Datenbanksysteme II: Implementation of Database Systems

Implementing Joins

Material von
Prof. Johann Christoph Freytag
Prof. Kai-Uwe Sattler
Prof. Alfons Kemper, Dr. Eickler
Prof. Hector Garcia-Molina
Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join
- (Star – Join later)
Join Operator

• JOIN: Most important relational operator
 - Potentially very expensive
 - Required in all practical queries and applications
 - Often appears in groups of joins
 - Many variations with different characteristics, suited for different situations

• Example: Relations R (A, B) and S (B, C)
 SELECT * FROM R, S WHERE R.B = S.B

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>C2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>C4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>C5</td>
</tr>
</tbody>
</table>

R \bowtie S
Unary versus Binary Operations

• Relational operators working on one table
 – Selection, projection

• On two tables
 – Product, Join, Intersection, Union, Minus

• Binary operators are usually more expensive
 – Unary: Look at table (scanning, index, hash, …)
 – Binary: Look at each tuple of first table for each tuple of second table
 – “Potentially” quadratic complexity
Nested-loop Join

- **Super-naïve**

  ```
  FOR EACH r IN R DO
    FOR EACH s IN S DO
      IF ( r.B=s.B) THEN OUTPUT (r \bowtie s)
  ```

- **Slight improvement**

  ```
  FOR EACH block x IN R DO
    FOR EACH block y IN S DO
      FOR EACH r in x DO
        FOR EACH s in y DO
          IF ( r.B=s.B) THEN OUTPUT (r \bowtie s)
  ```

- **Cost estimations**
 - b(R), b(S) number of blocks in R and in S
 - Each block of outer relation is read once
 - Inner relation is read once for each block of outer relation
 - Inner two loops are free (only main memory operations)
 - Altogether: b(R)+b(R)*b(S) IO
Example

- Assume $b(R)=10,000$, $b(S)=2,000$
 - IO = 10,000 + 10,000 * 2,000 = 20,001,000
- S as outer relation
 - IO = 2,000 + 2,000 * 10,000 = 20,002,000

- Use smaller relation as outer relation
 - For large relation, choice doesn’t really matter

- Can’t we do better??
• There is no “m” in the formula
 – m: Size of main memory in blocks
• This should make you suspicious
• We are not using our available main memory
Blocked nested-loop join

- Rule of thumb: **Use all memory you can get**
 - Use all memory the buffer manager allocates to your process
 - This might be a difficult decision even for a single query - which operations get how much memory?

 - **Blocked-nested-loop**

 FOR i=1 TO b(R)/(m-1) DO
 READ NEXT m-1 blocks of R into M
 FOR EACH block y IN S DO
 FOR EACH r in R-chunk DO
 FOR EACH s in y do
 IF (r.B=s.B) THEN OUTPUT (r ⋈ s)

- **Cost estimation**
 - Outer relation is read once
 - Inner relation is read once for every chunk of R
 - There are ~b(R)/m chunks
 - IO = b(R) + b(R)*b(S)/m
 - Further advantage: Outer relation is read in chunks - sequential IO
Example

- Assume \(b(R)=10,000 \), \(b(S)=2,000 \), \(m=500 \)
 - \(R \) as outer relation
 - \(IO = 10,000 + 10,000 \times \frac{2,000}{500} = 50,000 \)
 - \(S \) as outer relation
 - \(IO = 2,000 + 2,000 \times \frac{10,000}{500} = 42,000 \)
 - Compare to one-block NL: 20,002,000 IO

- Use smaller relation as outer relation
 - Again, difference irrelevant as tables get larger

- But sizes of relations do matter
 - If one relation fits into memory \((b<m) \)
 - Total cost: \(b(R) + b(S) \)
 - One pass blocked-nested-loop

- We can do a little better with blocked-nested loop??
Zig-Zag Join

- When finishing a chunk of outer relation, hold last block of inner relation in memory
- Load next chunk of outer relation and compare with the still available last block of inner relation
- For each chunk, we need to read one block less
- Thus: Saves $b(R)/m$ IO
 - If R is outer relation
Sort-Merge Join

- How does it work??
- What does it cost??
- Does it matter which is outer/inner relation??
- When is it better than blocked-nested loop??
Sort-Merge Join

• How does it work?
 - Sort both relations on join attribute(s)
 - Merge both sorted relations

• Caution if duplicates exist
 - The result size still is $|R| \times |S|$ in worst case
 - If there are r/s tuples with value x in the join attribute in R/S, we need to output $r*s$ tuples for x
 - So what is the worst case??

• Example

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
</tr>
<tr>
<td>A3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
</tr>
<tr>
<td>1</td>
<td>C3</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
</tr>
<tr>
<td>2</td>
<td>C2</td>
</tr>
<tr>
<td>3</td>
<td>C4</td>
</tr>
</tbody>
</table>
Example Continued

Partial join
\{<A1,0>,<A2,1>\} ⋈ S

Partial join
\{<A1,0>,<A2,1>,<A4,1>\} ⋈ S

new
Merge Phase

\[r := \text{first (R)}; \quad s := \text{first (S)}; \]
\[
\text{WHILE NOT EOR (R) and NOT EOR (S) DO}
\]
\[
\quad \text{IF } r[B] < s[B] \text{ THEN } r := \text{next (R)}
\]
\[
\quad \text{ELSEIF } r[B] > s[B] \text{ THEN } s := \text{next (S)}
\]
\[
\quad \text{ELSE} \quad /* r[B] = s[B]*/
\]
\[
\quad b := r[B]; \quad B := \emptyset;
\]
\[
\quad \text{WHILE NOT EOR(S) and s[B] = b DO}
\]
\[
\quad \quad B := B \cup \{s\};
\]
\[
\quad \quad s = \text{next (S)};
\]
\[
\quad \text{END DO;}
\]
\[
\quad \text{WHILE NOT EOR(R) and r[B] = b DO}
\]
\[
\quad \quad \text{FOR EACH } e \text{ in } B \text{ DO}
\]
\[
\quad \quad \quad \text{OUTPUT (r,e)};
\]
\[
\quad \quad \quad r := \text{next (R)};
\]
\[
\quad \text{END DO;}
\]
\[
\text{END DO;}
\]

• Can we improve pipeline behavior??
Cost estimation

- Sorting R costs $2 \times b(R) \times \text{ceil}(\log_m(b(R)))$
- Sorting S costs $2 \times b(S) \times \text{ceil}(\log_m(b(S)))$
- Merge phase reads each relation once
- Total IO
 - $b(R) + b(S) + 2 \times b(R) \times \text{ceil}(\log_m(b(R))) + 2 \times b(S) \times \text{ceil}(\log_m(b(S)))$
- Improvement
 - While sorting, do not perform last read/write phase
 - Open all sorted runs in parallel for merging
 - Saves $2 \times b(R) + 2 \times b(S)$ IO
- Sometimes, we are able to save the sorting phase
 - If sort is performed somewhere down in the tree
 - Needs to be a sort on the same attribute(s)
- Merge-sort join: No inner/outer relation
Better than Blocked-Nested-Loop?

• Assume \(b(R) = 10,000 \), \(b(S) = 2,000 \), \(m = 500 \)
 - BNL costs 42,000
 • With S as outer relation
 - SM: \(10,000 + 2,000 + 4 \times 10,000 + 4 \times 2,000 = 60,000 \)
 - Improved SM: 36,000

• Assume \(b(R) = 1,000,000 \), \(b(S) = 1,000 \), \(m = 500 \)
 - BNL costs \(1000 + 1,000,000 \times 1000/500 = 2,001,000 \)
 - SM: \(1,000,000 + 1,000 + 6 \times 1,000,000 + 4 \times 1,000 = 7,005,000 \)
 - Improved SM: 5,003,000

• When is SM better than BNL??
 - Consider improved version with
 • \(2 \times b(R) \times \text{ceil}(\log_m(b(R))) + 2 \times b(S) \times \text{ceil}(\log_m(b(S))) - b(R) - b(S) \sim \)
 • \(2 \times b(R) \times (\log_m(b) + 1) + 2 \times b(S) \times (\log_m(S) + 1) - b(R) - b(S) \sim \)
 • \(b(R) \times (2 \times \log_m(b) - 1) + b(S) \times (2 \times \log_m(S) - 1) \)
 - In most cases, this means \(3 \times (b(S) + b(R)) \)
Comparison

• Assume relations of equal size b

 SM: $2b(2\log_m(b)-1)$

 BNL: $b + b^2/m$

 BNL > SM

 - $b + b^2/m > 2b(2\log_m(b)-1)$
 - $1 + b/m > 4\log_m(b) - 2$
 - $b > 4m\log_m(b) - 3m$

• Example

 - $b=10,000$, $m=100$ ($10,000 > 500$)

 BNL: $10,000 + 1,000,000$, SM: $6 \times 10,000 = 60,000$

 - $b=10,000$, $m=5000$ ($10,000 < 25,000$)

 BNL: $10,000 + 20,000$, SM: $6 \times 10,000 = 60,000$
Comparison 2

- $b(R) = 1,000,000$, $b(S) = 2,000$, m between 100 and 90,000

- BNL very good if one relation is much smaller than the other and sufficient memory available
- SM can better cope with limited memory
- SM profits from more memory having jumps (number of runs)
Comparison 3

- \(b(R) = 1,000,000 \), \(b(S) = 50,000 \), \(m \) between 500 and 90,000

- BNL very sensible to small memory sizes
Merge-Join and Main Memory

• We have no „m“ in the formula of the merge phase
 – Implicitly, it is in the number of runs required

• More memory doesn’t decrease number of blocks to read, but can be used for sequential reads
 – Always fill memory with \(\frac{m}{2} \) blocks from R and \(\frac{m}{2} \) blocks from S
 – Use asynchronous IO
 1. Schedule request for \(\frac{m}{4} \) blocks from R and \(\frac{m}{4} \) blocks from S
 2. Wait until loaded
 3. Schedule request for next \(\frac{m}{4} \) blocks from R and next \(\frac{m}{4} \) blocks from S
 4. Do not wait – perform merge on first 2 chunks of \(\frac{m}{4} \) blocks
 5. Wait until previous request finished
 1. We used this waiting time very well
 6. Jump to 3, using \(\frac{m}{4} \) chunks of M in turn
Hash Join

• As always, we may save sorting if good hash function available

• Assume a very good hash function
 – Distributes hash values **almost uniformly** over hash table
 – If we have **good histograms** (later), a simple interval-based hash function will usually work

• How can we apply hashing to joins??
Hash Join Idea

- Use join attributes as hash keys in both R and S
- Choose hash function for hash table of size m
 - Each bucket has size \(b(R)/m \), \(b(S)/m \)
- Hash phase
 - Scan R, compute hash table, writing full blocks to disk immediately
 - Scan S, compute hash table, writing full blocks to disk immediately
 - Notice: Probably better to use some \(n < b(R)/m \) to allow for sequential writes
- Merge phase
 - Iteratively, load same bucket of R and of S in memory
 - Compute join
- Total cost
 - Hash phase costs \(2* b(R) + 2* b(S) \)
 - Merge phase costs \(b(R) + b(S) \)
 - Total: \(3*(b(R) + b(S)) \)
 - Under what assumption??
Hash Join with Large Tables

- Merge phase assumes that 2 buckets can be hold in memory
 - Thus, we roughly assume that $2 \times \frac{b(R)}{m} < m$ (if $b(R) \sim b(S)$)
 - Note: Merge phase of sorting only requires 2 blocks (or more for more runs), hashing requires 2 buckets to be loaded

- What if $b(R) > \frac{m^2}{2}$?
 - We need to create smaller buckets
 - Partition R/S such that each partition is smaller than $\frac{m^2}{2}$
 - Compute buckets for all partitions in both relations
 - Merge in cross-product manner
 - $P_{R,1}$ with $P_{S,1}$, $P_{S,2}$, …, $P_{S,n}$
 - $P_{R,2}$ with $P_{S,1}$, $P_{S,2}$, …, $P_{S,n}$
 - …
 - $P_{R,m}$ with $P_{S,1}$, $P_{S,2}$, …, $P_{S,n}$

- Actually, it suffices if either $b(R)$ or $b(S)$ is small enough
 - Chose the smaller relation as driver (outer relation)
 - Load one bucket into main memory
 - Load same bucket in other relation block by block and filter tuples
Hybrid Hash Join

- Assume that $\min(b(R), b(S)) < m^2/2$
- Notice: During merge phase, we used only $(b(R)+b(S))/m$ (size of two buckets) memory blocks
 - Although there are much more
- Improvement
 - Chose smaller relation (assume S)
 - Chose a number \textbf{k of buckets} to build (with $k<m$)
 - Again, assuming perfect hash functions, each bucket has size $b(S)/k$
 - When hashing S, \textbf{keep first x buckets completely in memory}, but only one block for each of the $(k-x)$ other buckets
 - These x buckets are \textbf{never written to disk}
 - When hashing R
 - If hash value maps into buckets 1..x, perform join immediately
 - Otherwise, map to the $k-x$ other buckets/blocks and write buckets to disk
 - After first round, we have performed the join on x buckets and have $k-x$ buckets of both relations on disk
 - Perform “normal” merge phase on $k-x$ buckets
Hybrid Hash Join - Complexity

• Total saving (compared to normal hash join)
 - We save 2 IO (writing) for every block that is never written to disk
 - We keep x buckets in memory, each having $b(S)/k$ and $b(R)/k$ blocks, respectively
 - Together, we save $2 \times x/k \times (b(S) + b(R))$ IO operations

• Question: How should we choose k and x?

 • **Optimal solution**
 - $x=1$ and k as small as possible
 - Build as large partitions as possible, such that still one entire partition and one block for all other partitions fits into memory
 - Thus, we use as much memory as possible for savings
 - Optimum reached at approximately $k=b(S)/m$
 - k must be smaller, so that M can accommodate 1 block for each other bucket
 - Together, we save $2m/b(S) \times (b(S) + b(R))$
 - Total cost: $(3-2m/b(S)) \times (b(S) + b(R))$
Comparing Hash Join and Sort-Merge Join

- If enough memory provided, both require approximately the same number of IOs
 - $3(b(R)+b(S))$
 - Hybrid-hash join improves slightly
- SM generates **sorted results** – sort phase of other joins in query plan can be dropped
 - Advantage propagates up the tree
- HJ does not need to perform $O(n \log(n))$ sorting in main memory
- HJ requires that **only one relation is “small enough”**, SM needs two small relations
 - Because both are sorted independently
- HJ depends on roughly **equally sized buckets**
 - Otherwise, performance might degrade due to unexpected paging
 - To prevent, estimate k more conservative and do not fill m completely
 - Some memory remains unused
- Both can be tuned to generate mostly sequential IO
Comparing Join Methods

Nested-Loops-Join

Merge-Join

Hash-Join
Index Join

- Assume we have an index “B_Index” on one join attribute
- Choose indexed relation as inner relation

Index join

\[
\text{FOR EACH } r \text{ IN } R \text{ DO} \\
\quad X = \{ \text{SEARCH (S.B_Index, } <r.B>) \} \\
\quad \text{FOR EACH TID } i \text{ in } X \text{ DO} \\
\quad \quad s = \text{READ (S, } i) \quad \text{; output } (r \bowtie s).
\]

- Actually, this is a one block-nested loop with index access
 - Using BNL possible (and better)
Index Join Cost

- Assumptions
 - R.B is foreign key referencing S.B
 - Every tuple from R has one or more join tuples in S
- Let $v(X,B)$ be the number of different values of attribute B in X
 - Each value in S.B appears $v \sim b(S)/v(S,B)$ times
- For each $r \in R$, we read all tuples with given value in S
- Total cost: $b(R) + |R|*(\log_k(S/b) + \frac{v}{k} + v)$
 - Outer relation read once
 - Find value in B^*, read all matching TIDs, access S for each TID
- Other way round: Assume that S.B is foreign key for R.B
 - Some tuples of R will have no join partner in S
 - Assume only $r \in R$ tuples have partner
- Total cost: $b(R) + r*(\log_k(S/b) + \frac{v}{k} + v)$
 - No real change
Index Join Cost

• Comparison to sort-merge join
 - Neglect $\log_k(S/b) + v/k$
 • First term is only ~ 2, second ~ 1 in many cases
 - $SM > IJ$ roughly requires
 • Assuming that 2 passes suffice for sorting
 • $3\times(b(R)+b(S)) > b(R)+|R|\times b(S)/v(S,B)$

• Example
 - $b(R)=10,000$, $b(S)=2,000$, $m=500$, $v(S,B)=10$, $k=50$
 - SM: 36,000
 - IJ: $10,000 + 10,000\times 50 \times 2,000/10 \sim 1,000,000,000$

• When is an index join a good idea??
Index Join: Advantageous Situations

- When \(r \) is very small
 - If join is combined with selection on \(R \)
 - Most tuples are filtered, only very few accesses to \(S \)
 - Index pays off

- When \(R \) is very small, \(R.B \) is foreign key, \(S.B \) is primary key
 - Similar to previous case
 - If \(S \) is primary key, then \(v(S,B) = |S| \), and hence \(v = 1 \)
 - \(R \) can be read fast and “probes” into \(S \)
 - We get total cost of \(\sim b(R) + |R| \) (plus index access etc.)
Index Join with Sorting

• Problem with last approach: Blocks of S are read many times
 - Caching will reduce the overhead - difficult to predict

• Alternative
 - First compute all necessary TID’s from S
 - Sort and read in sorted order
 - Advantage: blocks of S will mostly be in cache when accessed
 - Requires enough memory for keeping TID list and tuples of R

• Further improvement
 - Perform Sort-Merge join on B values only
 - B values from S are already sorted (if B*-index) is used
 - Hence: Sort R on B, merge lists, probe into S for required values
 - Can be combined with previous improvement
Index Join with 2 Indexes

• Assume we have an index on both join attributes
• What are we doing??
Index Join with 2 Indexes

- TID list join
 - Read both indexes sequentially (order does not matter)
 - Join (value, TID) lists
 - Probe into R and S
 - Large advantage, if intersection is small
 - Otherwise, we need sorted tables (index-organized)
 - But then sort-merge is probably faster
Semi-Join

- Consider queries such as
 - `SELECT DISTINCT R.* FROM S, R WHERE R.B=S.B`
 - `SELECT R.* FROM R WHERE R.B IN (SELECT S.B FROM S)`
 - `SELECT R.* FROM R WHERE R.B IN (...)`

- What’s special?
 - No values from S are requested in result
 - S (or inner query) acts as filter on R

- Semi-Join $R \bowtie S$
 - Very important for distributed databases
 - Accessing data becomes even more expensive
 - Idea: First ship only join attribute values, compute Semi-Join, then retrieve rest of matching tuples
 - Technique also can be used for very large tuples and small result sizes
 - First project on attribute values
 - Intersect lists, probe into tables and load data
 - Question: How do we know the sizes of intermediate result?
Implementing Semi-Join

• Using blocked-nested-loop join
 - Chose filter relation as outer relation
 - Perform BNL
 - Whenever partner for R.B is found, exit inner loop

• Using sort-merge join
 - Sort R
 - Sort join attribute values from S, remove duplicates on the way
 - Perform merge phase as usual
 - Very effective if v(S,B) is small
Union, Difference, Intersection

- Other binary operations use methods similar as those for joins
 - Sorting, hashing, index, ...

- See Garcia-Molina et al. for detailed discussion

<table>
<thead>
<tr>
<th>Ergebnis-extensionen</th>
<th>Übereinstimmung auf allen Attributen</th>
<th>Übereinstimmung auf einigen Attributen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Differenz $r - s$</td>
<td>Anti-Semi-Verbund</td>
</tr>
<tr>
<td>B</td>
<td>Schnitt $r \cap s$</td>
<td>Verbund, Semi-Verbund</td>
</tr>
<tr>
<td>C</td>
<td>Differenz $s - r$</td>
<td>Anti-Semi-Verbund</td>
</tr>
<tr>
<td>$A \cup B$</td>
<td></td>
<td>Left Outer Join</td>
</tr>
<tr>
<td>$A \cup C$</td>
<td>symmetrische Differenz $(r - s) \cup (s - r)$</td>
<td>Anti-Verbund</td>
</tr>
<tr>
<td>$B \cup C$</td>
<td></td>
<td>Right Outer Join</td>
</tr>
<tr>
<td>$A \cup B \cup C$</td>
<td>Vereinigung $r \cup s$</td>
<td>Full Outer Join</td>
</tr>
</tbody>
</table>