Text Analytics
Searching Terms

Ulf Leser
A Probabilistic Interpretation of Relevance

• We want to compute the **probability** that a doc d is relevant to query q

• The probabilistic model determines this probability iteratively **using user (or automatic) feedback**
 – Best compared to VSM with relevance feedback

• Assume there is a subset $R \subseteq D$ which contains all (and only) relevant documents for q

• For each document, we want to compute the probability $p(R|d)$ that d belongs to R (for q)

• Then, we use odds-scores

$$rel(d,q) \sim sim(d,q) = \frac{p(R|d)}{p(D \setminus R|d)}$$
Binary Independence Model

- Bayes (with N=D\R)

\[
sim(d, q) = \frac{p(R | d)}{p(N | d)} = \frac{p(d | R) * p(R)}{p(d | N) * p(N)} \sim \frac{p(d | R)}{p(d | N)}
\]

- \(p(R)\) is the relative frequency of relevant docs in D
- \(p(d|R)\) is the random experiment of drawing d when drawing from R
- \(p(R)\) and \(p(N)\) are independent from d – thus, both are constant for q and irrelevant for ranking documents

- Representing docs by their terms and assuming term independence

\[
sim(d, q) = \frac{\prod_{k \in d} p(k | R) * \prod_{k \notin d} p(-k | R)}{\prod_{k \in d} p(k | N) * \prod_{k \notin d} p(-k | N)}
\]
Continuation 2

- Obviously, the last term is identical for all docs. Thus

\[
sim(d,q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R) \ast (1 - p(k \mid N))}{p(k \mid N) \ast (1 - p(k \mid R))}
\]

- \(\text{sim}(d,q) = \) probability of a document comprising the terms of \(d \) being relative to query \(q \)
- If we \textbf{knew} \(R \) and \(N \)
 - Life would be easy
 - Using max likelihood, we approximate all probabilities by counting term occurrences
Back to Reality

• But we don’t know R and N
• Idea: Approximation using an iterative process
 – Start with some “educated guess” for R (and set N=D\R)
 – Compute probabilistic ranking of all docs wrt q based on first guess
 – Chose relevant docs (by user feedback) or hopefully relevant docs (by selecting the top-r docs)
 – This gives new sets R and N
 • If top-r docs are chosen, we may chose to only change probabilities of terms in R (and disregard the questionable negative information)
 – Compute new term scores and new ranking
 – Iterate until satisfied

• Variant of the Expectation Maximization Algorithm (EM)
Pros and Cons

• Advantages
 – **Sound probabilistic framework**
 • Note that VSM is strictly heuristic – what is the justification for those distance measures?
 – Results converge to most probable docs
 • Under the assumption that relevant docs are similar by sharing term distributions that are different from distributions in irrelevant docs

• Disadvantages
 – First guesses are pretty bad – slow convergence
 – Terms are not weighted \((w_{ij} \in \{0,1\})\), as in the Boolean model
 – Assumes statistical independence of terms (as most methods)
 – Efficient implementation?
 – “Has never worked convincingly better in practice” [MS07]
Probabilistic Model versus VSM with Rel. Feedback

- Published 1990 by Salton & Buckley
- Comparison based on various corpora
- Improvement after 1 feedback iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>CACM 1033 Dok. 30 Anfr.</th>
<th>CISI 12684 Dok. 84 Anfr.</th>
<th>CRAN 1397 Dok. 225 Anfr.</th>
<th>INSPEC 1460 Dok. 112 Anfr.</th>
<th>MED 3204 Dok. 64 Anfr.</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Request</td>
<td>Precision 0.1459</td>
<td>0.1184</td>
<td>0.1156</td>
<td>0.1368</td>
<td>0.3346</td>
<td></td>
</tr>
<tr>
<td>IDE (dec hi)</td>
<td>Precision 0.2704</td>
<td>0.1742</td>
<td>0.3011</td>
<td>0.2140</td>
<td>0.6305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improvement 86%</td>
<td>47%</td>
<td>100%</td>
<td>56%</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td>Selected Terms</td>
<td>Precision 0.2479</td>
<td>0.1924</td>
<td>0.2498</td>
<td>0.1976</td>
<td>0.6218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improvement 70%</td>
<td>63%</td>
<td>116%</td>
<td>44%</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>BIR-Model</td>
<td>Precision 0.2289</td>
<td>0.1436</td>
<td>0.3108</td>
<td>0.1621</td>
<td>0.5972</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improvement 75%</td>
<td>21%</td>
<td>100%</td>
<td>19%</td>
<td>78%</td>
<td></td>
</tr>
</tbody>
</table>

- Probabilistic model in general worse than VSM+rel feedback
 - Probabilistic model does not weight terms in documents
 - Probabilistic model does not allow to weight terms in queries
Latent Semantic Indexing (Sketch with little Math)

- Until now, we were comparing terms by using equality
- Ignores **semantic relationships** between terms
 - Homonyms: bank (money, river)
 - Synonyms: House, building, hut, villa, ...
 - Hyperonyms: officer – lieutenant
 - Co-occurrence of terms in a given theme
- Idea of **Latent Semantic Indexing (LSI)**
 - Map terms into (less) **semantic concepts**
 - Which are hidden (or latent) in the docs
 - Represent and query in **concept space** instead of term space
- Finds docs that don’t even contain the query terms
Singular Value Decomposition (SVD)

- We want to find the **most important components of** M
 - Let r be the rank of M
- We compute a decomposition of M into the following form:
 $$M = X \cdot S \cdot Y^t$$
 - S is the diagonal $r \times r$ matrix of the **singular values** of M, sorted in dec. order
 - X is the matrix of Eigenvectors derived from $M \cdot M^t$
 - Y is the matrix of Eigenvectors derived from $M^t \cdot M$
 - This decomposition is unique and can be computed in $O(r^3)$
Approximating M

- The S_{ii} may be used to approximate M
- Compute $M_s = X_s \cdot S_s \cdot Y_s^\top$
 - First s columns in X -> X_s
 - First s columns and last s rows in S -> S_s
 - First s rows in Y -> Y_s
- M_s has the same size as M, but other (approximated) values
The similarity of any two docs can be computed as the cosine distance between their columns
- $M^t_s \cdot M_s$ is the document correlation matrix in concept space

Approximated docs are represented by their rows in Y^t_s

How can we compute the distance between a query and a doc in concept space?
- Easy
- Assume q a new row in M
- We have to first apply the same transformations to q as we did to all the docs
 - $q' = q^t \cdot X_s \cdot S_s^{-1}$
 - This vector may now be compared to the doc vectors as usual
Pros and Cons

- Strong argument: Made it into practice, used by many search engines
- Pros
 - Speed-up through less computation in query evaluation
 - Generally leads to an increase in precision (rather than recall)
- Cons
 - Computing SVD is expensive
 - Fast approximations of SVD exist
 - Do not update with every new document
 - Use stemming, stop-word removal etc. to already shrink the original term-document matrix
 - Comparing the ranks is expensive
 - VSM etc. use inverted files (later) on the terms of the document
 - But we cannot simply index the “concepts” of M_s
 - Thus, LSI needs other techniques than indexing (read: lots of memory)
Content of this Lecture

- Searching strings
- Naïve exact string matching
- Searching in linear time
- Boyer-Moore / Hoorspool / Sunday
Searching Strings in Text

- All IR models require to find occurrences of terms in documents
- Fundamental operation: find(k,D) -> P^D
 - Where k is a term, not an entire query
- **Online searching**: Consider docs and query as new, no preprocessing
 - Now
- **Indexing**: Preprocess docs and use index for searching strings
 - Later
Types of String Searching

- Exact or approximate
 - Exact search: Find all occurrences of k in D
 - Pattern matching: Given a regular expression, find all matches in D
 - Approximate search: Find all substrings in D that are similar to k
 - Strings that are phonetically similar (Soundex)
 - Strings that are only one typo away
 - Strings that can be produced from k by at most n operations of type “insert a letter”, “delete a letter”, “change a letter”
 - ...

- Word or substring
 - Searching words (k is a word): After tokenization
 - Searching substrings: Across token/sentence... boundaries

- Searching one or multiple strings at once in D
Preliminaries: Strings

- **Definition**

 A **String** S is a sequential list of symbols from a finite alphabet Σ

 - $|S|$ is the number of symbols in S
 - Positions in S are counted from 1,...,$|S|$.
 - $S[i]$ denotes the symbol at position i in S.
 - $S[i..j]$ denotes the substring of S starting at position i and ending at position j (including both).
 - $S[..i]$ is the prefix of S until position i.
 - $S[i..]$ is the suffix of S starting from position i.
 - $S[..i]$ ($S[i..]$) is called a true prefix (suffix) of S if $i \neq 0$ and $i \neq |S|$.

- When studying the complexity of string algorithms, we usually only count the number of comparisons of strings.
Substring Search

• Sometimes, we want to search for substrings
 – Does not require (erroneous) tokenization
 • “U.S.”, “35,00=.000”, “alpha-type1 AML-3’ protein”, ...
 – Search across tokens / sentences
 • “, that ”, “happen. “, ...
 – Searching prefixes, infixes, suffixes, stems
 • “compar”, “ver” (German), ...

• Substring search is a step towards RegExp search
 – Not this lecture

• Searching substrings is harder than searching terms
 – Number of terms doesn’t increase much from a certain point on
 • English: ~ 1 Million terms, but 200 Million potential substrings of size 6
 – Number of terms in a document versus number of substrings
 • 1 Million words, average length 10: 10 Million substrings
Exact Substring Matching

- **Given**: Pattern P to search for, text T to search in
 - We require $|P| \leq |T|$
 - We assume $|P| << |T|$
- **Task**: Find all occurrences of P in T

Eco RV - GATATC

tcagcctactaatataaatctttctgtagtaagtgctaatgaagatcagaaataataaatatcagctactacagagtttcctaaactcttcacagattgtcataatgtagttaataaatgaagatcagaaataataaatatcagctactacagagtttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctachtacattatgtagttaataaatgaagatcagaaataataaatatcagctactacagagttttcttctach
Content of this Lecture

- Searching strings
- Naïve exact string matching
- Searching in linear time
- Boyer-Moore
- BM-Variants and comparisons
Naive Substring Searching

1. Align P and T at position 1
2. Compare symbols from P with symbols from T from left to right
 - If symbols are not equal: goto 3
 - Otherwise
 - All symbols of P have been compared: Shout “here”, goto 3
 - Otherwise: compare next symbol from P and T, goto 2
3. Move P one position to the right, goto 2
4. If position of P in T < |T|-|P|+1, goto 2
5. Stop

T cttgagatcgctga
P gagatc
 gagatc
 gagatc
 gagatc
 gagatc
 gatatc
 gatatc
 gatatc
Algorithm

for i = 1 to |T| - |P| + 1
 match := true;
 j := 1;
 while ((match) and (j <= |P|))
 if (T[i+j-1] <> P[j]) then
 match := false;
 else
 j++;
 end while;
 if (match) then
 OUTPUT i
 end for;

Worst-case

<table>
<thead>
<tr>
<th>T</th>
<th>aaaaaaaaaaaaaaaaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>aaaaaat</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

N\# of comparisons: : n * (m-n+1) => O(m*n)
Content of this Lecture

- Searching strings
- Naïve exact string matching
- Searching in linear time
- Boyer-Moore algorithm
- BM-Variants and comparisons
Z-Box Algorithm

- A not so simple **linear time** substring search algorithm
- Proceeds in two phases
 - Build $S := P*T$
 - Preprocessing: Learn in linear time about the structure of S
 - Search: Scan in linear through S to find all occurrences of P in T
- Disadvantage: As we will see, the linear worst case is also the average and best case
- Other algorithms have sublinear average case (and linear worst case)
 - Later: Boyer-Moore algorithm and variants
Preprocessing

- **Definition**
 - Let $i > 1$. Then we define $Z_i(S)$ to be the length of the longest substring x of S with
 - $x = S[i..i+|x|-1]$ (x starts at Position i in S)
 - $S[i..i+|x|-1] = S[1..|x|]$ (x is a prefix of S)
 - Then, we call x the **Z-Box** of S at position I and length $Z_i(S)$
Beispiele

\[S = aabcaabxaaz \]

\[S = aaaaaa \]

\[S = baaaaa \]
Second Phase

- Assume we could compute in linear time all Z-boxes of S
- Then, the second phase is easy

\[
S := P || \'\$\' || T; \quad // (\$ \notin \Sigma)
\]
compute Z-Boxes for S;
for \(i = |P|+2\) to \(|S|\)
 if \((Z_i(S) = |P|)\) then
 print \(i-|P|-1\); \quad // P in T at position i
 end if;
end if;

- Complexity
 - Loop is passed \(|S|\) times => \(O(m)\)
First Phase: Computing Z-boxes

- Naive algorithm

```plaintext
for i = 2 to |S|
    Zi := 0;
    j := 1;
    while (((S[j] = S[i + j - 1])) and (j <= |S|))
        Zi := Zi + 1;
        j := j + 1;
    end while;
end for;
```

- This doesn't help much
 - Let |P|=n, |T|=m
 - $O((m+n)^2) + O(m) \sim O(m^2) = O(|S|^2)$
Preliminaries

- Definition
 - Let $i > 1$. We define
 - r_i is the right-most endpoint of any Z-box starting at or before i
 - l_i is the starting position of the longest Z-box ending at r_i
 - l_i is unique, because there is only one Z-box at each position
 - Thus: $S[l_i..r_i]$ is the longest Z-box which contains position i and reaches the furthest to the right
Computing the Z_i Values

• Idea
 – Reuse already computed Z_i for the computation of Z_k ($k > i$)
 – Run through the string (variable k)
 – Always keep the last $l=l_k$ und $r=r_k$
 – Apply some clever tricks to compute Z_k from previous Z-boxes

• Induction
 – Start at position $k=2$
 • Compute Z_2 (in a naïve way – nothing to save yet)
 • If $Z_2 > 0$, set $r=r_2$ (=2+Z_2-1) and $l=l_2$ (=2), otherwise $r=l=0$
 – Induction
 • Let $k>2$ and we know $\forall j<k$: Z_j
 • Furthermore, we know r, l (from $k-1$)
Z-Algorithm, Case 1

- Case 1: $k > r$
 - Thus, no previously computed Z-box contains k
 - Thus, we have never before looked further than k
 - Then there isn’t much we can do
 - Compute Z_k naively, symbol by symbol
 - If $Z_k > 0$, set $r = r_k$ and $l = l_k$

Example 1

```
CTCGAGTTGCAG
0  1  0
0  ?
```

Example 2

```
CTACTACTTTTGAGAG
0  0  5
0  ?
```
Z-Algorithm, Case 2

- Case 2: \(k \leq r \)
 - Situation:

 - Z-Box \(Z_l \) is a prefix of \(S \)
 - Substring \(\beta = S[k..r] \) also appears at position \(k' = k-l+1 \) in \(S \)
 - We have analyzed this position before; thus, we know \(Z_{k'} \)
 - Of course, \(Z_{k'} \) and \(Z_k \) may be longer/shorter than \(|\beta| = r-k+1 \)
 - Though we don’t know yet \(S[r+1..] \), we have already seen \(S[k'+1..] \)
Z-Algorithm, Case 2.1

- Two sub-cases. First sub-case: $Z_k' < |\beta| = r-k+1$
 - This implies that the symbol at position $k'+Z_k'$ does not match with the symbol at position Z_k'. However, this implies that $S[k+Z_k']$ will produce the same mismatch.
 - Thus: $Z_k = Z_k'$; keep r und l
Example

\[
\begin{array}{cccc}
 \gamma & \alpha & [\gamma] \beta & \alpha \\
 Z_k' & k' & l & k + r \\
 k' + Z_k, -1 & l + Z_k, -1
\end{array}
\]

\[
\beta = |ABD|; \ k' = 6; \ Z_6 = 2 < |\beta|
\]
Z-Algorithm, Case 2.2

• Second sub-case: \(Z_{k'} \geq |\beta| \)
 - This implies that \(\beta \) is a prefix of \(S \) (but not necessarily the longest)
 - We do know that, if \(Z_{k'} > |\beta| \), then \(S[|\beta|+1]=S[k'+|\beta|] \)
 - But we don’t know anything about \(S[r+1] \)
 • We have never positively matched this symbol
 - Procedure
 • Match naively \(S[r+1..] \) with \(S[|\beta|+1..] \)
 • Let the first mismatch occur at position \(q \)
 • Let \(Z_k=q-k; \ r=q-1; \) if \(q\neq r+1: \ l=k \)

\[
\begin{array}{c}
\beta \rightarrow \alpha \rightarrow \beta \\
\k' \rightarrow \k'+Z_{k'-1} \\
q
\end{array}
\quad
\begin{array}{c}
\alpha \rightarrow \beta \\
l \rightarrow k \rightarrow r \\
q
\end{array}
\]
Example

\[\beta = |AB|; \ k' = 6; \ Z_6 = 4 > |\beta| \]
Algorithm

match Z_2;
set l, r;
for $k = 3$ to $|S|$
 if $k > r$ then
 match Z_k;
 set r, l;
 else
 $k' := k - l + 1$;
 $b := r - k + 1$; // This is $|\beta|$
 if $Z_{k'} < b$ then
 $Z_k := Z_{k'}$;
 else
 match $S[r+1..]$ with $S[b+1..]$ until q;
 $Z_k := q - k$; $r := q - 1$; $l := k$;
 end if;
 end if;
end for;
Complexity

• Theorem
 The Z-Box algorithm computes all Z-boxes in $O(|S|)$

• Proof
 – We estimate two counts: $m =$ "number of positive matches" and $m' =$ "number of mismatches"
 – We show that $m' < |S|$
 • At $k=2$, we can produce at most one mismatch
 • Case 1: Maximally one
 • Case 2.1: No comparisons at all, hence no mismatches
 • Case 2.2: Maximally one
 – Thus, there is **at most one mismatch** for every position of S
 – This shows that $m' \leq |S|$
Complexity 2

Proof (continuation)

- We estimate two counts: \(m = \text{"number of positive matches"} \) and \(m' = \text{"number of mismatches"} \)
- We show that \(m < |S| \)
 - Fundamental observation: Every positive match moves \(r \), and we never compare a symbol left from \(r \) again
 - \(k = 2 \): At most \(|S| \) matches, \(r \) is moves for every match
 - Case 1: At most \(|S| \) matches, \(r \) is moves for every match
 - Case 2.1: No comparisons, hence no matches
 - Case 2.2: At most \(|S| \) matches, \(r \) is moves for every match
- Thus, every position in \(S \) may produce at most one positive match
- This shows that \(m \leq |S| \)
- qed.
Together

- We can compute Z-boxes in $O(|S|) = O(m+n)$
- Using the Z-boxes, we can find all occurrences of P in $O(|S|)$
- Taken together, the Z-box algorithm solves the exact substring search problem in $O(m+n)$
\begin{array}{|l|l|c|c|c|}
\hline
k & \text{What happens} & Z_k & l & r \\
\hline
2 & \text{Start of induction} & 0 & 0 & 0 \\
3 & k>r; \text{Naïve matching, 1 mismatch} & 0 & 0 & 0 \\
4 & k>r; \text{Naïve matching, 1 mismatch} & 0 & 0 & 0 \\
5 & k>r; \text{Naïve matching, 3 matches, 1 mismatch} & 3 & 5 & 7 \\
6 & 6 \leq 7; k'=2;b=2; Z_2=0; \text{Thus, } Z_k < b \text{ and } Z_k = Z_{k'} & 0 & 5 & 7 \\
7 & 7 \leq 7; k'=3;b=1; Z_3=0; \text{Thus, } Z_k < b \text{ and } Z_k = Z_{k'} & 0 & 5 & 7 \\
8 & 8>7; \text{Naïve matching, 1 mismatch} & 0 & 5 & 7 \\
9 & 9>7; \text{Naïve matching, 1 mismatch} & 0 & 5 & 7 \\
10 & 10>7; \text{Naïve matching, 1 mismatch} & 0 & 5 & 7 \\
11 & 11>7; \text{Naïve matching, 7 matches, 1 mismatch} & 7 & 11 & 17 \\
12 & 12 \leq 17; k'=2;b=6; Z_2=0; Z_k < b \text{ and } Z_k = Z_{k'} & 0 & 11 & 17 \\
13 & 13 \leq 17; k'=3;b=5; Z_3=0; Z_k < b \text{ and } Z_k = Z_{k'} & 0 & 11 & 17 \\
14 & 14 \leq 17; k'=4;b=4; Z_4=0; Z_k < b \text{ and } Z_k = Z_{k'} & 0 & 11 & 17 \\
15 & 15 \leq 17; k'=5;b=3; Z_5=3; \text{Thus } Z_k \geq b; \text{ match } S[18..] \text{ with } S[4..]; 5 \text{ matches} & \text{und success} & & \\
\hline
\end{array}

\text{k'} := k-l+1; b := r-k+1; \\
Z_k := q-k; l := k; r := q-1;
What happens

<table>
<thead>
<tr>
<th>(k)</th>
<th>What happens</th>
<th>(Z_k)</th>
<th>(l)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Start</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>(k < r; k' = 2; b = 2; Z_2 = 3; Z_k \geq b); match (S[5..]) with (S[3..]); 1 mismatch; (q = 5)</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>(k \leq r; k' = 3; b = 1; Z_3 = 2; Z_k \geq b); match (S[5..]) with (S[3..]); 1 mismatch; (q = 5)</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>(k > r;) Naïve matching, 1 mismatch</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>(k > r;) Naïve matching, 1 mismatch</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>(k > r;) Naïve matching, 4 matches, 1 mismatch</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>(8 \leq 10; k' = 2; b = 3; Z_2 = 3; Z_k \geq b); match (S[11..]) with (S[4..]); 1 / 1; (q = 12)</td>
<td>4</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>(9 \leq 11; k' = 2; b = 3; Z_2 = 3; Z_k \geq b); match (S[12..]) with (S[4..]); 1 / 1; (q = 12)</td>
<td>4</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>(10 \leq 12;) ...</td>
<td>4</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[k' := k-l+1; b := r-k+1; \]
\[Z_k := q-k; l := k; r := q-1; \]
Content of this Lecture

- Searching strings
- Naïve exact string matching
- Searching in linear time
- Boyer-Moore
- BM-Variants and comparisons
Boyer-Moore Algorithm

- Basic idea
 - Align strings as in the naive algorithm
 - Compare symbols from right to left, starting with the last character of P
 - Outer loop: Try to shift P more than one position
 - Inner loop: Try to start comparisons of symbols at a position left from the end of P
 - Use two independent tricks: bad character rule and good suffix rule
- Especially the outer-loop optimization yields large average case improvements, especially if $|\Sigma|$ is large (like for English text)
- BM is sublinear in average case
 - Our presentation has quadratic worst case
 - Improvements to linear worst case exist
Bad Character Rule

• Observation
 – Assume we aligned $P[n]$ with $T[j]$ for some $j \geq n$
 – Let i be the position in P of the first (right-most) mismatch
 – Let x be the symbol at position $j-n+i$ in T
 • Which as lead to the mismatch
 – Where may x match in P?
 • Case 1: x doesn’t occur at all in P
 • We can safely shift P by i positions to the right
 – Thus, we jump behind x in T

\[\begin{array}{c}
T & \text{xabxfabzzabxzzbzzb} & T & \text{xabxfabzzabwzzbzzb} \\
\text{P} & \text{abwxyabzz} & \text{P} & \text{abwxyabzz} \\
\text{\textup{\textcircled{P}}} & & & \\
\end{array}\]

How far can we shift now?
Bad Character Rule 2

- Observation
 - Assume we aligned $P[n]$ with $T[j]$ for some $j \geq n$
 - Let i be the position in P of the first (right-most) mismatch
 - Let x by the symbol at position $j-n+i$ in T
 - Let l be the right-most occurrence of x in P
 - Where may x match in P?
 - Case 1: x doesn’t occur at all in P. Shift by i positions.
 - Case 2: $l < i$. Shift by $i-l$ positions

How far can we shift now?
Bad Character Rule 3

• Observation
 – Assume we aligned $P[n]$ with $T[j]$ for some $j \geq n$
 – Let i be the position in P of the first (right-most) mismatch
 – Let x be the symbol at position $j-n+i$ in T
 – Let l be the right-most occurrence of x in P
 – Where may x match in P?
 • Case 1: x doesn’t occur at all in P. Shift by i positions.
 • Case 2: $l<i$. Shift by $i-l$ positions
 • Case 3: $l>i$. Shift by 1 position (wait ...)

There is a „z“ to the right from i. What can we do?
• Definition

\textit{Given }P, \textit{ let }R(x)\textit{ by defined as (for all }x \in \Sigma)\textit{ }

\begin{itemize}
 \item If }x \notin P, \textit{ then }R(x) := 0,
 \item Otherwise, let }R(x)\textit{ be the position of the right-most occurrence of }x \textit{ in }P\textit{ }
\end{itemize}

• We can easily compute }R\textit{ in }O(n)\textit{ }

\begin{itemize}
 \item How?
\end{itemize}

• Bad character rule in compact form

\begin{itemize}
 \item Assume we aligned }P[n]\textit{ with }T[j]\textit{ for some }j \geq n\textit{ }
 \item Let }i\textit{ be the position in }P\textit{ of the first (right-most) mismatch}
 \item Let }x\textit{ by the symbol at position }j-n+i\textit{ in }T\textit{ }
 \item Shift }P\textit{ by max(1, }i - R(x)\textit{)}
\end{itemize}
Extended Bad Character Rule

- Clearly, all occurrences of x to the right of i can be ignored
- Thus, it is better to shift P such that x aligns with the right-most occurrence of x in P that is to the left of i

\[
\begin{array}{c}
T \quad \text{xabxkabzzabwzzbzzb} \\
\text{P} \quad \text{abzwyabzz}
\end{array}
\quad \quad \quad
\begin{array}{c}
T \quad \text{Xabxkabzzabwzzbzzb...} \\
\text{P} \quad \text{abzwyabzz}
\end{array}
\]

- This requires relative positions of x for each position i in P
Intermediate Result

- BCR: Simple, very powerful for larger alphabets
- No reduction in worst-case complexity compared to naïve string matching
Good-Suffix Rule

- Idea
 - When we have a mismatch, we usually had some matches before
 - Can we know where this match occurs in \(P \) (apart from the suffix)?
 - To know this, we need to preprocess \(P \)

- We may always shift to the right-most occurrence of the substring \(t \) in \(P \) (which is not a suffix)
- If this doesn’t exist, we may shift \(P \) by \(|P| - |t|\) positions
Case 1

- Let i be the position of the first mismatch in P, let $t=P[n-i+1,..]$
- Let k be the right end of the right-most occurrence of t in P with $k<n$ and $P(k-|t|) \neq P(n-|t|)$ ('y')
 - If no such occurrence exists, let $k=0$
- If $k \neq 0$: Shift P by $n-k$ positions

Why don’t we demand that $P(k-|t|)=,x'$?
Case 2

- Let i \(\ldots t \ldots , k \ldots \)

- If \(k \neq 0 \): Shift \(P \) by \(n-k \) positions
- If \(k=0 \) and \(P \neq t \): Shift \(P \) by \(n-|t|+1 \) positions

- There is an advanced trick to move even further - how?
Case 3

- Let \(i \ldots t \ldots, k \ldots \)

- If \(k \neq 0 \): Shift \(P \) by \(n-k \) positions
- If \(k=0 \) and \(P \neq t \): Shift \(P \) by \(n-|t|+1 \) positions
- If \(k=0 \) and \(P=t \): Shift \(P \) by 1

\[
\begin{array}{c}
\text{T} \\
\text{P}
\end{array}
\begin{array}{c}
\text{X} \\
t
\end{array}
\begin{array}{c}
\text{X} \\
t
\end{array}
\begin{array}{c}
t
\end{array}
\begin{array}{c}
t
\end{array}
\]
Example

- Our previous worst-case example now runs in linear time
 - But only with the advanced trick
Preprocessing

- We need to know where t appears in P for t being any suffix
 - And we want the endpoint of the right-most such t

- Definition

 Let L'(i) be the largest value with the following properties:

 1: \(P[L'(i)-|t|+1 .. L'(i)] = P[i..n] \)

 2: \(L'(i) < n \)

 3: \(P[L'(i)-|t|] \neq P[i-1] \) (Strong good suffix)

 \(L'(i) = 0 \) if no such substring exists
Preprocessing

- For every suffix of P, we need to know the end position of its right-most re-occurrence (L_i) with a different symbol at the next (to the right) position
- Recall Z-box: For every prefix, the Z-boxes with the same length are occurrences of the prefix with a different symbol at the next (to the left) position
- BM-preprocessing can be accomplished by Z-box algorithm on the inverted string
- We skip the details
compute \(L'(i) \);
compute \(R(x) \) for each \(x \in \Sigma \); // Simple BCR
\(k := n \); // Runs thru T
while (\(k \leq m \)) do
 align \(P \) with \(T \) with right end \(k \);
 match \(P \) and \(T \) from right to left until
 mismatch: Compute shift \(s_1 \) using BCR and \(R(x) \);
 Compute shift \(s_2 \) using GSR and \(L'(i) \);
 \(k := k + \max(s_1, s_2) \);
 P matched: print \(k \);
 \(k := k + 1 \); // Could be impr.
end while;
Example (using the EBCR)

Using BCR, we would shift by only 1

With /without trick
Content of this Lecture

- Searching strings
- Naïve exact string matching
- Searching in linear time
- Boyer-Moore
- BM-Variants and comparisons
Two Faster Variants

- **BM-Horspool**
 - Drop the good suffix rule – *GSR makes algorithm slower* in practice
 - Rarely shifts longer than GSR
 - Needs time to compute the shift
 - Instead of looking at the mismatch character \(x \), always look at the symbol in \(T \) aligned to the last position of \(P \)
 - Generates longer shifts on average (\(i \) is maximal)

- **BM-Sunday**
 - Instead of looking at the mismatch character \(x \), always look at the symbol in \(T \) after the symbol aligned to the last position of \(P \)
 - Generates even longer shifts on average
Empirical Comparison

- Shift-OR: Using parallelization in CPU (only small alphabets)
- BNDM: Backward nondeterministic Dawg Matching (automata-based)
- BOM: Backward Oracle Matching (automata-based)