Text Analytics
Searching Multiple Terms

Ulf Leser
Types of String Searching

- **Exact or approximate**
 - Exact search: Find all occurrences of k in D
 - Pattern matching: Given a regular expression, find all matches in D
 - Approximate search: Find all substrings in D that are similar to k
 - Strings that are phonetically similar (Soundex)
 - Strings that are only one typo away
 - Strings that can be produced from k by at most n operations of type “insert a letter”, “delete a letter”, “change a letter”
 - ...

- **Word or substring**
 - Searching words (k is a word): After tokenization
 - Searching substrings: Across token/sentence... boundaries

- **Searching one or multiple strings at once** in D
Naive Substring Searching

1. Align \(P \) and \(T \) at position 1
2. Compare symbols from \(P \) with symbols from \(T \) from left to right
 - If symbols are not equal: goto 3
 - Otherwise
 - All symbols of \(P \) have been compared: Shout “here”, goto 3
 - Otherwise: compare next symbol from \(P \) and \(T \), goto 2
3. Move \(P \) one position to the right, goto 2
4. If position of \(P \) in \(T \) < \(|T| - |P| + 1\), goto 2
5. Stop
Preprocessing

• Definition
 – Let $i > 1$. Then we define $Z_i(S)$ to be the length of the longest substring x of S with
 • $x = S[i..i+|x|-1]$ (x starts at Position i in S)
 • $S[i..i+|x|-1] = S[1..|x|]$ (x is a prefix of S)
 – Then, we call x the Z-Box of S at position I and length $Z_i(S)$
Z-Algorithm, Case 1

- Case 1: \(k > r \)
 - Thus, no previously computed Z-box contains \(k \)
 - Thus, we have never before looked further than \(k \)
 - Then there isn’t much we can do
 - Compute \(Z_k \) naively, symbol by symbol
 - If \(Z_k > 0 \), set \(r = r_k \) and \(l = l_k \)

Example 1

<table>
<thead>
<tr>
<th></th>
<th>CTCGAGTTGCAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>?</td>
</tr>
</tbody>
</table>

Example 2

<table>
<thead>
<tr>
<th></th>
<th>CTACTACTTTGCAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>?</td>
</tr>
</tbody>
</table>
Z-Algorithm, Case 2.1

- Two sub-cases. **First sub-case:** \(Z_{k'} < |\beta| = r-k+1 \)
 - This implies that the symbol at position \(k' + Z_{k'} \) does not match with the symbol at position \(Z_{k'} \). However, this implies that \(S[k+Z_{k'}] \) will produce the same mismatch.
 - Thus: \(Z_k = Z_{k'} \); keep \(r \) and \(l \)
Z-Algorithm, Case 2.2

- **Second sub-case:** $Z_{k'} \geq |\beta|$
 - This implies that β is a prefix of S (but not necessarily the longest)
 - We do know that, if $Z_{k'} > |\beta|$, then $S[|\beta|+1] = S[k'+|\beta|]$
 - But we don’t know anything about $S[r+1]$
 - We have never positively matched this symbol
 - Procedure
 - Match naively $S[r+1..]$ with $S[|\beta|+1..]$
 - Let the first mismatch occur at position q
 - Let $Z_k = q-k; r = q-1; \text{if } q \neq r+1: l = k$
Complexity

• Theorem

The Z-Box algorithm computes all Z-boxes in $O(|S|)$

• Proof
 – We estimate two counts: $m=\text{"number of positive matches"}$ and $m'=\text{"number of mismatches"}$
 – We show that $m'<|S|$
 • At $k=2$, we can produce at most one mismatch
 • Case 1: Maximally one
 • Case 2.1: No comparisons at all, hence no mismatches
 • Case 2.2: Maximally one
 – Thus, there is at most one mismatch for every position of S
 – This shows that $m' \leq |S|$
Boyer-Moore Algorithm

- Basic idea
 - Align strings as in the naive algorithm
 - Compare symbols from right to left, starting with the last character of P
 - Outer loop: Try to shift P more than one position
 - Inner loop: Try to start comparisons of symbols at a position left from the end of P
 - Use two independent tricks: bad character rule and good suffix rule
- Especially the outer-loop optimization yields large average case improvements, especially if $|\Sigma|$ is large (like for English text)
- BM is sublinear in average case
 - Our presentation has quadratic worst case
 - Improvements to linear worst case exist
Bad Character Rule 2

- **Observation**
 - Assume we aligned $P[n]$ with $T[j]$ for some $j \geq n$
 - Let i be the position in P of the first (right-most) mismatch
 - Let x by the symbol at position $j-n+i$ in T
 - Let l be the right-most occurrence of x in P
 - Where may x match in P?
 - Case 1: x doesn’t occur at all in P. Shift by i positions.
 - Case 2: $l<i$. Shift by $i-l$ positions

Diagram:

- T: xabxkabzzabwzzbzzb
- P: abzwyabzz

- How far can we shift now?
Good-Suffix Rule

• Idea
 – When we have a mismatch, we usually had some matches before
 – Can we know where this match occurs in P (apart from the suffix)?
 – To know this, we need to preprocess P

- We may always shift to the right-most occurrence of the substring t in P (which is not a suffix)
- If this doesn’t exist, we may shift P by |P|-|t| positions
Case 1

- Let i be the position of the first mismatch in P, let $t=P[n-i+1,..]$
- Let k be the right end of the right-most occurrence of t in P with $k<n$ and $P(k-|t|) \neq P(n-|t|)$ ('y')
 - If no such occurrence exists, let $k=0$
- If $k \neq 0$: Shift P by $n-k$ positions

- Why don’t we demand that $P(k-|t|)=x'$?
Empirical Comparison

- Shift-OR: Using parallelization in CPU (only small alphabets)
- BNDM: Backward nondeterministic Dawg Matching (automata-based)
- BOM: Backward Oracle Matching (automata-based)
Content of this Lecture

- Keyword-Trees
- Failure Links
- Constructing failure links
- Repairing the algorithm: Output links
Searching Multiple Strings

- Often, we need to search for more than one string
 - Search all gene names from a dictionary in a given text
 - We want to search for the entire dictionary at once
- Let $P=\{P_1, P_2, \ldots, P_z\}$, $n=|P_1|+|P_2|+\ldots+|P_z|$
- First attempt
 - Z-box requires $O(m+|P_i|)$ for searching for pattern P_i
 - Naïve extension to z patterns requires $O(z*m+n)$
 - There is nothing we can save
- We shall improve this to $O(m+n+k)$
 - For same special definition of k - later
Idea

• Usually, patterns share substrings
• We are especially interested in **shared prefixes** (because we shall compare from left to right)
• We need to find a data structure to represent common prefixes
• Using the structure, we want to search for all patterns concurrently
Keyword Trees

- **Definition**

 Let P be a set of patterns. The **Keyword Tree** for P is a tree with
 - Every edge is labels with exactly one symbol
 - If a node has more than one child, the edges labels are all different
 - A node k represents a pattern P_i iff $\text{label}(k)=P_i$. It must hold that
 - Every leaf represents exactly one P_i
 - Every P_i is represented by exactly one node (inner node or leaf)

- **Remark**

 - The label of a node is the concatenation of the edges labels on the path from root to this node
 - Recall that in a tree the path from root to every node is unique
 - If a node k represents a pattern P_i, we say that k is marked with i, i.e., $\text{mark}(k)=i$
Example

- $P = \{\text{banane, bohne, bohnern, wohnen, bohren}\}$
Constructing a Keyword Tree

• Complexity?

• Construction is $O(n)$
 – Start with P_1
 – Constructing the “tree” needs $O(|P_1|)$
 – Take P_2. Traverse the prefix of P_2 in the tree until
 • ... there is a mismatch at position i in P_2. Insert a fork and create the branch for the rest of P_2 in $O(|P_2| - i)$
 • ... P_2 was matched completely
 • This needs $O(|P_2|)$ in either case
 – Repeat for P_3 – P_z

• Since paths are unique, there is no backtracking etc.
Naive Usage – A First Attempt

- Given set P of Patterns and Template T
- Build the Keyword Tree K for P in $O(n)$
- Run i through the positions in T
 - Traverse the prefix of $T[i..]$ in K
 - When passing by a marked node, report the mark
 - If we cannot match further, restart with $i := i+1$ at the root of K
- **Complexity:** $O(n+m^*n_{\text{max}})$, with $n_{\text{max}} = \max(|P_i|)$
 - Maybe faster than our naïve approach (if $n_{\text{max}} < z$)
 - Maybe not
 - Problem: We are matching symbols in T more than once
Content of this Lecture

- Keyword-Trees
- Failure Links
- Constructing failure links
- Repairing the algorithm: Output links
Failure Links

- **Definition**

 Let K be the Keyword Tree for a set P of pattern. Let k be a node of K

 - *Let $\text{length}(k)$ be the length of the longest true suffix of $\text{label}(k)$ which is also a prefix of any pattern in P*
 - *If suffix with length >0 exists, set $\text{length}(k)=0$*

 - *Let $\text{fl}(k)$ denote the node with:*
 - $\text{label}(\text{fl}(k)) = \text{label}(k)[|\text{label}(k)|-\text{length}(k)+1 .. |\text{label}(k)|]$*
 - *If $\text{length}(k)=0$, set $\text{fl}(k)=\text{root}$*

- **Remarks**

 - The link $(k, \text{fl}(k))$ is called the *Failure Link* for k

 - $\text{label}(\text{fl}(k))$ exactly is the „longest true suffix“ of $\text{label}(k)$

 - $\text{fl}(k)$ must be unique
Example

$P=\{\text{banane, nabe, abnahme, na, abgabe}\}$
Example

$P = \{\text{banane, nabe, abnahme, na, abgabe}\}$

FLs to root are not shown
Example

P={banane, bohne, bohnern, wohnen, bohren}

• All Failure Links point to root
 – Letters b und w are nowhere in a pattern at a position ≠1
 – Thus, no true suffix can be also be a prefix
Searching with Failure Links

• Assume we search at position \(j \) in \(T \)
• We match substring \(T[j..] \) in \(K \)
 – If there is a match
 • Traverse down that match and set \(j++ \)
 • If the reached node is marked, report the mark as match
 – If there is a mismatch at position \(x \) in \(T \)
 • Let \(k \) be the last match node
 – All children of \(k \) are mismatches for \(T[j+x] \)
 • Follow the failure link of \(k \) to node \(fl(k) \)
 – We have just seen \(label(fl(k)) \) in \(T \)
 • Continue matching at position \(j+x \) in \(T \) and node \(fl(k) \) in \(K \)
 – If we reach a leaf \(k \) at position \(j+x-1 \) in \(T \)
 • Report the mark of the leaf
 • Follow the failure link to node \(fl(k) \)
 • Continue matching at position \(j+x \) in \(T \) and node \(fl(k) \) in \(K \)
Example

\[P = \{ \text{banane, nabe, abnahme, na, abgabe} \} \]

\[T = \text{radnaben} \]
Example

\[P = \{ \text{banane, nabe, abnahme, na, abgabe} \} \]

\[T = \text{abnabeln} \]
Algorithm

j := 1; // Next comparison in T
l := 1; // Start of pattern in T
k := root(K); // Current node in keyword tree
while (j<|T|)
 while exists edge (k,k') with label T(j)
 if mark(k')≠NULL then
 report mark(k') with start l;
 end if;
 k := k'; // Down the tree
 j := j+1; // Check next character
 end while;
 if k=root(K) then // Immediate mismatch: move on in T
 j := j+1;
 l := l+1;
 else
 k := f1(k); // Follow the failure link
 l := j-len(k);
 end if;
end;

• Complexity: O(m)
But ...

P = \{knabt, nabe, na\}

T = knabenschaft

- Algorithm matches KNAB in T
- B is the last matching symbol, failure link to NAB
- Proceed to NABE, report P₂
- Follow fl to root and match on in T with NSCHAFT
- **We missed P₃ (NA)!**
 - Why?: P₂ contains P₃
 - But hold on a second
Content of this Lecture

- Keyword-Trees
- Failure Links
- Constructing failure links
- Repairing the algorithm: Output links
Failure Link Construction

• Definition
 – \textit{Let \textit{depth}(k) be the length of label (k)}

• We proceed as follows
 – Build the keyword tree in linear time
 – Then construct all failure links in linear time \(O(n)\)
 – Note that failure links always point to true suffixes
 – This implies that for all \(k\): \textit{depth}(k) > \textit{depth}(\textit{fl}(k))

• We construct failure links using a \textit{breadth-first traversal} of the keyword tree
Observation

- Let’s fix a node k
- We may reach all prefixes of any pattern which are identical to a suffix of $\text{label}(k)$ by following failure links
 - The longest such prefix is $\text{fl}(k)$
 - The others are $\text{fl}(\text{fl}(k)), \text{fl}(\text{fl}(\ldots))$

$$P = \{\text{knabe, nabe, abe, bele}\}$$
Algorithm

- **Start:** For every node k with $\text{depth}(k)=1$ let $\text{fl}(k)=\text{root}(K)$
- **Induction from $i-1$ zu i**
 - We assume that all fl from nodes l with $\text{depth}(l)<i$ are known
 - $\forall k\in K$ with $\text{depth}(k)=i$
 - Let k' be the father node of k and let x be the label on the edge from k' to k
 - Every suffix of $\text{label}(k')$, extended by x, is a suffix of $\text{label}(k)$
 - Every prefix which are identical to a suffix of $\text{label}(k')$ are reached by **traversing failure links** from k'
 - Including the longest such prefix
 - We are only interested in those prefixes which can be extended by x
 - This also holds if we reach root
More formally

- **Induction from i-1 to i**
 - We assume that all fl from nodes l with depth(l)<i are known
 - \(\forall k \in K \) with depth(k)=i
 - Let \(k' \) be the father node of k and let x be the label on the edge from \(k' \) to k
 - Follow the failure link from \(k' \) to fl(\(k' \))=v
 - If there exists an edge \((v,v')\) with label x, then set fl(k):=v'
 - Otherwise, if v=root(K), then set fl(k):=root
 - Otherwise, follow failure link from v to v'' and check if there is an edge from v'' labeled x ... (recursion)
Example

\[P = \{ \text{knabe, nabr, abt, beil} \} \]
Example

\[P = \{\text{knabe, nabr, abt, beil}\} \]
Algorithm

// We search failure link for k, depth(k)>1
// Let k’ be the father of k, label(k’,k)=x
v := fl(k’);
while (v≠root(K)) and (not exists edge (v,v’) with label(v,v’)=x)
 v = fl(v); // Follow failure link
end while;
if (v=root(K)) then
 if (exists edge (v,v’) with label(v,v’)=x)
 fl(k) = v’;
 else
 fl(k) = root(K);
else
 fl(k) = v’; // Continuation of prefix with x

• Complexity is O(n), proof omitted
Content of this Lecture

- Keyword-Trees
- Failure Links
- Constructing failure links
- Repairing the algorithm: Output links
Our Problematic Case

- **Patterns containing other patterns**
- **Solution**: We construct another set of pointers called **Output Links**
- **Observation**
 - Let P_1 be contained in P_2
 - Then P_1 must be the suffix of a prefix $P_2[1..i]$ for some $i \geq |P_1|$
 - If P_1 is the longest prefix (n P) of $P_2[1..i]$, then $fl(P_2[i]) = P_1$
 - Which doesn’t help – usually, we will not follow this link during search
 - If this is not the case, there must exist a P' with
 - P' is the longest suffix of $P_2[1..i]$
 - Thus, $fl(P_2[i]) = P'$
 - Again: P_1 is suffix of P' – but is it the longest?
 - Search recursive using failure links
 - Eventually, we must reach P_1
Example

\[P = \{\text{knabe, na}\} \]

\[P = \{\text{eknabe, na, kna}\} \]
Induction

• Starting from a node k ...
 – Following failure links
 – Reaching a marked node k’
 – Then the pattern mark(k’) is contained in T

• The reverse is also true: All patterns contained in T are found through paths of failure links

• Of course, we don’t want to follow all such paths during online search

• We need some preprocessing
Output Links

- **Definition**
 The *Output Link of node* k, $out(k)$, *points to the node* k' *with*
 - k' is marked
 - k' is the first marked node on the path from k following failure links

- **Remark**
 - Not all nodes have output links
 - Output links always point to shorter pattern

- **We construct output links in constant time during the breadth-first traversal of the keyword tree for computing the failure links**
Failure Links and Output Links

```plaintext
// We search failure link for k, depth(k)>1
// Let k' be the father of k, label(k',k)=x
v := fl(k');
while (v ≠ root(K)) and (not exists edge (v,v') with label(v,v')=x)
  v = fl(v);            // Follow failure link
end while;
if (v=root(K)) then
  if (exists edge (v,v') with label(v,v')=x)
    fl(k) = v';
    if mark(v') ≠ NULL then out(k) = v'; else out(k) = NULL;
  else
    fl(k) = root(K);
    out(k) = NULL;
else
  fl(k) = v';          // Continuation of prefix with x
  if mark(v') ≠ NULL then
    out(k) := v';      // Obviously the closest marked node
  else
    out(k) = out(v');
end if;
end if;
```
Construction of Output Links

$P = \{\text{knarzt, arzth, zt, zta}\}$
Searching with Output Links

- Whenever we pass a node \(k \), we must follow its output link (if it exists at all) in a little detour
- From the target node (which must be marked), again we must follow its output link and so forth
Example

1. Algorithm matches KNA ...
 • Following the output link leads to reporting P_3
2. ... matches further KNAB
 • Following the output link leads to reporting P_4
3. „b“ is the last match - failure link zu NAB
4. Further matching to NABE – Report P_2
Complete Search Algorithm

\[j := 1; \quad /\text{ Next comparison in } T \]
\[k := \text{root}(K); \quad /\text{ Root node of keyword tree} \]
\[\text{while } (j < |T|) \]
\[\quad \text{while exists edge } (k,k') \text{ with label}(k,k')=T(j) \]
\[\quad \quad \text{if mark}(k') \neq \text{NULL} \text{ then} \]
\[\quad \quad \quad \text{report mark}(k'); \]
\[\quad \quad \end{if}; \]
\[\quad z = \text{out}(k'); \]
\[\quad \text{while } (z \neq \text{NULL}) \quad /\text{ Check output links} \]
\[\quad \quad \text{report mark}(z); \quad /\text{ Found a match} \]
\[\quad \quad z = \text{out}(z); \quad /\text{ Recursion} \]
\[\quad \end{if}; \]
\[\quad k := k'; \quad /\text{ Down the tree} \]
\[\quad j := j+1; \quad /\text{ Check next character} \]
\[\end{while}; \]
\[\text{if } k=\text{root}(K) \text{ then} \quad /\text{ Mismatch: move on in } T \]
\[\quad j := j+1; \]
\[\text{else} \]
\[\quad k := \text{fl}(k); \quad /\text{ Follow the failure link} \]
\[\end{if}; \]
\[\end{end}; \]
Complexity

• During search
 – Let \(k \) by the number of matches of all patterns
 – The inner WHILE-loop is passed at most \(k \) times
 – Thus: \(O(m+k) \)

• Overall complexity
 – Build the keyword tree for \(P \) \(O(n) \) (trivial)
 – Compute failure links \(O(n) \) (BF)
 • This includes the output links
 – Search \(O(m+k) \)

• Total: \(O(n+m+k) \)