

Algorithms and Data Structures

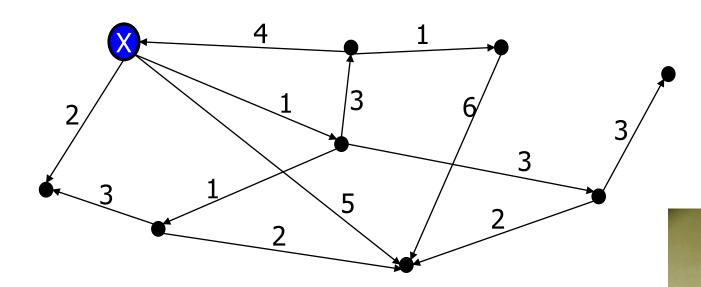
Graphs: Single-Source Shortest Paths

Ulf Leser

Content of this Lecture

- Shortest Paths
 - Single-Source-Shortest-Paths: Dijkstra's Algorithm
 - Shortest Path between two given nodes
 - Other

Shortest Paths in a Graph



- Task: Find the distance between X and all other nodes
 - Classical problem: Single-Source-Shortest-Paths
 - Famous solution: Dijkstra's algorithm
 - E. Dijsktra: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1 (1959), S. 269–271

Computer Science is no more about computers than astronomy is about telescopes.

Attributed to Edsger Dijkstra, 1970.

Distance in Graphs

Definition

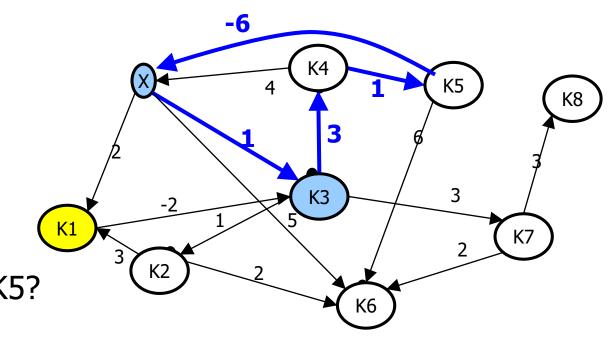
Let G=(V, E) be a graph. The distance d(u,v) between any two nodes $u,v \in V$ for $u \neq v$ is defined as

- G unweighted: The length of the shortest path from u to v, or ∞ if no path from u to v exists
- G weighted: The minimal aggregated edge weight of all non-cyclic paths from u to v, or ∞ if no path from u to v exists
- If u=v, d(u,v)=0

Remark

- Distance in unweighted graphs is the same as distance in weighted graphs with unit cost
- Beware of negative cycles in directed graphs

Negative Cycles



Shortest path between X and K5?

- X-K3-K4-K5: 5

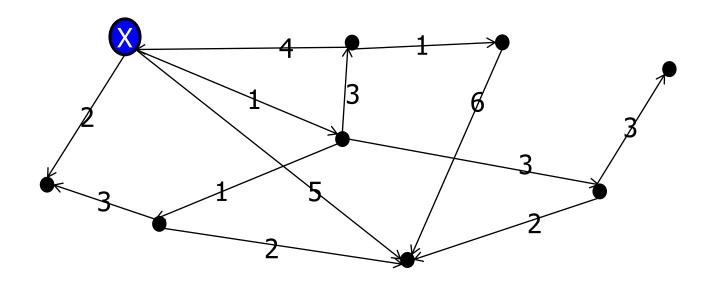
- X-K3-K4-K5-X-K3-K4-K5: 4

– X-K3-K4-K5-X-K3-K4-K5: 3

— ...

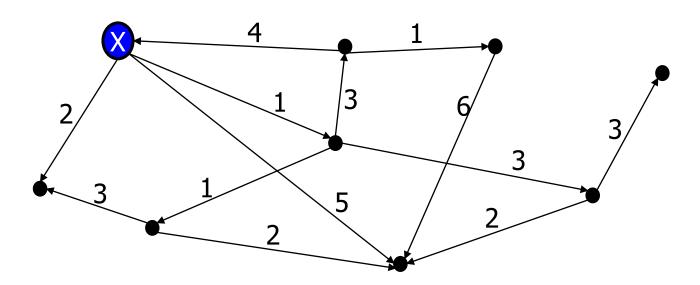
SP-Problem undefined if G contains a negative cycle

Single-Source Shortest Paths in a Graph



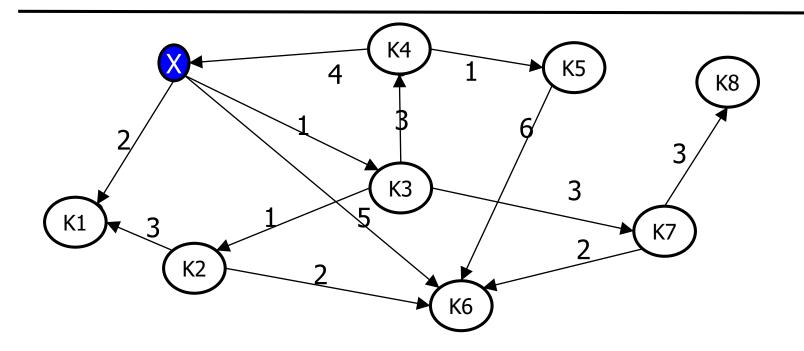
- Task: Find the distance between X and all other nodes
- Only positive edge weights allowed
 - Bellman-Ford algorithm solves the general case
- Floyd-Warshall finds distances between any pair of nodes

Assumptions



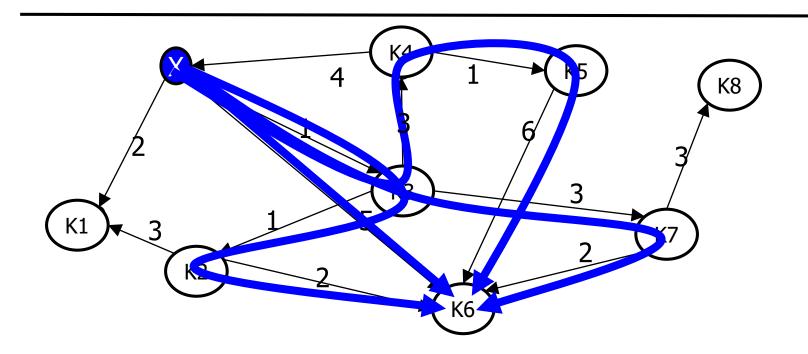
- We assume that every node is reachable from X
- There might be many shortest paths to node Y, but distance is unique
 - We only want the distances and need no "witness paths"
- Only positive edge weights
 - Whenever we extend a path with an edge, its length increases
 - Thus, no shortest path may contain a cycle

Exhaustive Solution



- First approach: Enumerate all paths ("BT": Backtrack)
 - Still need to break cycles (e.g. X K3 K4 X K3 ...)
 - Using DFS: X K3 K4 X [BT-K4] K5 K6 [BT-K5] [BT-K4]
 [BT-K3] K7 K8 [BT-K7] K6 [BT-K7] [BT-K3] K2 K6 [BT-K2]
 K1 [BT-K2] [BT-K3] [BT-X] K6 ...

Redundant work



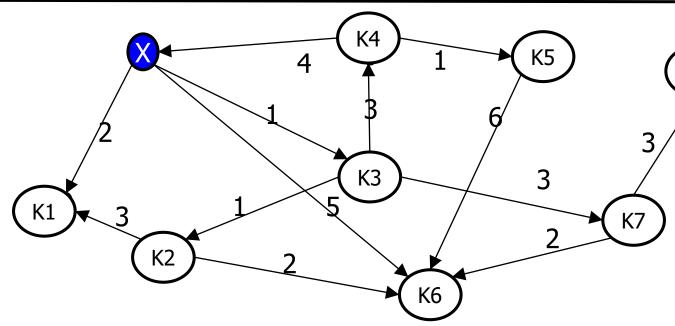
- First approach: Enumerate all paths
 - Need to break cycles (e.g. X K3 K4 X K3 ...)
 - Using DFS: X K3 K4 X [BT-K4] K5 K6 [BT-K5] [BT-K4]
 [BT-K3] K7 K8 [BT-K7] K6 [BT-K7] [BT-K3] K2 K6 [BT-K2]
 K1 [BT-K2] [BT-K3] [BT-X] K6 ...

Dijkstra's Idea



- Enumerate paths from X by their length
 - Neither DFS nor BFS
- Assume we reach a node Y by a path p of length I and we have already explored all paths from X with length I' < I and that Y was not reached yet
- Then p must be a shortest path between X and Y
 - Because any p' between X and Y would have a prefix of length at least I and (a) a continuation with length>0 (only positive weights) or (b) would not need a continuation (then p is as short as p')

Example for Idea



- 1: X K3
- 2: X K3 K2

$$2: X - K1$$

- 4: X K3 K2 K6
 - 4: X K3 K4
 - 4: X K3 K7

- 5: X K3 K4 K5
- 7: X K3 K7 K8
- Stop (all nodes found)

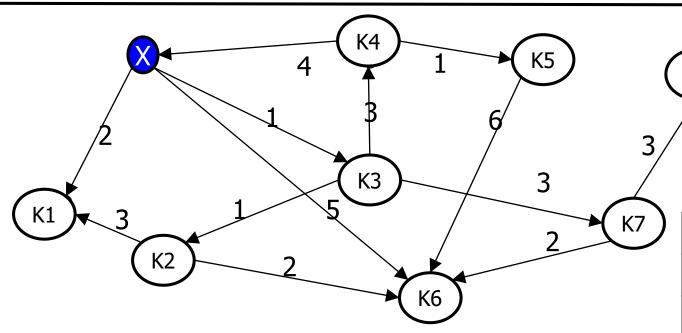
K3	1
K2	2
K1	2
K6	4
K4	4
K7	4
K5	5
K8	7
•	

K8

Algorithmic Idea

- Enumerate paths by iteratively extending already found shortest paths by all possible extensions
 - All edges outgoing from the end node of a short path
- These extensions
 - ... either lead to a node which we didn't reach before then we found a path, but cannot yet be sure it is the shortest
 - ... or lead to a node which we already reached but we are not yet sure if we found the shortest path to it – update current best distance
 - ... or lead to a node which we already reached and for which we also surely found a shortest path already – these can be ignored
- Extensions are stored in a priority queue with prio=length
- We enumerate nodes by their distance

Example Step 2

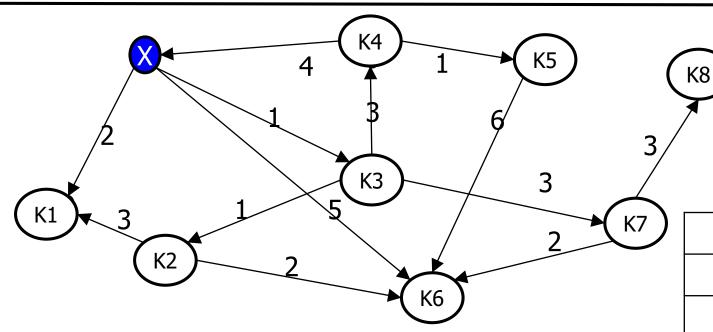


- We first expand X
 - Path of length 1 to K3: New, not necessarily shortest
 - Path of length 2 to K1: New, not necessarily shortest
 - Path of length 5 to K6: New, not necessarily shortest

K3	1
K2	
K1	2
K6	5
K4	
K7	
K5	
K8	

K8

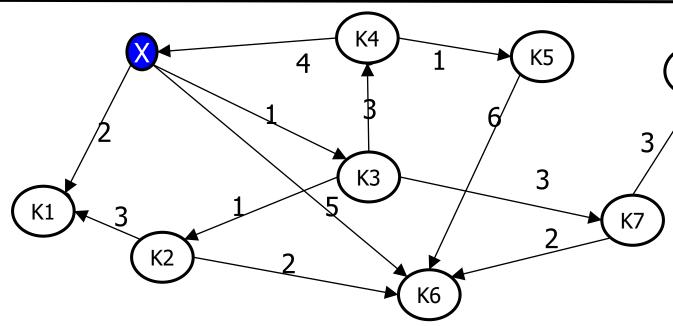
Example Step 1



- We expand K3 ("shortest" node)
 - Path of length 1+3 to K4: New, not necessarily shortest
 - Path of length 1+3 to K7: New, not necessarily shortest
 - Path of length 1+1 to K2: New, not necessarily shortest

K3	1
K2	2
K1	2
K6	5
K4	4
K7	4
K5	
K8	
	-

Example Step 2



- Path of length 2+3 to K1: Discard, we have seen K1 already
- Path of length 2+2 to K6: Override, found shorter path
- We expand K1 equally short node

– ...

K3	1
K2	2
K1	2
K6	4
K4	4
K7	4
K5	
K8	

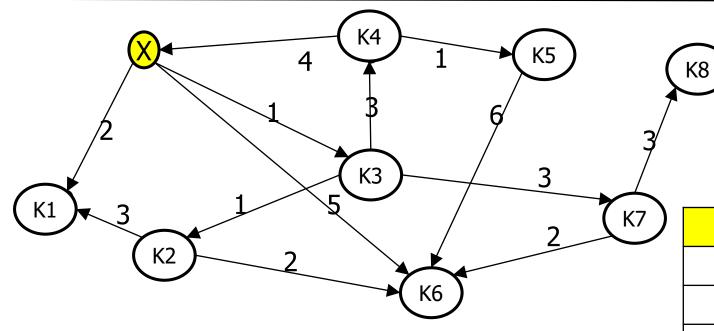
K8

Algorithm

```
1. G = (V, E);
2. x : start node;
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V;
6. A[x] := 0;
7. while L\neq\emptyset
8. k := L.get closest node(x);
9. L := L \setminus k;
   forall (k,f,w)∈E do
       if fEL then
11.
12.
         new dist := A[k]+w;
13.
         if new dist < A[f] then
            A[f] := new dist;
14.
15.
         end if;
16.
       end if:
17.
     end for;
18. end while;
```

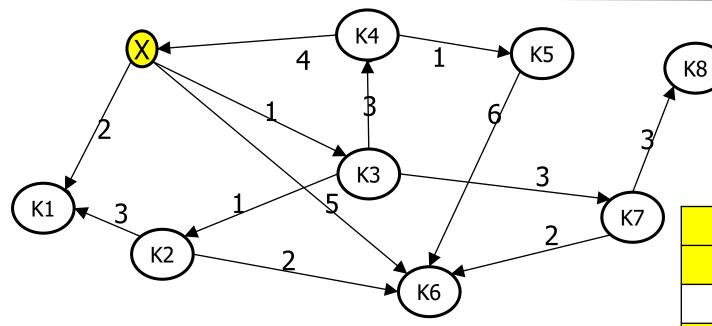
Assumptions

- Nodes have IDs between 1 ... |V|
- Edges are (from, to, weight)
- We enumerate nodes by length of their shortest paths
 - In the first iteration, we pick x and update distances A to all neighbors
 - When we pick a node k, we already have computed its distance to x in A
 - We adapt the current best distances to all neighbors of k we haven't picked yet
- Once we picked all nodes, we are done



Pick x

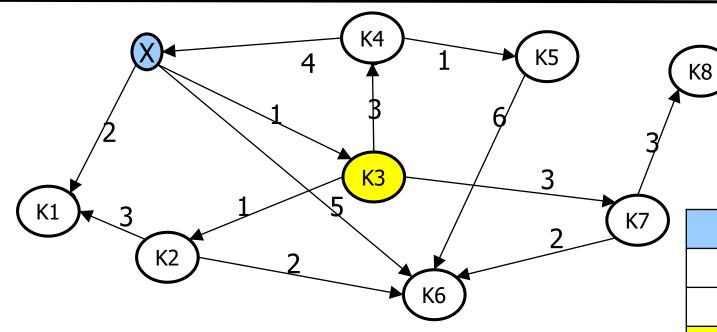
0
8
8
8
8
8
8
8
8



			1	
	P	iC	/	X
_			\	\mathcal{I}

Adapt distances to all neighbors

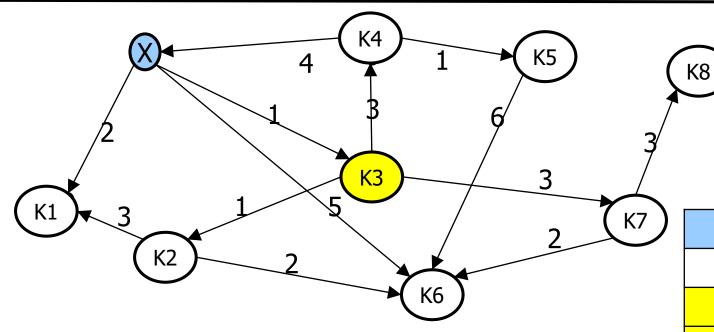
X	0
K1	2
K2	8
K3	1
K4	8
K5	8
K6	5
K7	8
K8	8



•	X is	done -	remove	from L	
		GOLIC			ı,

• Pick K3 (closest to x)

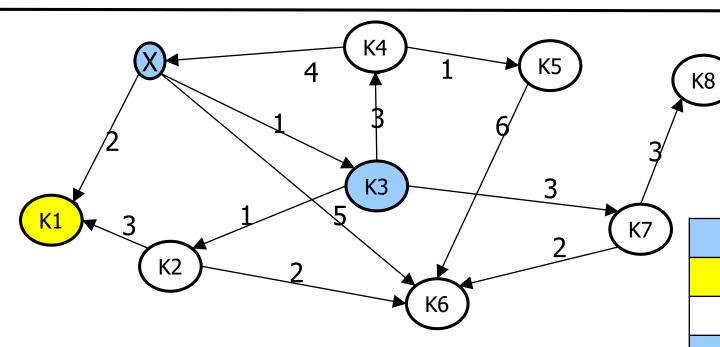
Χ	0
K1	2
K2	8
K3	1
K4	8
K5	8
K6	5
K7	8
K8	8



Di		k l	K3
	L	N	$\mathcal{L}\mathcal{I}$

 Adapt distances (from x) to all neighbors (of K3)

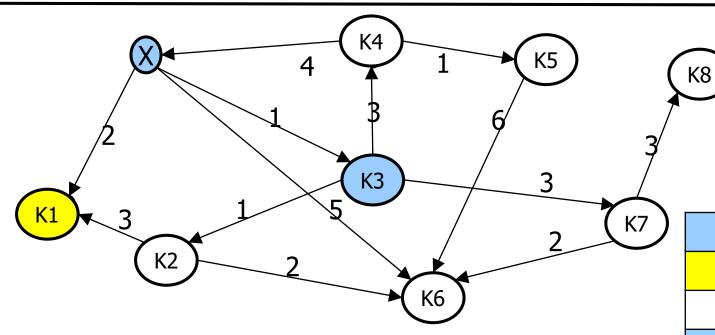
Χ	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	5
K7	4
K8	8



•	K3 is	done ((we	cannot	find	a	shorter	path))
---	-------	--------	-----	--------	------	---	---------	-------	---

Pick K1	(or	K2)
---------------------------	-----	-----

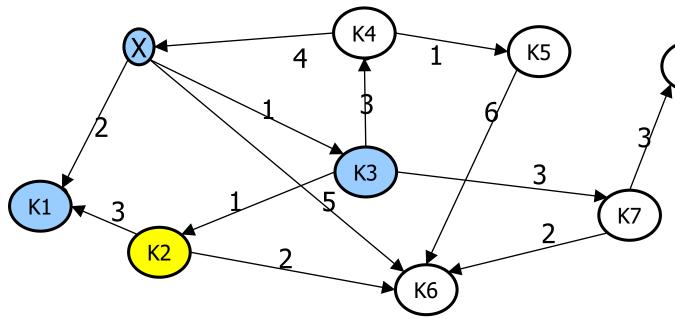
Χ	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	5
K7	4
K8	8



Di	ick	K1
	ICK	L

- Adapt distances to all neighbors
 - There are none

Χ	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	5
K7	4
K8	8

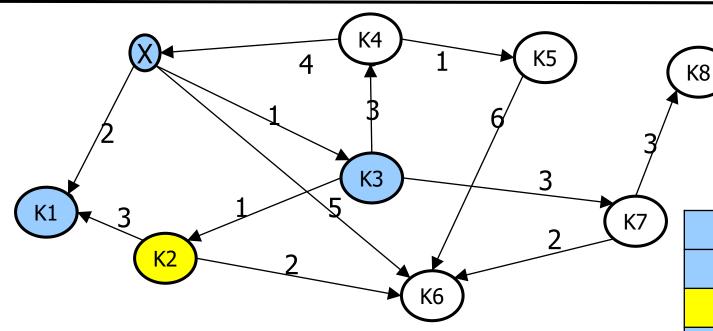


•	K1 is done	

• Pick K2

Λ)
K1	2
K2	2
K3	1
K4	4
K5	8
K6	5
K7	4
K8	8

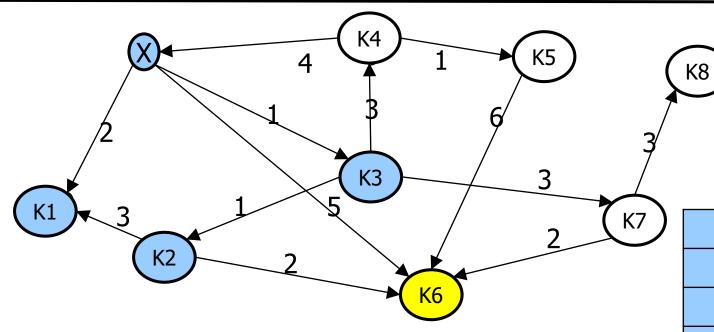
K8



		1/2
U	ick	K /
		114

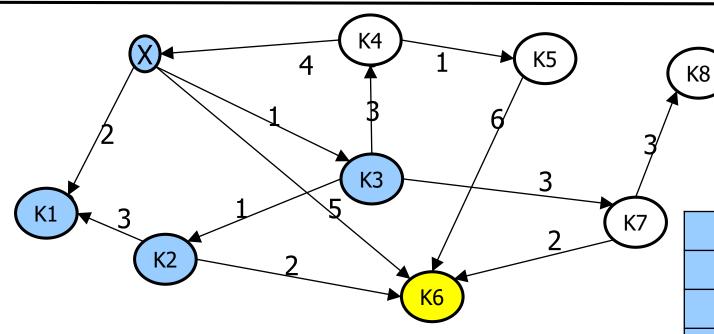
- Adapt distances to all neighbors
 - K1 was picked already ignore
 - We found a shorter path to K6

Χ	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	4
K7	4
K8	8



• Pick K6 (or K4 or K7)

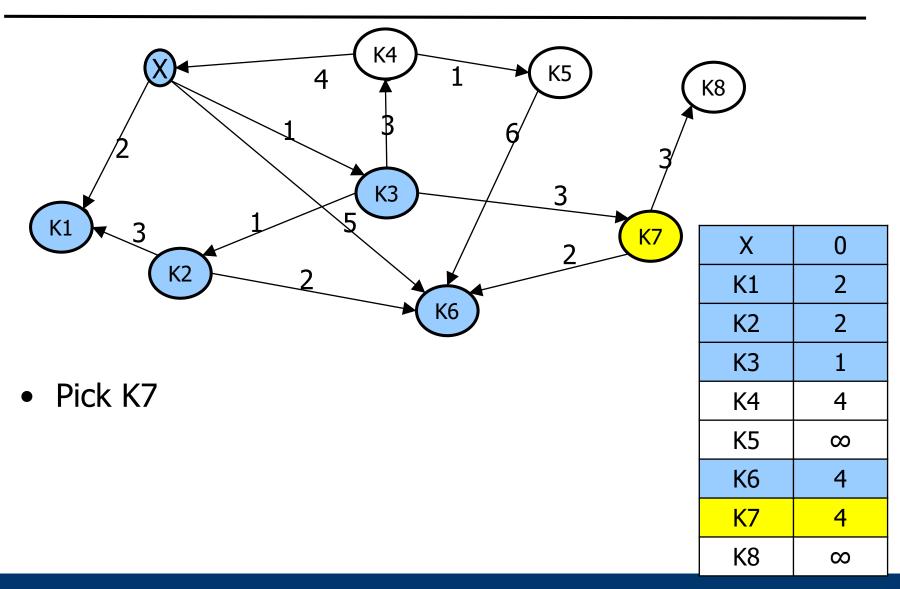
X	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	4
K7	4
K8	8

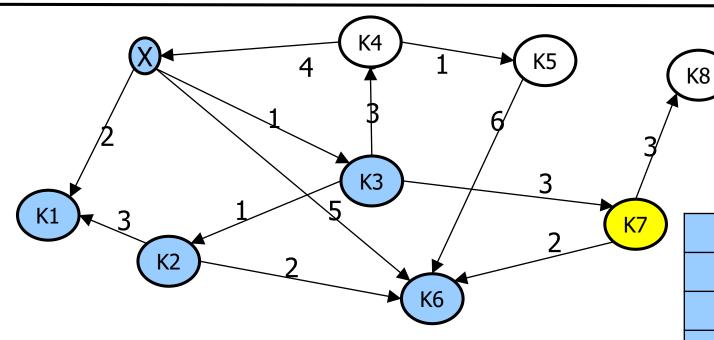


Dic		K 6
ГЦ	-	NU

- Adapt distances to all neighbors
 - There are none

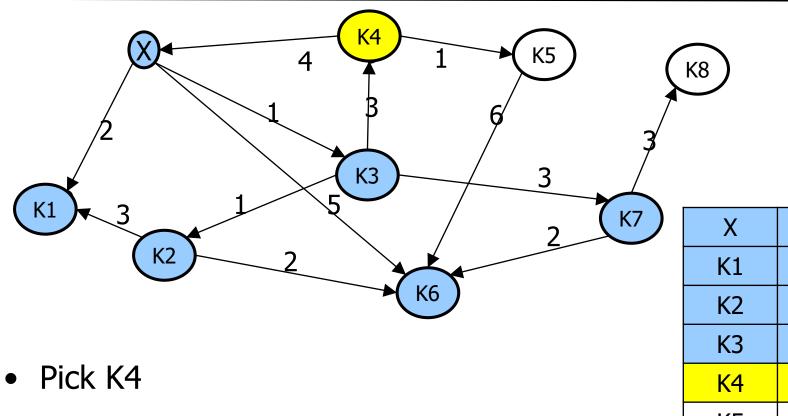
X	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	4
K7	4
K8	8



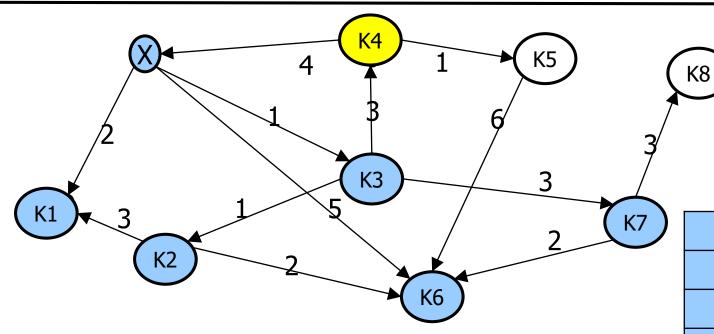


- Pick K7
- Adapt distances to all neighbors
 - K6 was visited already

X	0
K1	2
K2	2
K3	1
K4	4
K5	8
K6	4
K7	4
K8	7



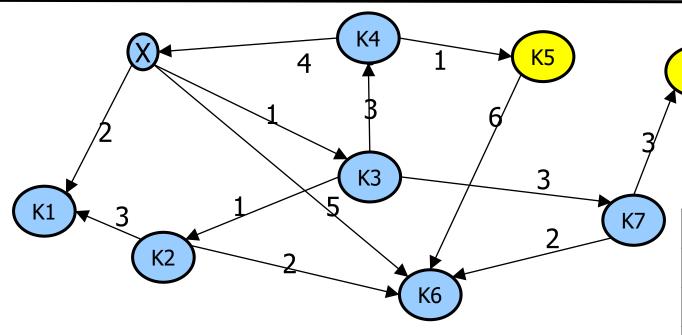
K1	2
K2	2
K3	1
K4	4
K5	8
K6	4
K7	4
K8	7



•	Pi	C		K4
	ГΙ	u	lacksquare	T

- Adapt distances to all neighbors
 - X was visited already

Χ	0
K1	2
K2	2
K3	1
K4	4
K5	5
K6	4
K7	4
K8	7



• Pick K5 ... Pick K8

X	0
K1	2
K2	2
K3	1
K4	4
K5	5
K6	4
K7	4
K8	7

A Closer Look

```
1. G = (V, E);
2. x : start node;
                    # xEV
3. A : array of distances from x;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update(L);
8. while L≠Ø
9. k := L.get closest node();
10. L := L \setminus k;
11. forall (k,f,w) \in E do
12. if fEL then
13.
        new dist := A[k]+w;
14. if new dist < A[f] then
15.
   A[f] := new dist;
16.
         update(L);
17.
   end if:
18.
   end if;
19.
    end for;
20. end while;
```

- Central: get closest node(x)
 - Needs to find the node k in L for which A[k] is the smallest
 - A[k] may change all the time
- Searching A? Resorting A?
- Trick: Organize L as "enhanced" priority queue
 - We need to be able to update the priority of nodes
 - Done in O(log(n)) by removing then re-inserting the node in a min-heap

Dijkstra's Algorithm – Single Operations

```
1. G = (V, E);
2. x : start node;
                      # xEV
3. A : array of distances from x;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update(L);
8. while L≠Ø
9. k := L.get closest node();
10. L := L \setminus k;
11. forall (k,f,w) \in E do
12. if fEL then
13. new_dist := A[k]+w;
14. if new dist < A[f] then
          A[f] := new dist;
15.
16.
         update(L);
         end if:
17.
18.
   end if;
19.
     end for;
20. end while;
```

- Assume a heap-based Prio-Q L
 - L holds at most all nodes (n)
 - Line 4: O(n)
 - L5: O(n) (build PQ)
 - L9: O(1) (getMin)
 - L10: O(log(n)) (deleteMin)
 - L11: O(m) (with adjacency list)
 - L12: O(1)
 - Requires additional array LA of size |V| storing membership of nodes in L
 - L16: O(log(n)) (updatePQ)
 - Store in LA pointers to nodes in L; then remove/insert node

Dijkstra's Algorithm - Loops

```
1. G = (V, E);
2. x : start node;
                      # x∈V
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update(L);
8. while L≠Ø
9. k := L.get closest node();
10. L := L \setminus k;
11.
   forall (k,f,w) \in E do
   if fEL then
12.
13.
         new dist := A[k]+w;
   if new dist < A[f] then
14.
   A[f] := new dist;
15.
         update(L);
16.
17.
   end if:
18.
   end if;
19.
     end for;
20. end while;
```

Central costs

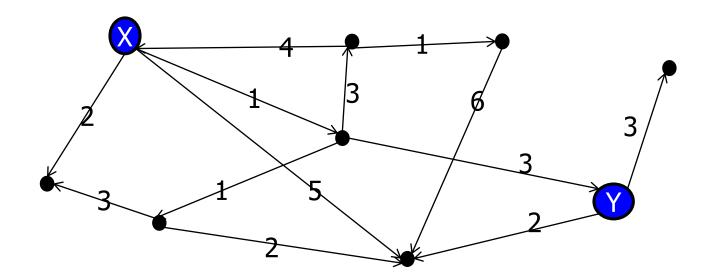
L10: O(log(n)) (deleteMin)

L16: O(log(n)) (del+ins)

Loops

- Lines 8-19: O(n)
- Line 11-18: All edges exactly once
- Together: O(m+n)
- Altogether: O((n+m)*log(n))
 - With Fibonacci heaps: Amortized costs are O(n*log(n)+m))
 - Also possible in O(n²); this is better in dense graphs (m~n²)

Single-Source, Single-Target

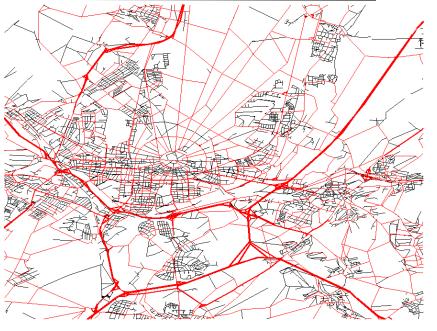


- Task: Find the distance between X and only Y
- Solution: Dijkstra as well
 - We can stop as soon as Y appears at the min position of the PQ
 - We can visit edges in order of increasing weight (might help)
 - Worst-case complexity unchanged
- Things are different in planar graphs (navigators!)

Outlook: Highway Hierarchies

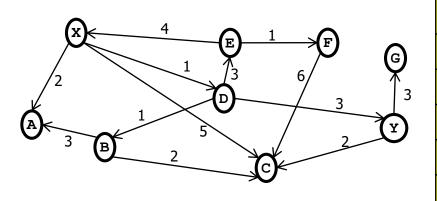
Shortest-Path Routing on maps

- Exploit Highway hierarchy
 - Autobahn, Bundesstrasse,Regionalstrasse, Strasse, Pfad ...
- Iterative refinement in layered maps
- "towards O(1)" [SS07]
- Extensions
 - Second best non-overlapping path
 - Fleet management: Traveling salesman
 - Logistics: Pick-up-and-delivery with intermediate stocks
 - Budget optimization (gasoline, empty trips, sleep-restrictions, road tolls, border / customs regulations, ...)



Faster SS-ST Algorithms

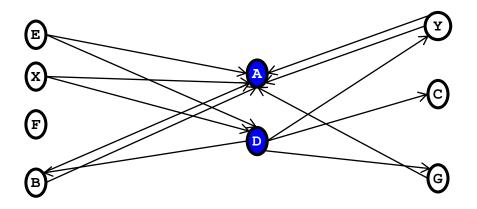
- Trick 1: Pre-compute all distances
 - Transitive closure with distances
 - Requires $O(|V|^2)$ space: Prohibitive for large graphs
 - How? See next lecture



→	A	В	C	D	Е	F	G	X	Υ
A	0	ı	ı	ı	ı	ı	ı	ı	1
В	3	0	2	ı	ı	1	ı	ı	1
C	ı	ı	0	ı	ı	ı	ı	ı	ı
D	4	1	თ	0	თ	4	6	7	3
Е	6	6	7	5	0	1	11	4	8
F	ı	ı	6	ı	ı	0	ı	ı	ı
G	ı	ı	ı	ı	ı	ı	0	ı	ı
X	2	2	4	1	4	5	7	0	4
Y	-	-	2	-	-	-	3	-	0

Faster SS-ST Algorithms

- Trick 2: Two-hop cover with distances
 - Find a (hopefully small) set S of nodes such that
 - For every pair of nodes v₁,v₂, at least one shortest path from v₁ to v₂ goes through a node s∈S
 - Thus, the distance between v_1, v_2 is min{ $d(v_1, s) + d(s, v_2) \mid s \in S$ }
 - S is called a 2-hop cover
 - Problem: Finding a minimal S is NP-complete
 - And S need not be small



More Distances

- Graphs with negative edge weights
 - Shortest paths (in terms of weights) may be very long (edges)
 - Bellman-Ford algorithm is in O(n²*m)
- All-pairs shortest paths
 - Only positive edge weights: Use Dijkstra n times
 - With negative edge weights: Floyd-Warshall in O(n³)
 - See next lecture
- Reachability
 - Simple in undirected graphs: Compute all connected components
 - In digraphs: Use graph traversal or a special graph indexing method