

Algorithms and Data Structures

Priority Queues

Ulf Leser

Specialized Queues: Priority Queues

- Up to now, we assumed that all elements are equally important and that any of them could be searched next
- What if some elements are more important than others?
 - In many applications, elements have a priority
 - Next access always retrieves the currently most important element
 - Accessed elements are "finished" remove from list
- Data structures supporting such requirements are called Priority Queues
 - Difference to SOL: We know by which property we should sort: The priority; elements taken from the list are removed
 - Difference to a queue: New elements need to be placed such that the priority ordering is preserved

Simple Example

- Scheduler: Part of an OS which assigns computational resources (cores) to jobs (programs)
 - Assume a machine with one core / thread
 - 10 jobs should run concurrently
 - Time slicing: Give every job the core for some time, then next ...
 - Fair: Every job gets 10% of the time
 - What about OS jobs, e.g., the scheduler itself?
- Often, assignments are not fair, but obey priorities
 - OS jobs get high priority
 - Users may assign priorities to their jobs (unix nice)
 - Users may pay for high priorities
 - Student's jobs get lower priorities than staff's jobs
 - Etc.

Scheduler and Priority Queue

- Scheduler may use a priority queue (PQ)
- Main operations: getNextJob(), putJob(Job, priority)
 - putJob inserts new job into queue at "right" position
 - getNextJob returns the job with currently highest priority
- Desirable: Both operations should be fast
 - Sorted array: O(1) for getNextJob, but O(n) for putJob
 - Unsorted array: O(1) for putJob, but O(n) for getNextJob
 - We'll get O(1) for getNextJob and O(log(n)) for putJob
- Note: This doesn't suffice for a scheduler
 - Using only a PQ would be extremely unfair most jobs would never start because high-priority OS jobs never terminate

Second Example: Compression

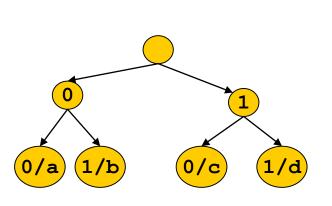
- Less data is usually better than more data
 - Less storage, faster to load, cheaper to transmit, ...
- Compression: Represent much data D with few bits C
 - D: Message to be compressed, C: Compressed representation
 - Lossless: D can be reconstructed completely from C
 - Not lossless (lossy): jpeg, mpeg, ...
- Example
 - D= "I will will that my will will will" (34 chars)
 - C= <1: will>; "I 1 1 that my 1 1 1" (19 chars + codebook)
 - Careful: Recognize "1" as codebook entry
- Popular idea: Use few bits for frequent substrings, and more bits for rare substrings
 - For instance used in ZIP and its variants

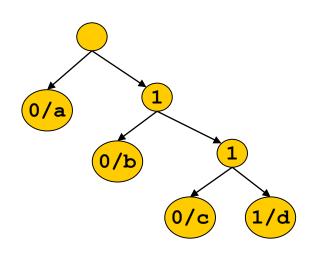
Huffman Codes

- Huffman coding: Optimal and efficient de-/compression
 - David A. Huffman, 1951 as seminar thesis (!)
 - Compresses representation of characters, not substrings
 - Optimality: Least-space requiring code (under certain assumptions)
- Framework
 - Input message D
 - Compute optimal codebook B for all characters of D
 - Fewer bits for more frequent characters
 - Compress D into C using B
 - Transmit C and B
- Can easily be extended to compress n-grams

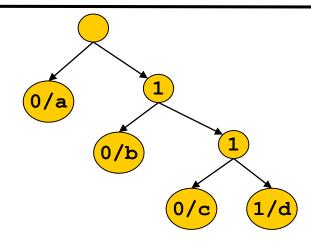
Approach

- We create a binary tree (will be defined precisely later)
 - Root is unlabeled
 - Every left child is labeled with 0, every right child with 1
 - Leaves are labeled with 0/1 and a character
 - All characters are represented as leaves



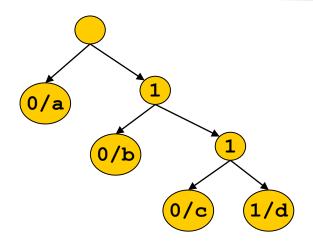


Compression



- D=aaaabaacaddaac;
 C=000010001100111111100110
 - Decompression is unique: Following the path from root to leave defines next character in D
 - Huffman codes are prefix-free: No code B(c) of a char c is prefix of the code B(c') of a char c' with c≠c'
 - Not prefix-free: B(a)=01, B(b)=011
- Compression?
 - |D| = 2*14=28 bits (assume equal length per char = 2 bit)
 - |C| = 23

Compression?



- D=addccdaadccbbd; C=011111111011011100111110...
- We only compress if frequent characters are represented with few bits
- Huffman coding: Which characters? How many bits? How frequent?

Algorithm

- Pre-processing: Count (relative) frequencies of all chars
- We build the tree bottom-up, first ignoring 0/1 labels
- Start with leaves, annotated with characters+frequencies
- Loop
 - Chose two least frequent nodes (chars) n, n'
 - If tie: Chose node with lowest subtree
 - Connect by new parent node p; freq(p) = freq(n)+freq(n')
 - Remove n, n' from further consideration (but leave in tree!)
- Until only two nodes remain
- Add root
- Label all left children with 0, all right children with 1

Example: D=aaaabaaccddaac

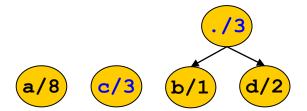
$$freq(a) = 8$$

 $freq(b) = 1$
 $freq(c) = 3$
 $freq(d) = 2$

a/8 b/1 c/3 d/2

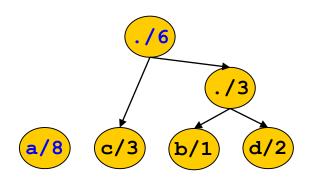
$$freq(a) = 8$$

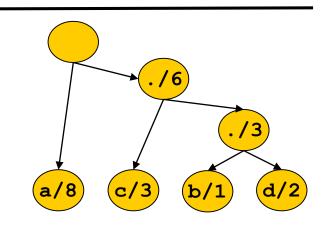
 $freq(c) = 3$
 $freq(p) = 3$



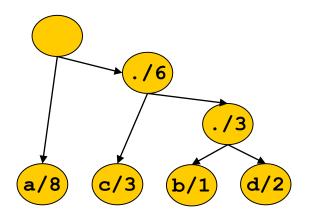
$$freq(a) = 8$$

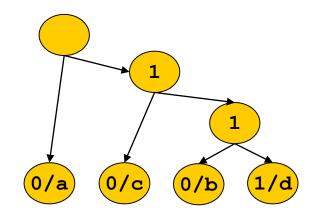
 $freq(q) = 6$





Example





- Code book B
 - B(a) = 0
 - B(c) = 10
 - B(b) = 110
 - B(d) = 111

Huffman and Priority Queues

- Complexity of computing the codebook
 - Let $m=|\Sigma|$ and n=|D|
 - Preprocessing (freq counting): O(n)
 - Recall: A binary tree with m leaves has O(m) inner nodes
 - Every loop creates an inner node: O(m) iterations
 - Core: We need to find two nodes with smallest frequency
 - If nodes kept in sorted array: O(1), but inserting p will cost O(m)
 - If kept in unsorted linked list: O(m), but inserting p will cost O(1)
 - Anyway: O(n+m²)
- Better: Use a priority queue for managing nodes
 - Yields O(1) for getInfrequentNodes, and O(log(m)) for putNode
 - Together: O(n+m*log(m))
 - One can actually get O(n+m)

Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps

Priority Queues

- A (min) priority queue (PQ) is an ADT with 3 essential operations
 - add (o, v): Add element o with priority (value) v
 - getMin(): Retrieve element with highest priority
 - removeMin(): Remove element with highest priority
- Typical additional operations
 - merge (p1,p2): Merge two PQs into one
 - create(L): Convert a list in a priority queue
 - delete(o): Delete element o from PQ
 - update(o,v): Change priority of element o to v

Maybe Arrays?

- Using a sorted array
 - add requires O(n) (bad)
 - We find the position in log(n), but then have to free a cell by moving all elements after this cell by one position
 - getMin requires O(1)
 - deleteMin requires O(n) (bad)
- PQs are typically used in applications where elements are inserted and removed (and updated) all the time
- We need an efficient DS that can change its size dynamically at very low cost while keeping a certain order (min element)

Content of this Lecture

- Priority Queues
- Using Heaps
 - Heaps
 - Operations on Heaps
 - Heap Sort
- Using Fibonacci Heaps

Heap-based PQ

- Can we find a way to keep a list "a little sorted"?
 - We only need the smallest element at a fixed position
 - All other elements can be at arbitrary places
 - But add/deleteMin should be faster than O(n)
- One such structure is called a heap

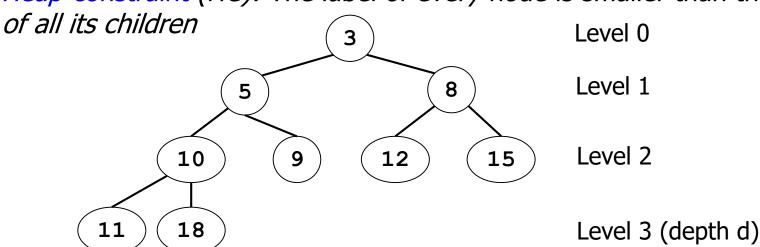
Heaps

Definition

A heap is a labeled binary tree of depth d for which the following constraints holds

- Nodes are labeled with integers (the priorities)
- Form-constraint (FC): The tree is complete except the pre-last level
 - I.e.: Every node at level I<d-1 has exactly two children

- Heap-constraint (HC): The label of every node is smaller than that



Properties

Order

A heap is "a little" sorted: We know the smallest element (root)

11

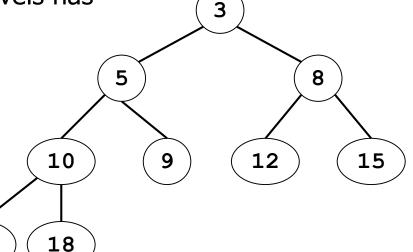
- We know the order for some pairs of elements (parent-successors),
 but for many pairs we don't know which is bigger
 - E.g. nodes at the same level

Size

 A complete binary tree with d levels has 2^{d+1}-1 nodes

 A heap with d levels thus has between 2^d-1 and 2^{d+1}-1 nodes

 A heap with n nodes has ceil(log(n+1))-1∈O(log(n)) levels

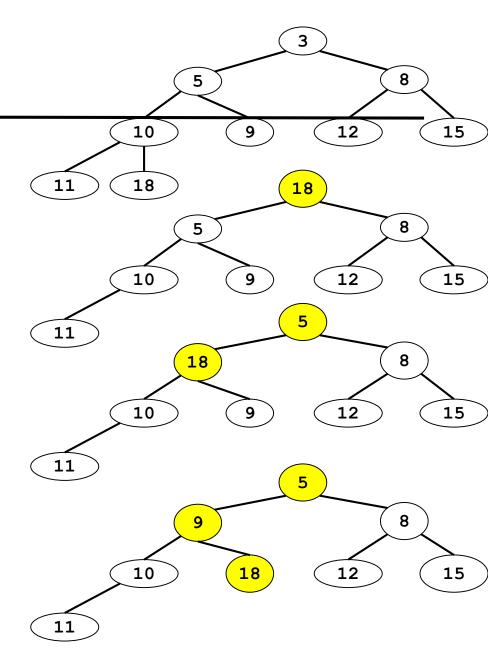


Operations

- Assume we store our PQ as a heap
- Clearly, getMin() is possible in O(1)
 - Keep a pointer to the root
- But ...
 - How can we cheaply perform deleteMin() such that the new structure again is a heap?
 - How can we cheaply add an element to a heap such that the new structure again is a heap?
 - How can we cheaply create a heap from a given list?

DeleteMin()

- We first remove the root
 - Creates two heaps
 - We must connect them again
- We take the "last" node, place it in root, and "sift" it down the tree
 - Last node: right-most in the last level (actually, we can take any from the last level)
 - Sifting down: Exchange with smaller of both children as long as at least one child is smaller than the node itself



Analysis - Correctness

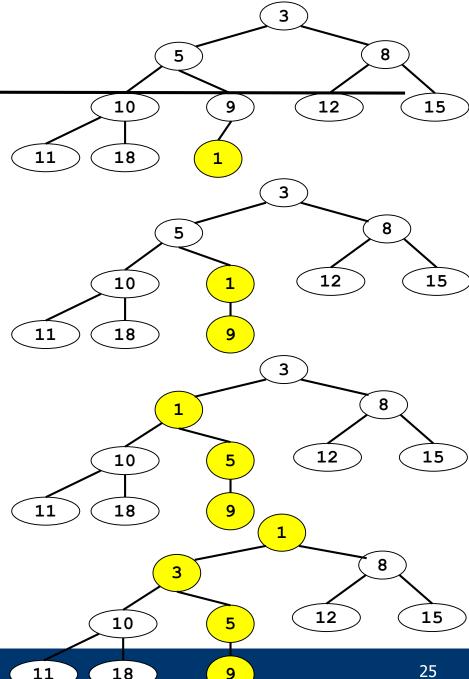
- We need to show that FC and HC still hold
- HC: Look at the tree after we choose new root k. k may
 - ... be smaller than its children. Then HC holds and we are done
 - ... be larger than at least one child k2. Assume that k2 is the smaller of the two children (k1, k2) of k. We next swap k and k2.
 The new parent (k2) now is smaller than its children (k1, k), so the HC holds
 - After the last swap, k has no children HC holds and we are done
- FC: We remove one node, then we sift down
 - Removing last node doesn't affect FC as we remove in the last level
 - Sifting does not change the topology of the tree (we only swap)

Analysis - Complexity

- Recall that a heap with n nodes has O(log(n)) levels
- During sifting, we perform at most one comparison and one swap in every level
- Thus: WC is in O(log(n))

Add() on a Heap

- Cannot simply add on top
- Idea: We add new element somewhere in last level and sift up
 - We might need a new level
 - Sifting up: Compare to parent and swap if parent is larger



Analysis

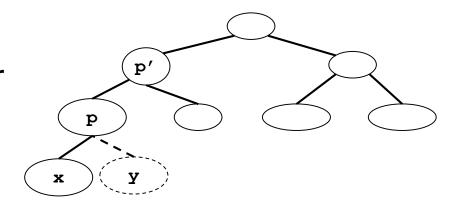
- Correctness
 - HC
 - If parent has only one child, HC holds after each swap
 - Assume a parent k has children k1 and k2, k2 was swapped there in the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1.
 We swap k2 and k, and thus the new parent is smaller than its children. On the other hand, if k2≥k, HC holds immediately (and we don't swap).
 - FC: See deleteMin()
- Complexity: O(log(n))
 - See deleteMin()

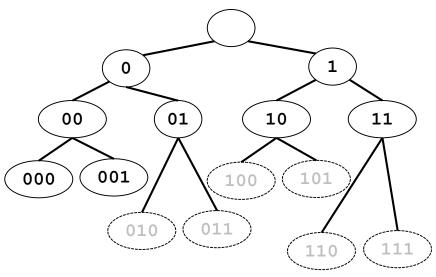
How to Find the Next Free / Last Occupied Node

- What do we need to find?
 - For deletemin, we use the right-most leaf on the last level
 - For add, we add the leaf right from the last leaf (or new level)
 - Note: We actually need the parent node k
- How to get there?
 - We can compute in O(1) the index c(x) of the last leaf x in the last level: $c = n 2^{(floor(log(n)))}$
 - Or log(n+1) for add
 - Fast trick for accessing the parent node p of x: Perform tree traversal from root using the binary representation of p as guide

Illustration

- For deleteMin, we need x; for add, we need y
 - c(x)=0, p(y)=1
 - Binary: 000, 001
 - Bitstring length is depth d of tree
- Go through bitstring from leftto-right and through tree from top to bottom
 - Next bit=0: Go left
 - Next bit=1: Go right
- Allows finding x/p in O(log(n))





Creating a Heap

- We start with an unsorted list with n elements
- Naïve: Start with empty heap and perform n additions
 - Obviously O(n*log(n))
- Better: Bottom-Up-Sift-Down
 - Build a "naïve" tree fulfilling the FC (but not HC)
 - Simple fill a tree level-by-level this is in O(n)
 - Sift-down all nodes on the second-last level
 - Sift-down all nodes on the third-last level
 - **—** ...
 - Sift down root

Analysis

Correctness

- After finishing one level, all subtrees starting in this level are heaps because sifting-down ensures FC and HC (see deleteMin())
- Thus, when we are done with the first level (root), we have a heap

Analysis

- We look at the cost per level h (h∈ $\{0, ..., d-1\}$)
- At every level h≠d, there are 2^h nodes
 - For nodes at level d, we don't do anything
- For every node at level h, we need at most d-h swaps

- This yields
$$T(n) = \sum_{h=0}^{d-1} 2^h * (d-h) = \sum_{h=0}^{d-1} h * 2^{d-h} = 2^d * \sum_{h=0}^{d-1} \frac{h}{2^h} \le n * \sum_{h=0}^{\infty} \frac{h}{2^h} = n * 2 \in O(n)$$

Analysis ??? NEU

Correctness

- After finishing one level, all subtrees starting in this level are heaps because sifting-down ensures FC and HC (see deleteMin())
- Thus, when we are done with the first level (root), we have a heap

Analysis

- We look at the cost per level h (h∈ $\{0, ..., d-1\}$)
- At every level h≠d, there are 2^h nodes
 - For nodes at level d, we don't do anything
- For every node at level h, we need at most d-h swaps

- This y
$$T(n) = \sum_{h=0}^{d-1} 2^h * (d-h) = \sum_{h=0}^{d-1} (h+1) * 2^{(d-h-1)} = 2^d * \sum_{h=1}^{d} \frac{h}{2^h} \le n * \sum_{h=0}^{\infty} \frac{h}{2^h} = n * 2 \in O(n)$$

Summary

	Linked list	Sorted linked list	Неар
getMin()	O(n)	O(1)	O(1)
deleteMin() (after getMin())	O(1)	O(1)	O(log(n))
add()	O(1)	O(n)	O(log(n))
merge()	O(1)	$O(n_1 + n_2)$	$O(\log(n_1)*\log(n_2))$
create()	O(n)	O(n*log(n))	O(n)
Space	O(n) add. pointer	O(n) add. pointer	Q(n) add. pointer

Heaps can be kept efficiently in an array – no extra space, but limit to heap size

Side Note: Heap Sort

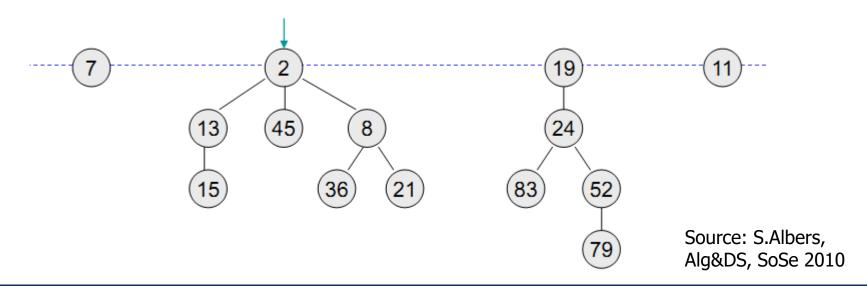
- Heaps also are a suitable data structure for sorting
- Heap-Sort (a classical sorting algorithm)
 - Given an unsorted list, first turn it into a heap (O(n))
 - Repeat
 - Take the smallest element and store in array in O(1)
 - Remove smallest element in O(log(n)) (deleteMin())
 - Until heap is empty after n iterations
- This runs in O(n*log(n))
- Can be implemented in-place when heap is stored in array
 - See [OW93] for details
- Note: Empirically, heap-sort is slower than quick-sort

Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps

Fibonacci-Heaps (very rough sketch)

- A Fibonacci Heap (FH) is a forest of (non-binary) heaps with disjoint values
 - All roots are maintained in a double-linked list
 - Special pointer (min) to the smallest root
 - Accessing this value (getMin()) obviously is O(1)



Maintainance of a FH

- FHs are maintained in a lazy fashion
 - add (v): We create a new heap with a single element node with value v. Add this heap to the list of heaps; adapt min-pointer, if v is smaller than previous min
 - Clearly O(1)
 - merge(): Simply link the two root-lists and determine new min (as min of two mins)
 - Clearly O(1)
- Deleting an element (deleteMin()) needs more work
 - Until now, we just added single-element heaps
 - Thus, our structure after n add() is an unsorted list of n elements
 - Finding the next min element after deleteMin() in a naïve manner would require O(n)

deleteMin() on FH

Method

- We first remove the min element
- We then go through the root-list and merge pairs of heaps with the same rank (=# of children) until all heaps have different ranks
- Merging two heaps in O(1): (1) Find the heap with the smaller root value; (2) Add it as child to the root of the other heap
- But analysis is fairly complicated
 - The above method is O(n) in worst case
 - But after every clean-up, the root-list is much smaller than before
 - Subsequent clean-ups need much less time
 - Amortized analysis shows: Average-case complexity is O(log(n))
 - Analysis depends on the growth of the trees during merge these grow as the Fibonacci numbers

Disadvantage

- Though faster on average, Fibonacci Heaps have unpredictable delays
- No log(n) upper bound for every operation
- Not suitable for real-time applications etc.

Summary

	Linked list	Sorted linked list	Неар	Fibonacci Heap
getMin()	O(n)	O(1)	O(1)	O(1)
deleteMin()	O(1)	O(n)	O(log(n))	O(log(n))*
add()	O(1)	O(n)	O(log(n))	O(1)
merge()	O(1)	$O(n_1+n_2)$	O(log(n))	O(1)
create()	O(n)	O(n*log(n))	O(n)	O(n)

*: Amortized analysis

Exemplary Questions

- The PQ we described is a MinHeap. Describe insert and getMin() operations for a maxHeap, wheren a parent node must always be larger than ist children.
- Describe an algorithm for searching an arbitrary key in a MinHeap. Analyze the WC complexity. Also analyze the AC, assuming that the key being searching is contained in the PQ.
 - Searching keys is, for instance, necessary to change priorities
- What is the complexity of searching thr k-smallest element in a MinHeap?
- Describe an algorithm that merges two minHeaps in O(log(n₁)*log(n₂)), where n₁, n₂ are the sizes of the original heaps.