Text Analytics

Modeling Information Retrieval 2

Ulf Leser
IR Models

- Modeling: How is relevance judged?
 - What model of relevancy is assumed?
Boolean Model

- Simple model based on set theory
- Queries are specified as **Boolean expressions**
 - Terms are atoms
 - Terms are connected by AND, OR, NOT (XOR, ...)
- There are no real weights; $w_{ij} \in \{0,1\}$
 - All terms contribute equally to the content of a doc
- Relevance of a document is either 0 or 1
 - Computation by Boolean operations on the doc and query vector
 - Represent q as **set S of vectors over all terms**
 - Example: $q = k_1 \land (k_2 \lor \neg k_3)$ \Rightarrow $S = \{(1,1,1),(1,1,0),(1,0,0)\}$
 - S describes all possible combinations of keywords that make a doc relevant
 - Document d is relevant for q iff $v_d \in S$
Properties

• Simple, clear semantics, widely used in (early) systems

• Disadvantages
 – **No partial matching** (expression must evaluate to true)
 • Suppose query \(k_1 \land k_2 \land \ldots \land k_9 \)
 • A doc \(d \) with \(k_1 \land k_2 \ldots k_8 \) is as much refused as one with none of the terms
 – **No ranking** (extensions exist, but not satisfactory)
 – Query terms cannot be weighted
 – Average users don’t like Boolean expressions
 • Search engines: “+bill +clinton –lewinsky tax”

• Results: Often unsatisfactory
 – Too many documents (too few restrictions)
 • Without ranking
 – Too few documents (too many restrictions)
Vector Space Model

 - Historically, a breakthrough in IR
 - Still most popular model today

- General idea
 - Fix a vocabulary K
 - Typically the set of all different terms in D
 - View each doc and each query as a point in a $|K|$-dim space
 - Rank docs according to distance from the query

- Main advantages
 - Ability to rank docs (according to relevance)
 - Natural capability for partial matching
Preliminaries 1

• Definition

Let D be a document collection, K be the set of all terms in D, $d \in D$ and $k \in K$.

- The term frequency tf_{dk} is the frequency of k in d
- The document frequency df_k is the number of docs in D containing k
 - Or sometimes the number of occurrences of k in D
- The inverse document frequency $idf_k = |D| / df_k$
 - Actually, it should rather be called the inverse relative document frequency
 - In practice, one usually uses $idf_k = \log(|D| / df_k)$

• Remarks

- idf is a popular weighting term, therefore a proper definition
- Clearly, tf_{dk} is a natural measure for the weight w_{dk}
 - But not the only or best one
The Simplest Approach

- Co-ordinates are set as **term frequency**
- Distance is measured as the **cosine of the angle** between doc \(d \) and query \(q \)
 - Wait for Euclidean distance

\[
sim(d, q) = \cos(v_d, v_q) = \frac{v_d \circ v_q}{|v_d| \cdot |v_q|} = \frac{\sum (v_d[i] \cdot v_q[i])}{\sqrt{\sum v_q[i]^2} \cdot \sqrt{\sum v_d[i]^2}}
\]

- Properties
 - Including term weights increases retrieval performance
 - Computes a (seemingly reasonable) ranking
 - Also returns partial matches

Can be dropped for ranking
Example Data

- Assume stop word removal (wir, in, ...) and stemming (verkaufen -> kauf, wollen -> woll, ...)

<table>
<thead>
<tr>
<th>Text</th>
<th>verkauf</th>
<th>haus</th>
<th>italien</th>
<th>gart</th>
<th>miet</th>
<th>blüh</th>
<th>woll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wir verkaufen Häuser in Italien</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Häuser mit Gärten zu vermieten</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Häuser: In Italien, um Italien, um Italien herum</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Die italienschen Gärtner sind im Garten</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Der Garten in unserem italienschen Haus blüht</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wir wollen ein Haus mit Garten in Italien mieten</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Ranking with Length Normalization

\[sim(d, q) = \frac{\sum (v_q[i] \cdot v_d[i])}{\sqrt{\sum v_d[i]^2}} \]

- \(sim(d_1, q) = \frac{(1*0+1*1+1*1+0*1+0*1+0*0+0*1)}{\sqrt{3}} \approx 1.15 \)
- \(sim(d_2, q) = \frac{(1+1+1)}{\sqrt{3}} \approx 1.73 \)
- \(sim(d_3, q) = \frac{(1+3)}{\sqrt{10}} \approx 1.26 \)
- \(sim(d_4, q) = \frac{(1+2)}{\sqrt{5}} \approx 1.34 \)
- \(sim(d_5, q) = \frac{(1+1+1)}{\sqrt{4}} \approx 1.5 \)

Q: Wir wollen ein Haus mit Garten in Italien mieten

No good?
Improved Scoring: TF*IDF

- One obvious problem: The longer the document, the higher the chances of being ranked high
 - Solution: Normalize on document length (also yields $0 \leq w_{ij} \leq 1$)

$$w_{ij} = \frac{tf_{ij}}{|d_i|} = \frac{tf_{ij}}{\sum_{k=1..|d_i|} tf_{ik}}$$

- Second obvious problem: Some terms are just everywhere in D and should be scored less
 - Solution: Use IDF scores

$$w_{ij} = \frac{tf_{ij}}{|d_i|} * idf_j$$
Metaphor: Comparison to Clustering

- **Clustering**: Find groups of objects that are close to each other and far apart from all others

- Rephrase the IR problem
 - A query partitions \(D \) in two clusters: relevant \(R \) / not relevant \(N \)
 - \(q \) should be in the heard of \(R \): similarity
 - Docs in \(R \) should be close to each other: large \(w_{ij}q_i \) values
 - Docs in \(R \) should be far apart from other points: idf
 - Goal of scoring: Balance between intra- and inter-cluster similarity
Shortcomings

- We assumed that all terms are independent, i.e., that their vectors are orthogonal
 - Clearly wrong: terms are semantically close or not
 - The appearance of “red” in a doc with “wine” doesn’t mean much
 - But “wine” is a non-zero match for “drinks”
 - Extension: Topic-based Vector Space Model
- No treatment homonyms (as for most other methods)
 - We would need to split words into their senses
 - See word disambiguation (later)
- Order independent
 - But order carries semantic meaning (object? subject?)
 - Order important for disambiguation
Relevance Feedback

• User judges the current answers

• Basic assumptions
 – Relevant docs are somewhat similar to each other – the common core should be emphasized
 – Irrelevant docs are different from relevant docs – the differences should be deemphasized

• System adapts to feedback by
 – Query expansion: Add new terms to the query
 • From the relevant documents
 – Term re-weighting: Assign new weights to terms
 • From the relevant documents
Rocchio Algorithm

- Usually we do not know \(D_r \)
- Let \(R (N) \) be the set docs marked as relevant (irrelevant)
- **Adapt query vector** as follows
 \[
 v_{q_{\text{new}}} = \alpha * v(q) + \beta * \frac{1}{|R|} \sum_{d \in R} d - \gamma * \frac{1}{|N|} \sum_{d \in N} d
 \]
- This implies query expansion and term re-weighting
 - How to choose \(\alpha, \beta, \gamma \)?
- **Alternative**
 \[
 v_{q_{\text{new}}} = \alpha * v(q) + \beta * \frac{1}{|R|} \sum_{d \in R} d - \gamma \{d \mid d = \text{arg max} \{sim(q, d)\} \}
 \]
 - Intuition: Non-relevant docs are heterogeneous and tear in every direction – better to only take the worst
Results

- **Advantages**
 - **Improved results** (many positive studies) compared to single queries
 - Users need not generate new queries themselves
 - Iterative process converging to the best possible answer
 - Especially helpful for increasing recall (due to query expansion)

- **Disadvantages**
 - Requires some work by the user
 - Excite: Only 4% of users used relevance feedback (“more of this” button)
 - Writing a new query based on returned results might be faster (and easier and more successful) than classifying results
 - Based on the assumption that relevant docs are similar
 - What if user searches for all meanings of “jaguar”?
 - Query is very long already after one iteration – makes retrieval slow (why?)

Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models
A Probabilistic Interpretation of Relevance

- We want to compute the probability that a doc d is relevant to query q.
- The probabilistic model determines this probability iteratively using user (or automatic) feedback.
 - Best compared to VSM with relevance feedback.
- Assume there is a subset $R \subseteq D$ which contains all (and only) relevant documents for q.
- For each document, we want to compute the probability $p(R|d)$ that d belongs to R (for q).
- Then, we use odds-scores

$$\text{rel}(d, q) \sim \text{sim}(d, q) = \frac{p(R | d)}{p(D \setminus R | d)}$$
Binary Independence Model

• Bayes (with $N=D\setminus R$)

$$sim(d,q) = \frac{p(R \mid d)}{p(N \mid d)} = \frac{p(d \mid R) \cdot p(R)}{p(d \mid N) \cdot p(N)} \sim \frac{p(d \mid R)}{p(d \mid N)}$$

- $p(R)$ is the relative frequency of relevant docs in D
- $p(d \mid R)$ is the random experiment of drawing d when drawing from R
- $p(R)$ and $p(N)$ are independent from d – thus, both are constant for q and irrelevant for ranking documents

• Representing docs by their terms and assuming term independence

$$sim(d,q) = \frac{\prod_{k \in d} p(k \mid R) \cdot \prod_{k \not\in d} p(-k \mid R)}{\prod_{k \in d} p(k \mid N) \cdot \prod_{k \not\in d} p(-k \mid N)}$$
Continuation

- Rephrasing using terms in q

\[
sim(d, q) = \prod_{k \in d \cap q} p(k \mid R) \prod_{k \in d \setminus q} p(k \mid N) * \prod_{k \in d \cap q} p(k \mid R) \prod_{k \in d \setminus q} p(k \mid N) * \prod_{k \in d \cap q} p(\neg k \mid R) \prod_{k \in d \setminus q} p(\neg k \mid N) * \prod_{k \in d \cap q} p(\neg k \mid R) \prod_{k \in d \setminus q} p(\neg k \mid N)
\]

- Focusing on the query terms
 - All others are not relevant for ranking docs wrt to q

\[
\ldots \approx \prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} \prod_{k \in q \setminus d} \frac{p(\neg k \mid R)}{p(\neg k \mid N)} = \prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} \prod_{k \in q \setminus d} \frac{1 - p(k \mid R)}{1 - p(k \mid N)}
\]
Last Step

$$\prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} \ast \prod_{k \in q \setminus d} \frac{1 - p(k \mid R)}{1 - p(k \mid N)}$$

All matching terms **All non-matching terms**

- Some clever reformulating (duplicating the terms in q)

$$= \prod_{k \in d \cap q} \frac{p(k \mid R) \ast (1 - p(k \mid N)) \ast (1 - p(k \mid R))}{p(k \mid N) \ast (1 - p(k \mid R)) \ast (1 - p(k \mid N))} \ast \prod_{k \in q \setminus d} \frac{1 - p(k \mid R)}{1 - p(k \mid N)}$$

$$= \prod_{k \in d \cap q} \frac{p(k \mid R) \ast (1 - p(k \mid N) \ast (1 - p(k \mid R))}{p(k \mid N) \ast (1 - p(k \mid R) \ast (1 - p(k \mid N))} \ast \prod_{k \in q} \frac{1 - p(k \mid R)}{1 - p(k \mid N)}$$

All matching terms **All query terms**
Continuation 2

• Obviously, the last term is identical for all docs. Thus

\[sim(d, q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R) \times (1 - p(k \mid N))}{p(k \mid N) \times (1 - p(k \mid R))} \]

• \(sim(d, q) = \) probability of a document comprising the terms of \(d \) being relative to query \(q \)

• If we **knew** \(R \) and \(N \)
 – Life would be easy
 – Using max likelihood, we approximate all probabilities by counting term occurrences
Back to Reality

- But we don’t know R and N
- Idea: Approximation using an iterative process
 - Start with some “educated guess” for R (and set N=D\R)
 - Compute probabilistic ranking of all docs wrt q based on first guess
 - Chose relevant docs (by user feedback) or hopefully relevant docs (by selecting the top-r docs)
 - This gives new sets R and N
 - If top-r docs are chosen, we may chose to only change probabilities of terms in R (and disregard the questionable negative information)
 - Compute new term scores and new ranking
 - Iterate until satisfied

- Variant of the Expectation Maximization Algorithm (EM)
Initialization

• Simplifying assumptions for the start
 – All terms in non-relevant docs are equally distributed in all docs. Thus, \(p(k|N) \sim \frac{df_k}{|D|} \)
 – \(p(k|R) \) is constant, e.g., \(p(k|R) = 0.5 \)

• Start process
 – Retrieve all docs containing at least one term from \(q \)
 – Compute probabilistic ranking using the simplified assumptions defined above
 – Determine new \(R \)
 – Adapt scores by counting occurrences of \(k \)'s in \(R \) and \(N \)

\[
P(k|R) = \frac{|\{d \mid k \in d, d \in R\}|}{|R|}
\]

\[
P(k|N) = \frac{df_k - |\{d \mid k \in d, d \in N\}|}{|D| - |R|}
\]
Example Data

<table>
<thead>
<tr>
<th></th>
<th>Text</th>
<th>verkauf</th>
<th>haus</th>
<th>italien</th>
<th>gart</th>
<th>miet</th>
<th>blüh</th>
<th>woll</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wir verkaufen Häuser in Italien</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Häuser mit Gärten zu vermieten</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Häuser: In Italien, um Italien, um Italien herum</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Die italienschen Gärtner sind im Garten</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Um unser italiensches Haus blüht's</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Wir verkaufen Blühendes</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Q</td>
<td>Wir wollen ein Haus mit Garten in Italien mieten</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Example: Initialization

\[\text{sim}(d,q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R) \cdot (1 - p(k \mid N))}{p(k \mid N) \cdot (1 - p(k \mid R))} \]

- All docs containing at least one term from q
 - \(R = \{1,2,3,4,5\}, N = \{6\} \)
- Start with initial estimations
 - \(p(k \mid R) = 0.5, p(k \mid N) = \frac{\text{df}_k}{|D|} \rightarrow p(\text{verkauf} \mid N) = p(\text{blüh} \mid N) = \frac{2}{5} \)
 - Smoothing: If \(p(k \mid X) = 0 \), set \(p(k \mid X) = 0.01 \)
- Compute initial ranking
 - \(\text{sim}(1,q) = \frac{p(\text{haus} \mid R) \cdot (1 - p(\text{haus} \mid N)) \cdot p(\text{italien} \mid R) \cdot (1 - p(\text{italien} \mid N))}{p(\text{haus} \mid N) \cdot (1 - p(\text{haus} \mid R)) \cdot p(\text{italien} \mid N) \cdot (1 - p(\text{italien} \mid R))} = \frac{.5 \cdot (1 - 0.01) \cdot .5 \cdot (1 - 0.01)}{(0.01 \cdot (1 - 0.5) \cdot 0.01 \cdot (1 - 0.5))} = 9801 \)
 - \(\text{sim}(2,q) = 970299 \)
 - \(\text{sim}(3,q) = \text{sim}(4,q) = \text{sim}(5,q) = 9801 \)
 - \(\text{sim}(6,q) = 0 \)
Example: Adjustment

- Let’s use the **top-2 docs** as new R
 - Second chosen arbitrarily among 1,3,4,5
 - R={1,2}, N={3,4,5,6}

- Adjust scores
 - \(p(\text{verkauf}|R) = 0.5 \)
 - \(p(\text{verkauf}|N) = (2-1)/(6-2) = 1/4 \)
 - \(p(\text{haus}|R) = 1 \sim 0.99 \)
 - \(p(\text{haus}|N) = (4-2)/(6-2) = 2/4 \)
 - \(p(\text{italien}|R) = 0.5 \)
 - \(p(\text{italien}|N) = (4-1)/(6-2) = 3/4 \)
 - \(p(\text{gart}|R) = 0.5 \)
 - \(p(\text{gart}|N) = (2-1)/(6-2) = 1/4 \)
 - \(p(\text{miet}|R) = 0.5 \)
 - \(p(\text{miet}|N) = (1-1)/(6-2) = 0 \sim 0.01 \)

\[
P(k | R) = \frac{|\{d | k \in d, d \in R\}|}{|R|}
\]

\[
P(k | N) = \frac{df_k - |\{d | k \in d, d \in N\}|}{|D| - |R|}
\]
Example: Re-Ranking

Re-Ranking

\[\text{sim}(d,q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R) \ast (1 - p(k \mid N))}{p(k \mid N) \ast (1 - p(k \mid R))} \]

- New ranking
 - \(\text{sim}(1,q) = p(\text{haus}\mid R) \ast (1 - p(\text{haus}\mid N)) \ast p(\text{italien}\mid R) \ast (1 - p(\text{italien}\mid N)) \)

 \[= \cdots\]
 - \(\text{sim}(2,q) = \cdots\)
 - \(\text{sim}(3,q) = \cdots\)
 - \(\text{sim}(4,q) = \cdots\)
 - \(\text{sim}(5,q) = \cdots\)
 - \(\text{sim}(6,q) = \cdots\)
 - \(\text{sim}(Q,q) = 1 \)
Pros and Cons

• Advantages
 – Sound probabilistic framework
 • Note that VSM is strictly heuristic – what is the justification for those distance measures?
 – Results converge to most probable docs
 • Under the assumption that relevant docs are similar by sharing term distributions that are different from distributions in irrelevant docs

• Disadvantages
 – First guesses are pretty bad – slow convergence
 – Terms are not weighted ($w_{ij} \in \{0,1\}$), as in the Boolean model
 – Assumes statistical independence of terms (as most methods)
 – Efficient implementation?
 – “Has never worked convincingly better in practice” [MS07]
Probabilistic Model versus VSM with Rel. Feedback

- Published 1990 by Salton & Buckley
- Comparison based on various corpora
- Improvement after 1 feedback iteration

<table>
<thead>
<tr>
<th>eingesetzte Methode</th>
<th>CACM</th>
<th>CISO</th>
<th>CRAN</th>
<th>INSPEC</th>
<th>MED</th>
</tr>
</thead>
<tbody>
<tr>
<td>initiale Anfrage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>0.1459</td>
<td>0.1184</td>
<td>0.1156</td>
<td>0.1368</td>
<td>0.3346</td>
</tr>
<tr>
<td>IDE (dec hi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>0.2704</td>
<td>0.1742</td>
<td>0.3011</td>
<td>0.2140</td>
<td>0.6305</td>
</tr>
<tr>
<td>Verbesserung</td>
<td>+86%</td>
<td>+47%</td>
<td>+160%</td>
<td>+56%</td>
<td>+88%</td>
</tr>
<tr>
<td>ausgewählte Termene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>0.2479</td>
<td>0.1924</td>
<td>0.2498</td>
<td>0.1976</td>
<td>0.6218</td>
</tr>
<tr>
<td>Verbesserung</td>
<td>+70%</td>
<td>+63%</td>
<td>+116%</td>
<td>+44%</td>
<td>+86%</td>
</tr>
<tr>
<td>BIR-Modell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mit allen Termene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>0.2289</td>
<td>0.1436</td>
<td>0.3108</td>
<td>0.1621</td>
<td>0.5972</td>
</tr>
<tr>
<td>Verbesserung</td>
<td>+57%</td>
<td>+21%</td>
<td>+169%</td>
<td>+19%</td>
<td>+78%</td>
</tr>
<tr>
<td>ausgewählte Termene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>0.2224</td>
<td>0.1634</td>
<td>0.2120</td>
<td>0.1876</td>
<td>0.5643</td>
</tr>
<tr>
<td>Verbesserung</td>
<td>+52%</td>
<td>+38%</td>
<td>+83%</td>
<td>+37%</td>
<td>+69%</td>
</tr>
</tbody>
</table>

- Probabilistic mod. in general worse than VSM+rel feedback
 - Probabilistic model does not weight terms in documents
 - Probabilistic model does not allow to weight terms in queries
Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models
Latent Semantic Indexing (Sketch with little Math)

- Until now, we were comparing terms by using equality
- Ignores **semantic relationships** between terms
 - Homonyms: bank (money, river)
 - Synonyms: House, building, hut, villa, ...
 - Hyperonyms: officer – lieutenant
 - Co-occurrence of terms in a given theme
- Idea of **Latent Semantic Indexing (LSI)**
 - Map terms into (less) **semantic concepts**
 - Which are hidden (or latent) in the docs
 - Represent and query in **concept space** instead of term space
- Finds docs that don’t even contain the query terms
Terms and Concepts

- Concepts are more abstract than terms
- Concepts are (more or less) related to terms and to docs
- LSI finds “concepts” automatically by matrix manipulations

Quelle: K. Aberer, IR
Example [Hen07]

- **Query:** “IDF in computer-based information look-up”
- **Which docs are most relevant?**

What we would expect
- Doc 1: (retrieval, access, indexing) \~ lookup, (doc, database) \~ information
 - Good fit, though no single term matches
- Doc 2: information = information, computer = computer
 - Two direct matches, but theory?
- Doc 3: information = information, comp. = comp., retrieval \~ lookup
 - Two direct matches, one fuzzy match
 - doc1 > doc3 > doc2

VSM delivers: doc3 = doc2 > doc1
Term-Document Matrix

• Definition

The term-document matrix M for docs D and terms K has $n=|D|$ columns and $m=|K|$ rows. $M[i,j]=1$ iff document d_i contains term k_j.

 – Alternatively, use TF or TF*IDF values

• Note: The matrix we used in the previous examples was a transposed document-term matrix

• Using M, we can compute the VSM-ranks of all docs given q as $M^t \cdot q$ (ignoring normalization)
Singular Value Decomposition (SVD)

- We want to find the **most important components of** M
 - Let r be the rank of M
- We compute a decomposition of M into the following form:
 $$M = X \cdot S \cdot Y^t$$
 - S is the diagonal $r \times r$ matrix of the **singular values** of M, sorted in dec. order
 - X is the matrix of Eigenvectors derived from $M \cdot M^t$
 - Y is the matrix of Eigenvectors derived from $M^t \cdot M$
 - This decomposition is unique and can be computed in $O(r^3)$
Note

- $M \cdot M^t$ is a matrix with $|K|$ columns and $|K|$ rows, the **term correlation** matrix
 - And X are its Eigenvectors
- $M^t \cdot M$ is a matrix with $|D|$ columns and $|D|$ rows, the **document correlation** matrix
 - And Y are its Eigenvectors
- Example

\[
\begin{array}{c|ccccc}
 & 1 & 2 & 3 & 4 & 5 \\
\hline
A & 1 & 1 & 1 & & \\
B & 1 & 1 & 1 & 1 & \\
C & 1 & 1 & & & \\
D & & 1 & 1 & & \\
\end{array}
\]

\[
\begin{array}{c|cccc}
A & B & C & D \\
\hline
1 & 1 & 1 & & \\
2 & 1 & 1 & 1 & \\
3 & 1 & 1 & 1 & \\
4 & & 1 & & \\
5 & 1 & 1 & & \\
\end{array}
\]

\[
M \cdot M^t = \begin{array}{c|cccc}
A & B & C & D \\
\hline
A & 3 & 3 & 2 & 0 \\
B & 3 & 4 & 2 & 1 \\
C & 2 & 2 & 2 & 0 \\
D & 0 & 1 & 0 & 2 \\
\end{array}
\]

Term correlation matrix
Approximating M

- The S_{ii} may be used to approximate M
- Compute $M_s = X_s \cdot S_s \cdot Y_s^t$
 - First s columns in X -> X_s
 - First s columns and last s rows in S -> S_s
 - First s rows in Y -> Y_s
- M_s has the same size as M, but other (approximated) values
s-Approximations

- Since the S_{ii} are sorted in decreasing order,
 - The approximation is the better, the larger s ($s \leq r$)
 - The computation is the faster, the smaller s
 - The smaller s, the more concentration on the most highly correlated terms and documents = the concepts

- Idea of LSI: Only consider the top-s singular values
 - s must be small enough to filter out noise and to provide “semantic reduction”
 - s must be large enough to represent the diversity in the documents
Query Evaluation

- The similarity of any two docs can be computed as the cosine distance between their columns
 - $M_s^t \cdot M_s$ is the document correlation matrix in concept space
- **Approximated docs** are represented by their rows in Y_s^t
- How can we compute the distance between a query and a doc in concept space?
 - Easy
 - Assume q a new row in M
 - We have to first apply the same transformations to q as we did to all the docs
 - $q' = q^t \cdot X_s \cdot S_s^{-1}$
 - This vector may now by compared to the doc vectors as usual
Example: Term-Document Matrix

- Taken from Mi Islita: “Tutorials on SVD & LSI”
 - Who took if from the Grossman and Frieder book

\[
M = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{bmatrix} \quad q = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}
\]

d1: Shipment of gold damaged in a fire.
d2: Delivery of silver arrived in a silver truck.
d3: Shipment of gold arrived in a truck.

Query: „gold silver truck“
Singular Value Decomposition

\[M = X \cdot S \cdot Y^t \]

\[X = \begin{bmatrix}
-0.4201 & 0.0748 & -0.0460 \\
-0.2995 & -0.2001 & 0.4078 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.1576 & -0.3046 & -0.2006 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.3151 & -0.6093 & -0.4013 \\
-0.2995 & -0.2001 & 0.4078
\end{bmatrix} \quad \begin{bmatrix}
4.0939 & 0.0000 & 0.0000 \\
0.0000 & 2.3616 & 0.0000 \\
0.0000 & 0.0000 & 1.2737
\end{bmatrix} \]

\[S = \begin{bmatrix}
4.0939 & 0.0000 & 0.0000 \\
0.0000 & 2.3616 & 0.0000 \\
0.0000 & 0.0000 & 1.2737
\end{bmatrix} \]

\[Y = \begin{bmatrix}
-0.4945 & 0.6492 & -0.5780 \\
-0.6458 & -0.7194 & -0.2556 \\
-0.5817 & 0.2469 & 0.7750
\end{bmatrix} \quad \begin{bmatrix}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469 \\
-0.5780 & -0.2556 & 0.7750
\end{bmatrix} \]

\[Y^t = \begin{bmatrix}
-0.4945 & 0.6492 & -0.5780 \\
-0.6458 & -0.7194 & -0.2556 \\
-0.5817 & 0.2469 & 0.7750
\end{bmatrix} \]
A Two-Approximation (s=2)

\[
X_2 = \begin{bmatrix}
-0.4201 & 0.0748 \\
-0.2995 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2626 & 0.3794 \\
-0.4201 & 0.0748 \\
-0.4201 & 0.0748 \\
-0.2626 & 0.3794 \\
-0.3151 & -0.6093 \\
-0.2995 & -0.2001
\end{bmatrix}
\]

\[
S_2 = \begin{bmatrix}
4.0989 & 0.0000 \\
0.0000 & 2.3616
\end{bmatrix}
\]

\[
Y_2 = \begin{bmatrix}
-0.4945 & 0.6492 \\
-0.6458 & -0.7194 \\
-0.5817 & 0.2469
\end{bmatrix}
\]

\[
Y_2^t = \begin{bmatrix}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469
\end{bmatrix}
\]

\[
\uparrow \quad \uparrow \quad \uparrow
\]

\[d_1 \quad d_2 \quad d_3\]
Transforming the Query

\[q' = q^t \cdot X_2 \cdot S_2^{-1} \]

\[
q' = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
-0.4201 & 0.0748 \\
-0.2996 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2526 & 0.3794 \\
-0.4201 & 0.0748 \\
-0.4201 & 0.0748 \\
-0.2526 & 0.3794 \\
-0.3181 & -0.6093 \\
-0.2996 & -0.2001
\end{bmatrix}
\begin{bmatrix}
1 \\
4.0989 & 0.0000 \\
0.0000 & 2.3616
\end{bmatrix}
\]

\[= \begin{bmatrix}
-0.2140 \\
-0.1821
\end{bmatrix} \]
Computing the Ranks

\[
\text{sim}(q, d) = \frac{q \cdot d}{|q| \cdot |d|}
\]

\[
\text{sim}(q, d_1) = \frac{(-0.2140) (-0.4945) + (-0.1821) (0.6492)}{\sqrt{(-0.2140)^2 + (-0.1821)^2} \cdot \sqrt{(-0.4945)^2 + (0.6492)^2}} = -0.0541
\]

\[
\text{sim}(q, d_2) = \frac{(-0.2140) (-0.6458) + (-0.1821) (-0.7194)}{\sqrt{(-0.2140)^2 + (-0.1821)^2} \cdot \sqrt{(-0.6458)^2 + (-0.7194)^2}} = 0.9910
\]

\[
\text{sim}(q, d_3) = \frac{(-0.2140) (-0.5817) + (-0.1821) (0.2469)}{\sqrt{(-0.2140)^2 + (-0.1821)^2} \cdot \sqrt{(-0.5817)^2 + (0.2469)^2}} = 0.4478
\]
Results

\[M = \begin{bmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 1 & 1 \\
\end{bmatrix} \quad q = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
\end{bmatrix} \]
Pros and Cons

• Strong argument: Made it into practice, used by many search engines
• Pros
 – Speed-up through less computation in query evaluation
 – Generally leads to an increase in precision (rather than recall)
• Cons
 – Computing SVD is expensive
 • Fast approximations of SVD exist
 • Do not update with every new document
 • Use stemming, stop-word removal etc. to already shrink the original term-document matrix
 – Comparing the ranks is expensive
 • VSM etc. use inverted files (later) on the terms of the document
 • But we cannot simply index the “concepts” of M_s
 • Thus, LSI needs other techniques than indexing (read: lots of memory)
Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models
Extended Boolean Model

- One critique to the Boolean Model: If one term out of 10 is missing, the result is the same as if 10 were missing
- Idea: Measure "distance" for each conjunctive / disjunctive subterm of the query expression to the document
 - Example: X-ary AND: use a projection into x-dim space
 - Query expression is (1,1,1,...,1)
 - Doc is \((a_1,a_2,...,a_x)=(0/1?,0/1?,...\))
 - Similarity is distance between these two points
 - Similar formula for OR and NOT
- Using the appropriate definition of distance, the extended Boolean model may mimic both the Boolean and the VSM
Fuzzy-Set IR

- In a fuzzy set S, each element o is in the set S with a certainty between 0 and 1
 - Membership function $m_S(o)$
- Operations on sets (one possible definition)
 - $m_{\neg S}(o) = 1 - m_S(o)$
 - $m_{S \cap T}(o) = \min(m_S(o), m_T(o))$
 - $m_{S \cup T}(o) = \max(m_S(o), m_T(o))$
- We define one **fuzzy set per term** in D
 - Thus, each doc is more or less a member of the set of the term
- Queries are like Boolean expressions
- Evaluation computes the membership function of the query expression (= combined term membership functions)
- Provides ranking; fuzzy-set people love it
Generalized Vector Space Model

• One critique to the VSM: Terms are not independent
• In reality, the term “one-vectors” should not be orthogonal
• Generalized Vector Space Model
 – Build a much larger vector space with $2^{\left|\mathcal{K}\right|}$ dimensions
 • Each dimension (“minterm”) stands for all docs containing a particular subset of terms
 • Minterms are not orthogonal but correlated by term co-occurrences
 – Convert query and docs into minterm space
 – Finally, $\text{sim}(q, d)$ is the cosine of the angel in minterm space
• Nice theory, includes term co-occurrence, much more complex than ordinary VSM, no proven advantage
Inference Networks

- A Bayesian Network is a **DAG of random variables**, where edges represent conditional probabilities.
- Used to capture which variables depend on which variables:
 - Instead of assuming mutual independence.
- Now: Documents, queries and terms are modeled as random variables.
- Support for a query are **aggregated over the network**.