Datenbanksysteme II: Implementation of Database Systems

Multidimensional Indexing

Material von
Prof. Johann Christoph Freytag
Prof. Kai-Uwe Sattler
Prof. Alfons Kemper, Dr. Eickler
Prof. Hector Garcia-Molina
Content of this Lecture

- Introduction to multidimensional indexing
- Partitioned Hashing
- Grid files
- kdb Trees
- R trees
Multidimensional Indexing

- Access methods so far
 - Support access on attribute(s) for
 - **Point query**: Attribute = const (Hashing and B-Tree)
 - **Range query**: const₁ ≤ Attribute ≤ const₂ (B-Tree)

- More complex queries
 - Point query on more than one attribute
 - Combined through AND (intersection) or OR (union)
 - Range query on more than one attribute
 - Queries for objects with size
 - "Sale" is a point in a multidimensional space
 - Time, location, product, …
 - Geometric objects have size: rectangle, cubes, polygons, …
Geometric Objects

• GIS (geographic information system) store rectangles
 \(\text{RECT} (X_1, Y_1, X_2, Y_2) \)
 (\(X_1, Y_1\) lower left corner and (\(X_2, Y_2\) upper right corner)

• Queries
 - Box query: All rectangles containing point (5,6)
 \[
 \text{SELECT} \ast \ \text{FROM} \ \text{RECT} \\
 \text{WHERE} \ \ X_1 \leq 5 \ \text{and} \ \ Y_1 \leq 6 \ \text{and} \\
 \ \ \ \ X_2 \geq 5 \ \text{and} \ \ Y_2 \geq 6
 \]
 • Similar to range query – all points within a given rectangle
 - Partial match query: Rectangles containing points with X=3
 \[
 \text{SELECT} \ast \ \text{FROM} \ \text{RECT} \\
 \text{WHERE} \ \ X_1 \leq 3 \ \text{and} \ X_2 \geq 3
 \]
 - All rectangles with non-empty intersection with rectangle Q
 \[
 \text{SELECT} \ast \ \text{FROM} \ \text{RECT} \\
 \text{WHERE} \ \ ...
 \]
Composite Indexes

- Imagine composite index on (X, Y)
- Box queries: efficiently supported
- Partial match query
 - All points/rectangles with X coordinate between ...
 - Efficiently supported
 - All points/rectangles with Y coordinate between ...
 - Not efficiently supported

<table>
<thead>
<tr>
<th>Point</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P2</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>P3</td>
<td>4.5</td>
<td>7</td>
</tr>
<tr>
<td>P4</td>
<td>4.7</td>
<td>6.5</td>
</tr>
<tr>
<td>P5</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>P6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>P7</td>
<td>8,3</td>
<td>3</td>
</tr>
</tbody>
</table>
Composite Index

• One index with two attributes \((X, Y)\)

• General
 - Prefix of attribute list in index must be present in query
 - The longer the prefix in a query, the more efficient

• Alternatives
 - Also index \((Y, X)\)
 • Combinatorial explosion for more than 2 attributes
 - Use independent indexes on each attribute
Independent Indexes

- One index per attribute

- Partial match query on one attribute: supported
- Partial match query on many attributes or box query
 - Compute TID lists for each attribute
 - Intersect
Example – Independent versus Composite Index

- Consider 3 dimensions of range 1,...,100
 - 1,000,000 points, uniformly (randomly) distributed
 - Index blocks holding 50 keys or records
 - Index on each attribute has height 4
- Find points with $40 \leq x \leq 50$, $40 \leq y \leq 50$, $40 \leq z \leq 50$
 - Using x-index, we generate list $|X| \sim 100.000$
 - Using y-index, we generate list $|Y| \sim 100.000$
 - Using z-index, we generate list $|Z| \sim 100.000$
 - For each index, we have $4 + 100.000/50 = 2004$ IO
 - TIDs are sorted in sequential blocks, each holding 50 TIDs
 - Hopefully, we can keep the three lists in main memory
 - Intersection yields app. 1,000 points with 6012 IO
 - Why 1000 points??
- Using composite index (X,Y,Z)
 - Number of indexed points doesn’t change
 - Key length increases – assume blocks hold only 30 (10) keys or records
 - Index has height 5 (6)
 - This is worst case – index blocks only 50% filled
 - Total: $5 \cdot 6 + 1000/30 (10) \sim 38$ IO (104)
Generalization

- Assume d dimensions, n records, k keys
- Assume query selectivity in each dimension s
- Independent indexes
 - Each independent index has height $\log_k(n)$
 - We find $s*n$ TIDs in $(s*n)/k$ blocks
 - All together: $C_1 = d*(\log_k(n)+(s*n)/k)$
- Composite index
 - Index has height $\log_r(n)$ for some $r<k$
 - We find s^d*n TIDs in $(s^d*n)/r$ blocks
 - All together: $C_2 = \log_r(n)+(s^d*n)/r$
- For $d=5$, $n=1.000.000$, $k=50$, $r=30$, $s=0.1$
 - $C_1 = 20+10000$, $C_2 = 4+0$
 - On average, the result will already be empty
- For $d=8$, $n=1E9$, $k=50$, $r=10$, $s=0.01$
 - $C_1 = 48+1.600.000$, $C_2 = 9+0$
Conclusion 1

- **We want composite indexes**
 - Much less IO
 - Things get worse for bigger d
 - TID lists don’t fit into main memory – paging, more IO
 - Reading large TIDs list again and again is more work than scanning relation once
 - Linear scanning of relation might be faster
 - Advantage grows “exponentially” with number of dimensions and selectivity of predicates
 - Things get complicated if data is not uniformly distributed
 - Dependent attributes (age – weight, income, height, …)
 - Clustering of points
 - Histograms (later more)
Conclusion 2

• But: To support partial match queries, we need to index all combinations
 - Impossible

• Solution: Use **multidimensional indexes**
 - General: Improvement, but no solution
 - “Curse of dimensionality” still valid
 • Most md indexes somehow degrade for many dimensions
 • Trees difficult to balance, very bad space usage, excessive management cost, expensive insertions/deletions, …
 - Commercial databases use **bitmap indexes**
 • Very small memory footprint
 - Multidimensional indexes are used for geometric objects
 • Oracle has R tree in spatial extender
Multidimensional Indexes

• All dimensions are equally important
• Neighbors in space are (hopefully) stored on nearby blocks
 – That is the clue
 – Difficult to achieve
• Supported types of objects
 – With size
 – Without size (points)
• Supported queries
 – Exact match point queries
 – Partial match point queries
 – Box queries (range queries)
 – Nearest neighbor queries
 • In multidimensional space
Geographic Information Systems
Data Warehousing

- More dimensions: customer, logistic centre, supplier, company division, ...
Multimedia Databases

• Map object into feature vector
 - Here: Tumor images
 - Feature vector are derived from mathematical morphology
 • Can be computed in varying granularity (different length of vector vectors)
 • Filling / bordering picture using differently coarse brushes
• Compute nearest neighborhood queries in feature space
 - Filters away most false positives
 - Usually, final costly check on real object still necessary (but on few)
Content of this Lecture

- Introduction to multidimensional indexing
- Partitioned Hashing
- Grid files
- kdb Trees
- R trees
Partitioned Hashing

- Partitioned Hashing
 - Let \(A_1, A_2, \ldots, A_k \) be search keys
 - Define a hash function for each \(A_i \); interpret result as bit string
 - Global hash key: concatenation of the attribute bit strings
 - Definition
 - Let \(h(A_i) \) map each \(A_i \) into a integer with \(b_i \) bit
 - Let \(b = \sum b_i \) (length of global hash key in bits)
 - The global hash function
 \[
 h(v_1, v_2, \ldots, v_k) \rightarrow [0, \ldots, 2^b-1]
 \]
 is defined as
 \[
 h(v_1, v_2, \ldots, v_k) = h_1(v_1) \oplus h_2(v_2) \oplus \ldots \oplus h_k(v_k)
 \]
 - We need \(B = 2^b \) buckets
 - Static address space - dynamic structures later
Example

• We want to store points
 - (3,6), (6,7), (1,1), (3,1), (5,6), (4,3), (5,0), (6,1), (0,4), (7,2)
• Let hash function h_1, h_2 be
 \[
 h_i (v_i) = \begin{cases}
 0 & \text{if } 0 \leq v_i \leq 3 \\
 1 & \text{otherwise}
 \end{cases}
 \]
• Thus, there are 4 buckets with address 00, 01, 10, 11

\[
\begin{array}{|c|c|}
\hline
0 & 1 \\
\hline
0 & (1,1) & (3,1) & (3,6) & (0,4) \\
1 & (4,3) & (5,0) & (6,1) & (6,7) & (5,6) \\
\hline
\end{array}
\]
Queries with Partitioned Hashing

• Exact point queries
 - Direct access to bucket possible

• Partial match queries
 - Only parts of the global hash key are determined
 - Use those as filter; scan all buckets passing the filter
 - Let $c = \sum b_i$ be the number of unspecified bits
 • Then 2^c buckets must be searched
 • These are certainly not ordered (ordered on what?) – random IO

• Range queries
 - Not supported, if hash function doesn’t preserve order
 - Example of order-preserving hash function??
Order Preserving Hash Functions

• Not order preserving: modulo
• Order preserving: division
• Example
 - Suppose 3 dimensions, each with range 1..1024 (10 bits)
 - Use 3 highest bits as hash key in each dimension
 • Equal to division by 64 (right-shift 7 times)
 - Global hash key: 9 bit, hence $2^9=512$ buckets
 - Partial range query: points with $200<y<300$ and $z<600$
 • $h_y(200)=001$, $h_y(300)=010$, $h_z(600)=100$
 • Scan buckets with
 - X-coordinate: ?
 - Y-coordinate: between 001 and 010 (001, 010)
 - Z-coordinate: <100 (000, 001, 010, 011,100)
 • We need to scan $8 \times 2 \times 4 = 64$ buckets
• But: Very vulnerable to not-uniformly distributed data
 - Data with Gauss distribution (weight, height, age, …) is clustered in the centre of each dimension
 - Use Modulo instead – and lose order-preservation
Conclusions

• Can only store \textit{point objects}
• Has \textit{static address} space as described here
 – Can be combined with extensible/linear hashing
 – Hash keys of different partitions grow/shrink independently
 – Directory in extensible hashing can grow quite large
 • Must be buffered; more IO
• No adaptation to clustered data – overflow buckets or large directories
Grid File

• Probably the most classic multidimensional index structure
 – “Quite” simple: searching, indexing, deleting
 – Good for uniformly distributed data, cannot handle skewed data well
 – Many variations (we will point to different options)

• Design goals
 – Index point objects
 – Support exact, partial match, and neighbor queries
 – Guarantee “two IO” access to each point
 • Under some assumptions
 – Do not prefer any dimension
 – Adapt dynamically to the number of points
Principle

- Partition each dimension into disjoint intervals, called scales
- The intersection of all intervals defines all grid cells
 - Convex d-dimensional hypercubes
 - Grid cells hold pointer to all data objects in that cell
 - When cell overflows – split (no overflow blocks)
 - Each point falls into exactly one grid cell
 - Grid cells are managed in the grid directory
- Grid cells are either
 - Directly addressed – each cell is one bucket = one block on disc
 - Grouped into convex, d-dimensional grid regions
Exact Point Search

• Compute grid cell coordinate
 – We keep scales for each dimension in memory
 – Looking up point coordinate in scales gives coordinates for each dimension
 – Map coordinate to block address on disk
 • Requires that grid directory on disk is organized as an array
 • Costly reorganization upon insertion and deletion – later

• Load grid directory
 – Look up block in grid directory (1st IO)
 – Find pointer to data bucket

• Access data bucket / block
 – 2nd IO
 – Search point in block
Range Query, Partial Match Query

- **Range query**
 - Compute grid cell coordinate for each end point
 - All grid directory entries in that range may contain points

- **Partial match query**
 - Compute partial grid cell coordinates
 - All grid directory entries with these coordinates may contain points
Inserting Points

• Search grid cell
 – If data bucket has space – no problem

• Otherwise
 – Without grid regions
 • Split space
 – Choose a dimension and an interval to split
 – Split all affected grid cells
 • Consider n dimensions and d_i intervals in dimension i
 – A split in dimension (last) increases grid directory by $d_1*d_2*...*d_{n-1}$ entries
 – Example: $d=3, d_i=4$
 » Grid directory has $4^3 = 64$ entries
 » Splitting one interval generates 4^2 new entries
 – Directory blocks need to be reorganized to allow coordinate computation

• Problem – grid directory grows very fast
• Many empty cells (NULL pointer) or almost empty cells
• Choice of dimension and interval is very difficult and never perfect
 – Optimally, we would like to split as many very full blocks as possible
 – This is an optimization problem in itself
Example

- Imagine one block holds 3 pointers
 - Usually we have unevenly spaced intervals
- New point causes overflow
- Where should we split?
- Vertical split
 - Splits 2 (3,4)-point blocks
 - Leaves one 3-point block
- Horizontal split
 - Splits 2 (3,4)-point blocks
 - Leaves one 3-point block
- Need to consider $O(d_i^{n-1})$ regions
Inserting Points -2-

- With grid regions
 - Search grid region
 - Space in bucket of region?
 - No problem
 - Region coarser-grained than scales?
 - Split region into smaller regions (or cells)
 - Possible split dimensions/axes: interval borders not used for split yet
 - Region already at finest level
 - Choose split as without grid regions
 - All but the overflowed grid cell remain unchanged
 - Split is not performed; regions “raise” in granularity
 - Directory need to be extended and reorganized

- Grid regions help to prevent the “many almost empty blocks” problem
Grid File Example 1 (from Johannes Gehrke)

(N=6)

\[\text{Diagram showing a grid file example with points labeled 1 to 6.} \]
Grid File Example 2

(N=6)

(A

B

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>
Grid File Example 3

(N=6)

A

1

13

8

15

B

6

2

9

C

5

10

11

4

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>7</th>
<th>8</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Grid File Example 4

(N=6)

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>8</th>
<th>13</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Grid File Example 5

(N=6)

\[
\begin{array}{cccccc}
\text{y}_4 & A & H & D & F & B \\
\text{y}_3 & & & & & \\
\text{y}_2 & & & & & \\
\text{y}_1 & & & & & \\
\end{array}
\]

\[
\begin{array}{cccccc}
A & H & D & F & B \\
A & I & D & F & B \\
A & I & G & F & B \\
E & E & G & F & B \\
C & C & C & C & B \\
\end{array}
\]
Deleting Points

- Search point and delete
- If regions become “almost” empty, choose merges
 - A merge is the removal of a split
 - Must build larger convex regions
 - This can become very difficult
 - Potentially, more than two regions need to be merged to keep convexity condition
 - Example:
 Where can we merge regions??

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>H</th>
<th>D</th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>I</td>
<td>D</td>
<td>F</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>
Nearest Neighbor Queries

- Search point
- Search points in same region and choose closest
 - If no point in same region, check surrounding buckets
 - Can we finish if point was found??
Nearest Neighbor Queries

- Search point
- Search points in same region and choose closest
 - If no point in same region, check surrounding buckets
 - Can we finish if point was found??
 - Usually not
 - Compute distance to all interval border (hyperplanes)
 - If point found is closer than all borders, we can finish
What’s in a Bucket?

- Buckets hold “the data”

- Choices
 - Complete tuples
 - Not compatible with other database structures (indexes, etc.)
 - Few records per data blocks
 - Frequent splits, fast growing directory
 - Only TIDs
 - Many records per data block, few splits, small directory
 - But queries need to check (load) all tuples referenced in a block to check real coordinates
 - Too expensive
 - TIDs and coordinates
 - Middle way between other choices
 - Medium number of records per block, moderate size of grid directory
 - No access to tuples necessary for checking coordinates
Conclusions

• Grid files always split at hyperplanes parallel to the dimension axes
 - This is not always optimal
 - Use other than rectangles as cell structure: circles, polygons, etc.
 - More complex forms might not disjointly fill the space any more
 - Allow overlaps - R trees

• Good: Good bucket fill degrees
 - Thanks to grid regions

• Bad: Grid directory grows very fast

• Each split decision finally becomes valid for all covering regions
 - Need not be realized at once, but restricts later choices
 - Bad adaptation to skewed data
 - The more dimensions, the worse
Content of this Lecture

• Introduction to multidimensional indexing
• Partitioned Hashing
• Grid files
• kd and kdb Trees
• R trees
kd-Tree

• Grid file disadvantages
 – All hyperregions of the n-dimensional space are eventually split at the same dimension/position
 • Although not all regions are actually performing the split
 – First cell that overflows determines split
 – This choice is global and never undone

• kd-trees
 – Multidimensional variation of binary search trees
 – Hierarchical splitting of space into regions
 – Regions in different subtrees may use different split positions
 – Better adaptation to clustering of data than grid files
 – kd-tree is mostly a main memory data structure
 • IO-optimization for layout of inner nodes later (kdb)
kd-Tree General Idea

- Binary, rooted tree
- Each inner node has two children
- Path is selected based on a pair (dimension / value)
- Dimensions need not be statically assigned to levels of the tree
 - Can be rotating, random, decided at time of block split, ...
 - Usually: rotating
- Data points are only stored in leaves
- Each leave stores points in a n-dimensional hypercube with m border planes (m ≤ n)
Example – the Brick wall

(x<3, y<1) (x<3, y≥1) (x≥3, y<7) (4,9)

(x<5, y<3) (x<5, y≥3) (x≥5, y<2) (x≥5, y≥2)
Local Adaptation
kd-Tree Search Operations

• Exact point search
 - ??
• Partial match query
 - ??
• Range query
 - ??
• Nearest Neighborhood
 - ??
kd-Tree Search Operations

• Exact point search
 – In each inner node, decide direction based on split condition
 – Search leaf for searched point

• Partial match query
 – If dimension of condition in inner node is part of the query – proceed as for exact match
 – Otherwise, follow all children in parallel
 • Leads to multiple search paths

• Range query
 – Follow all children matching the range conditions
 • Again: multiple search paths

• Nearest Neighborhood
 – Chose likely “close-enough” range and perform range query
 – If no success, iteratively broaden range
kd-Tree Insertion

- Inserting a point
 - Search data block of leaf
 - If space available - done
 - Otherwise, chose split dimension and position for this block
 - This is a local decision, but remains stable for the future
 - Find dimension and split that divides set of points into two sets
 - Consider current points and split in two sets of approximately equal size
 - Consider known distributions of values in different dimensions
 - Use alternation scheme for dimensions
 - Finding “optimal” split points is expensive for high dimensional data (point set needs to be sorted in each dimension) - use heuristics
 - Wrong decisions in early splits lead to tree degradation
 - CS students at HU: Don’t split at sex, religion, place of birth, …
 - But we don’t know which points will be inserted in future
 - Use knowledge on attribute value distributions
kd-Tree Deletions

• Deleting points
 – Search data block and delete point
 – If block becomes empty
 • Leave it – **bad points/space ratio**
 • Delete block and parent node
 – Changes height of tree – danger of **tree degradation**
 • Consider sibling in tree and reorganize
 – Touches more blocks

• Keeping kd-trees balanced is difficult
 – Usually, **some degradation is accepted**

• Improvements for kd-trees on secondary storage??
 – Option 2 is kdb tree – a balanced, IO-optimized kd tree
Fill Inner Blocks

• Option 1: **Multiway branching**
 - Split chosen dimension at \(r \) positions

 • \(r \): Number of pointer/value pairs fitting in block
 • When sibling nodes need to be merged,
 - Split points of children usually are incompatible
 - Reorganization of subtrees required
kdb trees

• Option 2: Store entire subtrees in one block
 - Inner nodes still have only two children
 • But those are (usually) stored in the same block
 • We need to “map” nodes to trees
 - kdb-tree: inner nodes store kd-trees

• Operations
 - Searching: As with kd trees
 • But on average better IO complexity
 - Insertion/Deletion
 • Complex schemes for keeping balance in tree (later)
Another View

• Inner nodes define (possibly open) bounding boxes on subtrees
• kdb tree is a hierarchical index structure
Example – Composite Index

• Consider 3 dimensions, \(n=1E7 \) points, block size 4096, \(|\text{point}|=9, \ |b\text{-ptr}|=10\)
 - We need \(~22000\) leaf blocks

• Composite B* index
 - Inner blocks store at least 100 pointers (max \(~220\))
 - We need 3 levels (2nd level has 10,000 pointers)
 - With uniform distribution, 1st level will mostly split on 1st dimension, 2nd level on 2nd dimension, 3rd level on 3rd dimension

• Box query in all three coordinates, 5% selectivity in each dimension
 - We read 5% of 2nd level blocks = 5 IO
 - For each, we read 5% of 3rd level blocks = 5*5=25 IO
 - For each, we read 5% of data blocks = 125 IO
 - Altogether: 155 IO
Example Partial Box Query

- Box query on 2nd and 3rd dimensions only, asking for a 5% range in each dimension
 - We need to scan all 100 2nd level blocks
 - Each 2nd level block contains the 5% range
 - Next, we scan 5% of 3rd level blocks = 500 blocks
 - We follow 5% of pointers from 2nd level blocks
 - For each, we read 5% of data blocks = 2500 data blocks
 - Altogether: 3100 IO
- Note: 5% selectivity in 2 dims means 0.0025 selectivity altogether = 25000 points
 - Only 60 blocks if optimally packed
Example – kdb-tree

- **Balanced tree** will have ~14 levels
 - ~400 points in one block (assume optimal packaging)
 - We need to address $1E7/400 = 25,000\sim 2^{14}$ blocks
- Consider $128=2^7$ inner nodes in one block
 - Rough estimate; we need to store two b-ptr for each inner node, but most b-ptr are just offsets into the same block
- **kdb tree structure**
 - 1st level block holds 128 inner nodes = levels 1-7 of kd tree
 - There are 128 2nd level blocks holding levels 8-14 of kd tree
- **1st block evenly splits space in 128 regions**
- Box query in all three coordinates, 5% selectivity in each dimension
 - Overall selectivity is $(0.05)^3 = 0.000125\%$ of all points (1250 points)
 - Very likely, we need to look at only ~1 2nd level block
 - On 7 levels, 2 dim. will have been split into 4 sections, one dim. into 8
 - If query intersects with split planes in each dimension: worst case 8 IO
 - Example: 100 values in one dimension, split will be at 25,50,75, query region covers 5 consecutive values – only 30 of 95 such regions cross a split point
 - Very likely, we need to look at only 4 data blocks (holding together the 1250 points)
 - Altogether: $1+1+4 = 6$ IO (compared to 155 for composite index)
Example - Partial Box Query 2

• Box query on 2nd and 3rd dimensions only, asking for a 5% range in each dimension
 – In first block (7 levels), we will have ~2 splits in each dimension (2 times 2, 1 time 3)
 • Assume we miss the dimension with 3 splits
 – Hence, in ~4 of 7 splits we know where we need to go, in ~3 we need to follow both children
 – We need to check only $2^3 = 8$ second-level blocks
 • Again – number gets higher when query range crosses split plane
 • The less likely, the lower the selectivity is
 – Same argument holds in 2nd level blocks = 8*8 data blocks
 – Altogether: $1 + 8 + 64 = 73$ IO
 • We almost reach optimum with 60 blocks
 • Compare to 3100 for composite index

• Beware
 – We made many, many assumptions
 – Layout of subtrees to nodes rarely optimal
 – Performance can greatly vary due to n# of dimensions, distributions, order of insertions and deletions, selectivity, split and merge policies, …
Conclusion

• Kdb trees can be perfectly balanced
 – Similar method as for b* trees
 – When splitting a leaf, a new node must be inserted into parent
 – Overflow may walk up to root
 – When inner nodes are split, splits must be propagated downward
 • As regions need to stay convex

• Kdb trees have problem with fill degree
 – Many insertions/deletions lead to almost empty leaves
 – Index grows unnecessarily large
 – No guarantee for lowest fill degree as in b* tree
Content of this Lecture

- Introduction to multidimensional indexing
- Partitioned Hashing
- Grid files
- kd and kdb Trees
- R trees
R-Trees

- Can store geometric objects (with size) as well as points
- Each object is stored in exactly one region on each level
- Since sized objects may overlap, R tree regions may overlap
- Better adaptation to distribution of data objects
- Only those hyperregions containing data objects are represented
- Many variations (see literature)
General Idea

• R-trees store n-dimensional rectangles
 - For geometric objects, use minimal bounding box (MBB)
• Objects in a region of the n-dimensional space are stored in a block
 - The region borders is the MBB of all objects in contains
 - Regions may overlap – see below
• Regions are recursively contained in larger regions
 - Tree-like shape
 - Region borders in each level are MBB of all child regions
 - Regions are only as large as necessary
 - Regions of a level need not cover the space completely
• Regions in one level may overlap
 - Or not – variation of classical R tree
 - Without overlaps: much more complicated insertion/deletion, but better search complexity
• Finding all rectangles overlapping with a query rectangle
 - In each level, intersect with all regions
 - More than one region might have non-empty overlap
 • All must be considered
 • In general, no O(log(n)) complexity
Inserting an Object

- In each level, find regions that contains object
 - *Completely or partly*
 - *More than one region with complete overlap*
 - Chose one (smallest?) and descend
 - *None with complete, but several with partial overlap*
 - Chose one (largest overlap?) and descend
 - *No overlapping region at all*
 - Chose one (closest?) and descend
 - We insert object in *only one region*

- In leaf node with space available
 - Insert object and adapt MBB
 - *Recursively adapt MBBs up the tree*
 - This generates larger and larger overlaps - search degrades

- In leaf node with no space available
 - Split block in two regions
 - Compute MBBs
 - Can affect MBB of higher regions - *ascend recursively*
Other Operations

• Deleting an object
 – Equally complicated

• Balancing the R-tree
 – Much more complicated
Example (from Donald Kossmann)

Compute MBBs for non-rectangular objects
Example: Regions

- Objects are *hierarchically grouped* into regions
- Regions may overlap
- Objects are represented only once
Example: Searching
Example: Insertion, Search Phase

- Search regions whose MBB must be expanded the least
- Repeat on each level (do not adapt MBBs yet)

Overflow, split required

Note: Having chose b4 would avoid split – but how can we know?
Example: Insertion, Split Phase

Usually, several splits are possible.
Example: Insertion, Adaptation Phase

- MBBs of all parent nodes must be adapted
- Block split might induce node splits in higher levels of the tree
Block Splits

- Problem: How should we optimally split a overflow-node into two regions?
- Option 1: Avoid overlaps, cover large space
 - Compute partitioning such that there exists a separating hyperplane
 - Minimizes necessity to descend to different children during search
 - Generally requires larger regions – search in empty regions is detected later
- Option 2: Allow overlaps, minimize space coverage
 - Compute partitioning such that sum of volumes of MBBs is minimal
 - Overlaps increases changes to descend on multiple paths during search
 - But: Unsuccessful searches can stop early
Block Splits

- Whatever strategy we chose
 - Consider a block with n objects
 - There are 2^n possibilities to partition this block into two
 - Most strategies require to check them all
 - Use heuristics instead of optimal solution

- R* tree
 - Chose as criterion combination of sum of covered spaces, space of intersection, and sum of girt
 - Use heuristic for concrete decision
 - Currently best strategy (still?)
Multidimensional Data Structures Wrap-Up

• We only scratched the surface
• Partitioned Hashing, Gridfile, kdb-Tree, R-Tree
• Other: X tree, hb tree, R+ tree, UB tree, …
 – Store objects more than once; other than rectangular shapes; map coordinates into integers; …
• Curse of dimensionality
 – Your intuition plays tricks on you
 – The more dimensions, the more difficult
 • Balancing the tree, finding MBBs, split decisions, etc.
 – All structures begin to degenerate somehow
 • Exploding size of directories, linear kdb-trees, all regions overlap, …
 – Often, linear scanning of objects is quicker
 • Or: Compute lower-dimensional, relationship-preserving approximations of objects and filter on those
Example

• Assumption: When deleting in object in R-tree, the new MBB will probably not be smaller, since most objects are far from the borders of the region
• Consider cubes and define border as within 10% of border
• In a 1-dimensional interval, 80% or points are not at the border
• In a 2-dimensional rectangle, 64%
• d=5: 32%; d=32: <0.001% - all points are at some border