Datenbanksysteme II: Implementation of Database Systems

Query Execution

Material von
Prof. Johann Christoph Freytag
Prof. Kai-Uwe Sattler
Prof. Alfons Kemper, Dr. Eickler
Prof. Hector Garcia-Molina
kd-Tree General Idea

- Binary, rooted tree
- Each inner node has two children
- Path is selected based on a pair (dimension / value)
- Dimensions need not be statically assigned to levels of the tree
 - Can be rotating, random, decided at time of block split, ...
 - Usually: rotating
- Data points are only stored in leaves
- Each leave stores points in a n-dimensional hypercube with m border planes (m ≤ n)
kd-Tree Search Operations

• Exact point search
 - In each inner node, decide direction based on split condition
 - Search leaf for searched point

• Partial match query
 - If dimension of condition in inner node is part of the query –
 proceed as for exact match
 - Otherwise, follow all children in parallel
 • Leads to multiple search paths

• Range query
 - Follow all children matching the range conditions
 • Again: multiple search paths

• Nearest Neighborhood
 - Chose likely “close-enough” range and perform range query
 - If no success, iteratively broaden range
kdb trees

- **Option 2:** Store entire subtrees in one block
 - Inner nodes still have only two children
 - But those are (usually) stored in the same block
 - We need to “map” nodes to trees
 - kdb-tree: *inner nodes store kd-trees*

- **Operations**
 - **Searching:** As with kd trees
 - But on average better IO complexity
 - **Insertion/Deletion**
 - Complex schemes for keeping balance in tree (later)
Another View

- Inner nodes define (possibly open) bounding boxes on subtrees
- kdb tree is a hierarchical index structure
Example – Composite Index

- Consider 3 dimensions, \(n=1\times10^7 \) points, block size 4096, \(|\text{point}|=9, |b-\text{ptr}|=10\)
 - We need \(\sim22000 \) leaf blocks
- **Composite B* index**
 - Inner blocks store at least 100 pointers (max \(\sim220 \))
 - We need 3 levels (2nd level has 10,000 pointers)
 - With uniform distribution, 1st level will mostly split on 1st dimension, 2nd level on 2nd dimension, 3rd level on 3rd dimension
- Box query in all three coordinates, 5% selectivity in each dimension
 - We read 5% of 2nd level blocks = 5 IO
 - For each, we read 5% of 3rd level blocks = \(5\times5=25 \) IO
 - For each, we read 5% of data blocks = 125 IO
 - *Altogether: 155 IO*
Example Partial Box Query

- Box query on 2nd and 3rd dimensions only, asking for a 5% range in each dimension
 - We need to scan all 100 2nd level blocks
 - Each 2nd level block contains the 5% range
 - Next, we scan 5% of 3rd level blocks = 500 blocks
 - We follow 5% of pointers from 2nd level blocks
 - For each, we read 5% of data blocks = 2500 data blocks
 - Altogether: 3100 IO

- Note: 5% selectivity in 2 dims means 0.0025 selectivity altogether = 25000 points
 - Only 60 blocks if optimally packed
Example – kdb-tree

- **Balanced tree** will have ~14 levels
 - ~400 points in one block (assume optimal packaging)
 - We need to address $1E7/400 = 25.000\sim2^{14}$ blocks
- Consider $128=2^7$ inner nodes in one block
 - Rough estimate; we need to store 1 dim indicator, 1 split value, and 2 b-ptr for each inner node, but most b-ptr are just offsets into the same block
- **kdb tree structure**
 - 1st level block holds 128 inner nodes = levels 1-7 of kd tree
 - There are 128 2nd level blocks holding levels 8-14 of kd tree
- **1st block evenly splits space in 128 regions**
- Box query in all three coordinates, 5% selectivity in each dimension
 - *Overall selectivity* is $(0.05)^3 = 0.000125\%$ of all points (1250 points)
 - Very likely, we need to look at only one 2nd level block
 - On 7 levels, 2 dim. will have been split into 4 sections, one dim. into 8
 - If query intersects with split points in each dimension: worst case 8 IO
 - Example: 100 values in one dimension, split will be at 25,50,75, query region covers 5 consecutive values – only 30 of 95 such regions cross a split point
 - Very likely, we need to look at only 4 data blocks (holding together the 1250 points)
 - Altogether: $1+1+4 = 6$ IO (compared to 155 for composite index)
Example - Partial Box Query 2

- Box query on 2nd and 3rd dimensions only, asking for a 5% range in each dimension
 - In first block (7 levels), we have \(\sim 2 \) splits in each dimension
 - Two times 2 splits, one time three splits
 - Assume we miss the dimension with 3 splits
 - Hence, in \(\sim 4 \) of 7 splits we know where we need to go, in \(\sim 3 \) splits we need to follow both children
 - We need to check only \(2^3 = 8 \) second-level blocks
 - Again – number gets higher when query range crosses split points
 - Same argument holds in 2nd level blocks = 8*8 data blocks
 - Altogether: \(1+8+64 = 73 \) IO
 - We almost reach optimum with 60 blocks
 - Compare to 3100 for composite index

- Beware
 - We made many, many assumptions
 - Layout of subtrees to nodes rarely optimal
 - Optimal packaging of points in blocks not realistic for real data
 - Performance can greatly vary due to n# of dimensions, distributions, order of insertions and deletions, selectivity, split and merge policies, …
R-Trees

- Can store geometric objects (with size) as well as points
- Each object is stored in exactly one region on each level
- Since sized objects may overlap, R tree regions may overlap
- Better adaptation to distribution of data objects
- Only those hyperregions containing data objects are represented
- Many variations (see literature)
General Idea

• R-trees store n-dimensional rectangles
 - For geometric objects, use minimal bounding box (MBB)
• Objects in a region of the n-dimensional space are stored in a block
 - The region borders is the MBB of all objects in contains
 - Regions may overlap – see below
• Regions are recursively contained in larger regions
 - Tree-like shape
 - Region borders in each level are MBB of all child regions
 - Regions are only as large as necessary
 - Regions of a level need not cover the space completely
• Regions in one level may overlap
 - Or not – variation of classical R tree
 - Without overlaps: much more complicated insertion/deletion, but better search complexity
• Finding all rectangles overlapping with a query rectangle
 - In each level, intersect with all regions
 - More than one region might have non-empty overlap
 • All must be considered
 • In general, no O(log(n)) complexity
Inserting an Object

- In each level, find regions that contains object
 - Completely or partly
 - More than one region with complete overlap
 - Chose one (smallest?) and descend
 - None with complete, but several with partial overlap
 - Chose one (largest overlap?) and descend
 - No overlapping region at all
 - Chose one (closest?) and descend
 - We insert object in only one region

- In leaf node with space available
 - Insert object and adapt MBB
 - Recursively adapt MBBs up the tree
 - This generates larger and larger overlaps – search degrades

- In leaf node with no space available
 - Split block in two regions
 - Compute MBBs
 - Can affect MBB of higher regions – ascend recursively
Block Splits

- Problem: How should we optimally split a overflow-node into two regions?
- Option 1: Avoid overlaps, cover large space
 - Compute partitioning such that there exists a separating hyperplane
 - Minimizes necessity to descend to different children during search
 - Generally requires larger regions – search in empty regions is detected later
- Option 2: Allow overlaps, minimize space coverage
 - Compute partitioning such that sum of volumes of MBBs is minimal
 - Overlaps increases changes to descend on multiple paths during search
 - But: Unsuccessful searches can stop early
Block Splits

- Whatever strategy we chose
 - Consider a block with \(n \) objects
 - There are \(2^n \) possibilities to partition this block into two
 - Most strategies require to check them all
 - Use heuristics instead of optimal solution

- R* tree
 - Chose as criterion combination of sum of covered spaces, space of intersection, and sum of girt
 - Use heuristic for concrete decision
 - Currently best strategy (still?)
Multidimensional Data Structures Wrap-Up

• We only scratched the surface
• Partitioned Hashing, Gridfile, kdb-Tree, R-Tree
• Other: X tree, hb tree, R+ tree, UB tree, …
 – Store objects more than once; other than rectangular shapes; map coordinates into integers; …
• Curse of dimensionality
 – Your intuition plays tricks on you
 – The more dimensions, the more difficult
 • Balancing the tree, finding MBBs, split decisions, etc.
 – All structures begin to degenerate somehow
 • Exploding size of directories, linear kdb-trees, all regions overlap, …
 – Often, linear scanning of objects is quicker
 • Or: Compute lower-dimensional, relationship-preserving approximations of objects and filter on those
Content of this Lecture

• Relational operations
• Physical query plan operators
• Implementing (some) relational operators
Wir sind hier:

5 Schichten Architektur

Datenmodellebene

Logischer Zugriff

Speicherstrukturen

Pufferverwaltung

Betriebssystem

Mengenorientierter Zugriff

Interne Satzsschnittstelle

Systempufferschnittstelle

Dateischnittstelle

Geräteschnittstelle

Anfrageübersetzung, Zugriffspfadwahl, Zugriffskontrolle, Integritätskontrolle

Sortierung, Transaktionsverwaltung, Cursorverwaltung

Record Manager, Index Manager, Sperrverwaltung, Log / Recovery

Speichermanagement, Puffermanagement, Caching-Strategien

Externspeicherverwaltung
Query Execution

• We have
 – Structured Query Language SQL
 – Relational algebra
 – How to access tuples in many ways (scan, index, …)

• Now
 – Given a SQL query
 – Find a clever way and order of accessing tuples such that the answer to the query is computed
 • Usually, we won’t find the best way, but avoid the bad
 – Use knowledge about value distributions, access paths, query operations, IO cost, …
 – Compile a declarative query in a good executable (procedural) program
Query Execution

- **Steps (rough sketch)**
 - Translate SQL query in **relational algebra term**
 - **Logical optimization**
 - Each term can be rewritten in many other, **semantically equivalent terms**
 - For each operator we have multiple implementations
 - Choose the hopefully best query plan (= term)
 - **Physical optimization**
 - For each relational operation, we have **multiple possible implementations**
 - Table access: scan, different indexes, sorted access through index, …
 - Joins: Nested loop, sort-merge, hash, index, …
 - **Query execution**
 - Execute the best query plan found
Complete Workflow

SQL query → parse → parse tree → convert → logical query plan

- estimate result sizes
- "improved" l.q.p
- consider physical plans

{l.q.p. +sizes → estimate costs

{P1,P2,.....} → pick best

{P1,C1),(P2,C2)....} → execute

answer
Example SQL query

SELECT title
FROM StarsIn
WHERE starName IN (
 SELECT name
 FROM MovieStar
 WHERE birthdate LIKE '%1960'
);

(Find the movies with stars born in 1960)
Parse Tree

\[\text{SELECT} \ \text{<SelList>} \ \text{FROM} \ \text{<FromList>} \ \text{WHERE} \ \text{<Condition>}\]

\[\text{title} \ \text{<RelName>} \ \text{StarsIn} \ (\ \text{<Query>} \) \ \text{<Tuple>} \ \text{IN} \ \text{<Query>}\]

\[\text{SELECT} \ \text{<SelList>} \ \text{FROM} \ \text{<FromList>} \ \text{WHERE} \ \text{<Condition>}\]

\[\text{name} \ \text{<RelName>} \ \text{MovieStar} \ \text{birthDate} \ \text{LIKE} \ \text{<Pattern>} "'\%1960'"\]
From Parse Tree to Relational Algebra

\[\Pi_{\text{title}} \sigma_{\text{birthdate LIKE '1960'}} \text{IN} \Pi_{\text{name}} \]

\[\text{StarsIn} \]

\[\langle \text{tuple} \rangle \text{IN} \Pi_{\text{name}} \]

\[\langle \text{attribute} \rangle \]

\[\text{starName} \]

\[\text{MovieStar} \]
Relational Algebra Term as Tree:
Logical Query Plan

\[\Pi_{\text{title}} \]
\[\sigma_{\text{starName}=\text{name}} \]
\[\times \]
\[\Pi_{\text{name}} \]
\[\sigma_{\text{birthdate LIKE} \ '%1960'} \]
\[\text{MovieStar} \]
Improved Logical Query Plan

Question: Push project to StarsIn?
Estimate Result Sizes

\(\Pi \sigma_{\text{MovieStar}} \)

Need expected size

StarsIn

\(\Pi \)
Physical Plan

Hash join

- Parameters: join order, memory size, project attributes, ...

- sequential scan
 - StarsIn

- index scan
 - MovieStar

- Parameters: select condition, ...
Estimate costs

L.Q.P

P₁
C₁

P₂
C₂

...

Pₙ
Cₙ

Pick best!
Relational Operations: One Table

• In the following: Table means table or intermediate result
• One table operations
 – Selection σ
 • Read table and filter away tuples based on condition
 • Possibility: Use index to access only the qualifying tuples
 – Projection π
 • Read table and remove attribute values (columns)
 • In SET semantic, also duplicates must be filtered
 • Projection usually decreases size of table
 – When not??
 – Grouping
 • Read table and build structure on grouping attribute(s)
 • “Aggregate” (or remove) other columns
 – Duplicate elimination (DISTINCT)
 – Sorting
 • Not an operation in relational algebra
 • But very helpful for physically implementing relational operations
Relational Operations: Two Tables

- **Two table operations**
 - Cartesian product \times
 - Usually avoided – combine product and selection to join
 - Products in a plan are hints to wrong queries
 - Derived operation: Join \bowtie
 - Read two tables (in whatever order), find matching tuples
 - Natural join, theta join, equi join, semi join, outer join
 - Nested-loop join, sort-merge join, hash join, index join, ...
 - Union \cup
 - Read two tables and build union
 - Might include duplicate elimination
 - Intersection \cap
 - Same as join over all attributes
 - Minus $/$
 - Subtract tuples of one table from tuples from the other
Query Execution

• Assume that a query plan has been chosen
• Each relational operation needs a physical implementation
 – Chose best if there are many
 – Choice often has “side-effects” – sorted results, pipelining, …
 – Hence, choices should not be made independently of plan generation and choices for other operators

• Iterator concept
 – Each operator implementation offers three methods
 – Open, next, close

• Two modes of iterators calling each other
 – Blocked
 – Pipelined
Example - Blocked

\[\Pi \text{title} \]

\[\bowtie\sigma \text{birthdate LIKE '%1960'} \]

\[\Pi \text{name} \]

\[\text{StarsIn} \]

\[\text{MovieStar} \]

\[\text{projection} \]

\[\text{join} \]

```plaintext
P = projection.open();
while p.next(t)
   output t.title;
p.close();

class projection {
    open() {
        j = join.open();
        while j.next(t)
            tmp[i++] = t;
        j.close();
    }

    next(t) {
        if (cnt < max)
            t = tmp[cnt++];
        else return false;
    }

    close() {
        close();
    }
}

class join {
    open() {
        l = table.open();
        while l.next(t1)
            r = projection.open();
            while r.next(tr)
                if t1.name == tr.name
                    tmp[i++] = t1 \bowtie tr;
            r.close();
        end while;
        l.close();
    }

    next(t) {
        if (cnt < max)
            t = tmp[cnt++];
        else return false;
    }

    close() {
        close();
    }
}
```
Example - Pipelined

\[\Pi_{\text{title}} \]
\[\times \]
\[\Pi_{\text{name}} \]
\[\sigma \text{birthdate LIKE '1960'} \]
\[\text{MovieStar} \]

\[\text{Class projection} \{ \]
\[\text{open()} \{ \]
\[\hspace{1em} j = \text{join.open}(); \]
\[\} \]
\[\text{next}(t) \{ \]
\[\hspace{1em} \text{return } j.\text{next}(t); \]
\[\} \]
\[\text{close()} \{ \]
\[\hspace{1em} j.\text{close}(); \]
\[\} \]

\[\text{Class join} \{ \]
\[\text{Open()} \{ \]
\[\hspace{1em} l = \text{table.open}(); \]
\[\hspace{1em} r = \text{projection.open}() \]
\[\hspace{1em} l.\text{next}(tl); \]
\[\} \]
\[\text{next}(t) \{ \]
\[\hspace{1em} \text{if } r.\text{next}(tr) \]
\[\hspace{1em} \text{if } l.\text{starname}=r.\text{name} \]
\[\hspace{1em} t=tl⋈tr; \]
\[\hspace{1em} \text{return } \text{true}; \]
\[\text{else } \]
\[\hspace{1em} \text{if } l.\text{next}(tl) \]
\[\hspace{1em} r.\text{reset}(); \]
\[\hspace{1em} \text{return } \text{next}(t); \]
\[\text{else } \]
\[\hspace{1em} \text{return } \text{false}; \]
\[\} \]
\[\text{close()} \{ \]
\[\hspace{1em} l.\text{close}(); \]
\[\hspace{1em} r.\text{close}(); \]
\[\} \]
Pipelined versus Blocked

• Pipelining is in general highly advantageous
 – No need for real buffering
 • When intermediate results are large, buffers need to be stored on disk
 – Operations can be distributed to different threads or CPUs
 • Pipeline breaker
 – Some operations cannot be pipelined
 – Sorting: next() can be executed only after entire table was read
 • Exception: When input is sorted, e.g., from previous operation
 – Grouping and aggregation
 • Usually realized by first sorting or hashing (later)
 – To avoid larger buffers for intermediate results
 • Then, next() performs aggregation for one group and returns
 – Minus, intersection
 • Projection with duplicate elimination
 – Need not be pipeline breaker
 – next() can return early (no sorting required)
 – But we need to keep track of all values already returned – requires large buffer
Pipeline Breaker
Bag and Set Semantic

• Relational algebra has **SET semantic**
 - All relations are duplicate-free
 - Result of each query is duplicate-free
 - Result of each intermediate result is duplicate-free

• SQL databases use **BAG semantic**
 - More practical in applications
 - Usually, PKs prevent existence of real duplicates
 - Note: Removing duplicates in SQL is not trivial (how??)

• This makes many things easier
 - Duplicate elimination can be avoided

• But: Duplicate elimination is still a topic
 - DISTINCT clause
 - What else??
Select and Update

• **We do not discuss update, delete, insert**
 - Update and delete have queries – “normal” optimization
 • But: data tuples must be loaded (and locked and changed)
 • Some tricks don’t work any more (e.g. “oversized” index)
 - Insert may have query

• **Interference**
 - “Halloween” problem
 - Execute the following naively using an iterator on an index on salary
 • Give employees a raise
 • `UPDATE salary SET salary=1.1*salary`
 - What happens??
Implementing Operations

• Most single table operations are rather straight-forward
 – See book by Garcia-Molina, Ullmann, Widom for detailed discussion
• Joins are more complicated – later
 – In general, binary operations are more complex
 – We will see some
• Sorting, especially for large tables, is complicated
 – External sorting – we have seen Merge-Sort
 – See textbooks on Algorithms and Data Structures
• We sketch three single table operations
 – Scanning a table
 – Duplicate elimination
 – Group By
Scanning a Table

- At the bottom of each operator tree are relations
- Performing open-next-close means scanning the table
 - If table T has b blocks, this costs b IO
- Often better: combine with next operation
 - \(\text{SELECT } t.A, t.B \text{ FROM } t \text{ WHERE } A = 5 \)

- Selection: If index on $T.A$ available, perform index scan
 - Assume \(|T| = n\), \(|A| = a\) different values, \(z = n/a\) tuples with $T.A = a$
 - Index has height \(\log_k(n)\)
 - Accessing z tuples from T costs (worst-case) z IO
 - Complexity is identical \(O(n)\), but difference can be tremendous
 - Especially if A is a key, i.e., $z = 1$
- Projection: Integrate into table scan
 - Only easily possible for BAG semantic
 - Otherwise, a duplicate elimination step must be inserted
Scanning a Table 2

- **Selection conditions can be complex**
 - `SELECT t.A, t.B
 FROM t
 WHERE A=5 AND (B<4 OR B>9) AND C='müller'` ...

- **Approach**
 - Compute *conjunctive normal form*
 - Using indexes
 - Compute TID lists for each conjunct
 - Intersect
 - Alternatives??
 - Without indexes
 - Scan table and evaluate condition for each tuple

- **For complex conditions and small tables, linear scanning might be faster**
 - Depends on expected result size
 - *Cost-based optimization* required (later)
Duplicate Elimination

• Option 1: Use external sorting
 – Sort input table (or intermediate result) on DISTINCT columns
 • Can be skipped if table is already sorted
 – Scan sorted table and output only unique values
 – Generates output in sorted order
 – Pipeline breaker

• Option 2: Use internal sorting/hashing
 – Scan input table
 – Build internal data structure, holding each unique tuple once
 • Binary tree – some cost for balancing, robust
 • Hash table – might be faster, needs good hash function
 – When reading a tuple from the relation, check if it has already been seen
 • If no: insert tuple and copy it to the output; else: skip tuple
 • No pipeline breaker
 • Generates unsorted result

• How much IO will we need??
Performance

• Assumptions
 - Main memory: m blocks
 - Table: b blocks

• Using external sorting
 - If table is sorted, we need b IO
 - If table not sorted, we need $2 \times b \times \text{ceiling}(\log_2(b)) + b$ IO
 • Improvable to $2 \times b \times \text{ceiling}(\log_2(b)) - b$ – how??

• Using internal sorting
 - If all distinct values fit into m, we need b IO
 • Estimate from statistics
 - Otherwise … use two pass algorithms (e.g. hash-join like; later)

• What if DISTINCT column is key??
Grouping and Aggregation

- **Syntax**
 - Select may contain only GROUP BY expressions and aggregate functions

- **Semantics**
 - Partition result of inner query according to the value of the GROUP BY attributes
 - For each partition, compute one result tuple: GROUP BY attributes and aggregate function applied on all values of other attributes in this partition
 - Note: Depending on the aggregate function, we might need to buffer more than one value per partition – examples??

```
SELECT T.day_id, sum(amount*price)
FROM   Sales S
GROUP BY T.day_id
```
Implementing GROUP BY

• Proceed like duplicate elimination
• But we also need to compute the aggregated columns
 - No problem: SUM, COUNT, MIN, MAX, ANY
 - What to do for AVG??
 - What to do for Top5??
 - What to do for MEDIAN??
Computing MEDIAN

• We need to consider all values for each group
 – Sort and chose middle one
• Option 1: Partition table into k partitions
 – Scan table
 – Build (hash) table for first k different GROUP BY values
 – When reading one of first k, add value to (sorted) list
 – When reading other GROUP value, discard
 – When scan finished, output median of k groups
 – Iterate - next k groups
• Option 2: Sort table on GROUP BY and MEDIAN attribute
 – Then scan sorted data
 – Buffer all values per group
 – When next group is reached, output middle value
• What if we cannot buffer all values of a group??