – Using a RDBMS

• Signature Files
 – S-Trees
Signature Files [Hen07]

• Term-based **bit-oriented hash index**

• Definition

 The signature of length f of a term k is a bitstring of f bits.

• Remark

 – We obtain signatures through hashing

 – Exemplary hash function

```plaintext
hash := 0;
for $i := 1$ to $l$ do
    hash := $(hash + w_i) \times 157$;
end
hash := hash mod $2^F$;
```

 – We don’t need collision-free hash functions
Naïve Usage

- The simplest way of using signatures (AND-query)
 - Compute list L of pairs ($docid$, signatures) for all terms in each doc
 - Given a query, convert terms into their signatures
 - Scan L for each signature
 - If signature is found, check in doc whether term is really there
 - Could be a false positive because hash function is not collision-free
 - Compute intersection of doc-lists
- Advantage (little): Comparing two signatures is faster than comparing to strings
- Disadvantage: Too much IO
Superimposed Coding

- **Idea:** Superimpose signatures of all terms in a block
 - Block: Document or a fixed-size portion of the entire corpus
 - All signatures within a block are merged into one by taking their UNION (OR)

<table>
<thead>
<tr>
<th>Term</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer</td>
<td>100010010001100</td>
</tr>
<tr>
<td>Retrieval</td>
<td>000100001010100</td>
</tr>
<tr>
<td>Information</td>
<td>001010110011000</td>
</tr>
<tr>
<td>Block signature</td>
<td>101101111011100</td>
</tr>
</tbody>
</table>

- **Search phase**
 - Compute signatures of all terms in query
 - Scan through block signatures
 - Upon match, check doc for being false positive
 - Chances for false positives are higher now than for term signatures

- **Advantages:** Much smaller index, less IO during scan
Estimating Probability of False Positives

- We assume that **blocks are fixed size** (b signatures)
- We also assume that all signatures have at most m bits set
 - The latter isn’t difficult to achieve: Use m hash functions, each returning a number between 1 and f
 - We now assume “exactly m bits”, i.e., we are overestimating the error
- Let’s look at a block signature
 - Probability of a particular bit to be set by a particular term: \(m/f \)
 - Probability of a particular bit to be set by any term in block:
 \[
 1 - \left(1 - \frac{m}{f} \right)^b
 \]
 - Probability, that all m bits of a single term query are set:
 \[
 \left(1 - \left(1 - \frac{m}{f} \right)^b \right)^m
 \]
 - We assume that all matches are false ones
 - From this, we can derive an optimal m value: \(m = f \cdot \ln(2)/b \)
 - See [Hen07] for details
Example

- We can now trade space \((b, f)\) for speed (probability of FPs)
- Assume we want an index which is 10% of the size of the corpus
 - Let \(n\) be the size of D in bytes, \(k\) be the number of terms in D
 - Size of block signature file: \((k*f)/b/8\) bytes
 - Setting \(0.1*n=k*f/b/8\), we get \(f/b = 8*0.1*n/k\)
 - We chose \(m = f/b*\ln(2) = 8*0.1*n*\ln(2)/k\)
 - With an average word length \(8\) (=\(n/k\)), we get \(m\sim6\)
 - Probability of false positives is \(\sim2.14\%\)
- With a 20% index, we have a prob. of \(\sim0.04\%\)
- Thus, only 4 our of 10.000 docs will match by chance
Conclusions Signature Files

• Advantage
 – Block signatures lead to small index sizes
 – Scanning is fast due to pure bitstring comparisons

• Disadvantages
 – Requires sequential scan (of a very small index)
 – But: With larger memory sizes, signature indexes can be kept in memory
 – This makes the method attractive (now and in the future)
Content of this Lecture

• Inverted Files
 – Building and searching inverted files
 – Phrase and proximity search
 – Using a RDBMS

• Signature Files
 – S-Trees
S-Trees

- We can do better than scanning the signature file sequentially?
- Definition
 An **S-tree is a tree structured index** with
 - Each inner node contains k pairs (signature, pointer to other node). For a pair (s,p), s must be the union of the signatures in p.
 - Each leaf node contains k pairs (signature, docid)
Searching in S-Trees

- We assume a single-term query k
- Let q be the signature of k
- We start at root and scan all signatures s_i
 - In an inner node, if $k = k \land s_i$, follow the pointer recursively
 - In a leaf, if $k = k \land s_i$, add doc-id to doc-list

- Usually, **multiple branches** have to be followed
- Still, large portions of the tree are pruned
Inserting into an S-Tree

• Obviously, we want to explore few branches upon searching

• This can be achieved if similar signatures are put into the same branch
 – Avoid setting to many 1

• Inserting a new signature s
 – Start at root and scan signatures
 – Choose signature which is the most similar to s
 • Similar: Hamming distance
 – Follow pointer until in leaf node and insert

• Overflow: Split node (how?), may propagate up the tree
 – Similar to B^*-tree