
Algorithms and Data Structures

Ulf Leser

Implementing Lists

Ulf Leser: Algorithms and Data Structures 2

Content of this Lecture

• ADT List
• Using an Array
• Using a Linked List
• Using a Double-linked List
• Iterators

Ulf Leser: Algorithms and Data Structures 3

Lists

• Very often, we want to manage a list of „things“
– A list of customer names that have an account on a web site
– A list of windows that are visible on the current screen
– A list of IDs of students enrolled in a course

• Lists are fundamental: There are objects and lists of objects
– And lists of lists of objects – which are lists of objects (of type list)

• Lists are ordered (1st, 2nd, … element), but without any
defined order (lexicographic , numerical, …)
– Lists have a 1st element, but without any specific property
– Operations must allow maintenance of this order

• For instance to keep a sort-order: Sorted lists
– I.e., the list doesn’t change the order by itself

Ulf Leser: Algorithms and Data Structures 4

List Operations

• Typical operations on (ordered) lists
– insert(L,t,p): Add element t at pos p of L

• If p=|L|+1, append t to L
• If p<1 or p>|L|+1, return error

– delete(L,p): Delete element at position p of list L
• With p>0 and p<|L|+1; otherwise error

– search(L,t): Return first pos of t in L if t∈L; return 0 otherwise
• “First pos” – values might appear more than once

– elementAt(L,p): Return element at position p of L
• With p>0 and p<|L|+1; otherwise error

• The order of current elements in the list is not changed by
any of these operations (but the positions are)

Ulf Leser: Algorithms and Data Structures 5

Question

• How can we implement this ADT?

– Array
– Linked list
– Double-linked list
– Skip list
– Binary trees
– Red-black trees, AVL trees
– …

type list(T)
import
operators
isEmpty: list → bool;
insert: list x integer x T → list;
delete: list x int → list;
search: list x T → integer;
elementAt: list x integer → T;
length: list → integer;

Ulf Leser: Algorithms and Data Structures 6

Implementing Lists

• How can we implement this ADT?

• We discuss three options
– Arrays
– Linked-Lists
– Double-Linked lists

• We assume values of constant size
– No strings

type list(T)
import
operators
isEmpty: list → bool;
insert: list x integer x T → list;
delete: list x int → list;
search: list x T → integer;
elementAt: list x integer → T;
length: list → integer;

Ulf Leser: Algorithms and Data Structures 7

Just a Start

• Of course, there are many more issues
– If the list gets too large to fit into main memory

– If the list contains complex objects and should be searchable by
different attributes (first name, last name, age, …)

– If the list is stored on different computers, but should be accessible
through a single interface

– If multiple users can access and modify the list concurrently

– If the list contains lists as elements (nested lists)

– …

Ulf Leser: Algorithms and Data Structures 8

Just a Start

• Of course, there are many more issues
– If the list gets too large to fit into main memory

• See databases, caching, operating systems
– If the list contains complex objects and should be searchable by

different attributes (first name, last name, age, …)
• See databases; multidimensional index structures

– If the list is stored on different computers, but should be accessible
through a single interface

• See distributed algorithms, cloud-computing, peer-2-peer
– If different users can access and modify the list concurrently

• See databases; transactions; parallel/multi-threaded programming
– If the list contains lists as elements (nested lists)

• See trees and graphs
– …

Ulf Leser: Algorithms and Data Structures 9

Content of this Lecture

• ADT List
• Using an Array
• Using a Linked List
• Using a Double-linked List
• Iterators

Ulf Leser: Algorithms and Data Structures 10

Lists based on Arrays

• Probably the simplest method
– Fix a maximal number of elements max_length
– Access elements by their offset within the array
– Array must be dense – no “holes”
– We need to maintain the actual size

of the list – which positions are valid?
– We may insert only within this size

• Or immediately right of size
– We may delete only within size

class list {
size: integer;
a: array[1..max_length]

func void init() {
size := 0;

}
func bool isEmpty() {
if (size=0)
return true;

else
return false;

end if;
}

}

Ulf Leser: Algorithms and Data Structures 11

Insert, Delete, Search (Array of reals)

• Complexity (worst-case)?
– Insert: O(n)
– Delete: O(n)
– Search: O(n)
– elementAt: O(1)

func void insert (t real, p integer) {
if size = max_length then
return ERROR;

end if;
if p!=size+1 then
if (size<p) or (p<1) then
return ERROR;

end if;
for i := size downto p do
A[i+1] := A[i];

end for;
end if;
A[p] := t;
size := size + 1;

}

func void delete(p integer) {
if (size<p) or (p<1) then
return ERROR;

end if;
for i := p .. size-1 do
A[i] := A[i+1];

end for;
size := size - 1;

}

func int search(t real) {
for i := 1 .. size do
if A[i]=t then
return i;

end if;
end for;
return 0;

}

Problem!

func int elementAt(p int) {
if p<1 or p>size then
return ERROR;

else
return A[p];

end if;
}

Ulf Leser: Algorithms and Data Structures 12

Properties

• We can access position p in constant time, but need to
move O(n) elements to insert/delete an element
– If all positions occur with the same probability, we expect n/2

operations on average (still O(n))
• In stacks or queues, insert/delete positions do not have the same

probabilities (leading to different complexities)
– Unbalanced: Inserting at the end of an array costs O(1), inserting

at the start costs O(n) operations
• Disadvantages

– If max_length too small, we run into errors
– If max_length too large, we waste space

• Help: Dynamic arrays
– See later

Ulf Leser: Algorithms and Data Structures 13

Arrays of Strings

• We assumed that every element of the list requires
constant space
– Elements are stored one-after-the-other in main memory
– Element at position p can be access directly by computing the

address of the memory cell
• What happens for other data types, e.g. strings?

Ulf Leser: Algorithms and Data Structures 14

Arrays of Strings

• We assumed that every element of the list requires
constant space
– Elements are one-after-the-other in main memory
– Element at position p can be access directly by computing the

address of the memory cell
• What happens for other data types, e.g. strings?

– Each string actually is a list itself
• Implemented in whatever way

(arrays, linked lists, …)
– Thus, we are building a list of lists
– Array A holds pointer to strings
– Pointers require constant space

Ulf Leser: Algorithms and Data Structures 15

Summary

Array Linked list Double-linked l.
insert at p O(n)
delete at p O(n)
search O(n)
add O(1)
elementAt O(1)
Space Static, upfront

Ulf Leser: Algorithms and Data Structures 16

Content of this Lecture

• ADT List
• Using an Array
• Using a Linked List
• Using a Double-linked List
• Iterators

Ulf Leser: Algorithms and Data Structures 17

Linked Lists (here: of real values)

• The static space allocation is a severe problem of arrays
• Alternative: Linked lists

– Every list element is a tuple (value, next)
– value is the value of the element
– next is a pointer to the next

element in the list
– Special pointer to first element: first

• Disadvantage: O(n) additional
space for all the pointers
– Space complexity still O(n), but

practically there is a factor of ~2
• Certain properties make slightly

different operations attractive

class list {
first: element;

func void init() {
first := null;

}
func bool isEmpty() {

if (first=null)
return true;

else
return false;

end if;
}

}

class element {
value: real;
next: element;

}

Ulf Leser: Algorithms and Data Structures 18

Caveat

• In an ideal world, we would implement exactly the same
operations (i.e., the ADT) as with arrays

• But: We will see that this may lead to inefficient algorithms
• We will, however, find very similar operations allowing for

efficient implementations with linked lists
• Not unusual – ADTs determine implementations, but

implementations also favor ADTs
– Designing an ADT is not advisable without considering its

“implement’ability”

Ulf Leser: Algorithms and Data Structures 19

Search

• Return the first element with value=t, or null if no such
element exists
– Note: Here we return the element, not the position of the element
– Makes sense: Returned ptr necessary e.g. to change value in O(1)

func element search(t real) {
e := first;
if e.value = t then
return e;

end if;
while (e.next != null) do
e := e.next;
if (e.value = t) then
return e;

end if;
end while;
return null;

}

first

first

But …

Ulf Leser: Algorithms and Data Structures 20

Search

• Return the first element with value=t, or null if no such
element exists

func element search(t real) {
if first=null then
return null;

end if;
e := first;
if e.value = t then
return e;

end if;
while (e.next != null) do
e := e.next;
if (e.value = t) then
return e;

end if;
end while;
return null;

}

first

first

first=null

Ulf Leser: Algorithms and Data Structures 22

Insert

func void insert (t real, p integer) {
new := new element (t, null);
e := first;
if e=null then
if p≠1 then
return ERROR;

else
first := new;
return;

end if;
end if;
for i := 1 .. p-1 do
if (e.next=null) then
return ERROR;

else
e := e.next;

end if;
end for;
new.next := e.next;
e.next := new;

}

first

p=3

first

t

• insert(t, p) – insert after p-1’th position

Ulf Leser: Algorithms and Data Structures 23

InsertAfter

• In linked lists, a slightly different operation also makes
sense: We insert after element e, not at position p
– E.g., we search an element e and want to

insert a new element right after e
• No difference in complexity for arrays,

but large difference for linked lists

func void insertAfter (t real, e element) {
new := new element (t, null);
new.next := e.next;
e.next := new;

}

first

t

e

Ulf Leser: Algorithms and Data Structures 24

Caution

• We did not check if e actually is an element of L; if not,
we actually didn’t change the list at all

first

e

first

e

t

Ulf Leser: Algorithms and Data Structures 25

Delete

func void delete(t real, p integer) {
e := first;
if (e=null) or (p<1) then
return ERROR;

end if;
for i := 1 .. p-1 do
if (e.next=null) then
return ERROR;

else
e := e.next;

end if;
end for;
? PROBLEM ?

}

• Delete the p’th element of the list

first

p=2 e

Ulf Leser: Algorithms and Data Structures 26

Delete – Bug-free?

func void delete(t real, p integer) {
e := first;
if (e=null) or (p<1) then
return ERROR;

end if;
for i := 1 .. p-1 do
last := e;
if (e.next=null) then
return ERROR;

else
e := e.next;

end if;
end for;
last.next := e.next;

}

• Delete the p’th element of the list

• What if p=1?

first

p=2 e

Ulf Leser: Algorithms and Data Structures 27

Delete – Bug-free

func void delete(t real, p integer) {
e := first;
if (e=null) or (p<1) then
return ERROR;

end if;
if p=1 then
first := e.next;
return;

end if;
for i := 1 .. p-1 do
last := e;
if (e.next=null) then
return ERROR;

else
e := e.next;

end if;
end for;
last.next := e.next;

}

• Delete the p’th element of the list

first

p=2

Ulf Leser: Algorithms and Data Structures 28

Delete – faster?

func void delete(t real, p integer) {
e := first;
if (e=null) or (p<1) or (p>size) then
return ERROR;

end if;
if p=1 then
first := e.next;
return;

end if;
for i := 1 .. p-1 do
last := e;
e := e.next;

end for;
last.next := e.next;

}

• Delete the p’th element of the list

first

p=2 e

Stop: We neither
defined nor

maintain a list size

Ulf Leser: Algorithms and Data Structures 29

DeleteThis

• In linked lists, a slightly different operation sometimes
makes more sense: Delete element e, not at position p
– Again: We search an element e and then

want to delete exactly e
• Big problem

– If we have e, we cannot directly access the
predecessor s of e (the s with s.next=e)

– We need to go through the entire list
to find t (again)

– Thus, deleteThis has the same complexity as
delete

– Remedy not so easy: If a client found e, it
doesn’t want to (or can) keep predecessor of e

first

e

Ulf Leser: Algorithms and Data Structures 30

Two More Issues

• Show me the list

• What happens to deleted elements e?
– In most languages, the space occupied by e remains blocked
– These languages offer an explicit “dispose” which you should use
– Java: “Dangling” space is freed automatically by garbage collector

• After some (rather unpredictable) time

func String print() {
if (first=null) then
return “”;

end if;
tmp := “”;
while (e≠null) do
tmp := tmp+e.value;
e := e.next;

end for;
return tmp;

}

Ulf Leser: Algorithms and Data Structures 31

Summary

Array Linked list Double-linked l.
Insert at p O(n) O(n)
InsertAfter e O(n) O(1)
Delete at p O(n) O(n)
DeleteThis e O(n) O(n)
Search O(n) O(n)
Add O(1) O(1)
elementAt O(1) O(n)
Space Static n+1 add. pointers

How?

Ulf Leser: Algorithms and Data Structures 32

Linked lists as Queues and Stacks

• With O(1) insertion at list head and O(1) elementAt (1),
linked lists are perfect means for implementing a stack

• But not for queues: Accessing the last element is O(n)

Ulf Leser: Algorithms and Data Structures 33

Double-Linked List

• Two modifications
– Every element holds pointers to next and to previous element
– List holds pointer to first and to last element

• Advantages
– deleteThis can be implemented in O(1)
– Concatenation of lists can be implemented in O(1)

• In a linked list, we have to find the last element of the first list: O(n)
• Compromise: Linked list with additional pointer to last element

– Addition/removal of last element can be implemented in O(1)
• Important for queues

• Disadvantages
– Requires more space
– Slightly more complicated operations

Ulf Leser: Algorithms and Data Structures 34

Summary

Array Linked list Double-linked l.
Insert at p O(n) O(n) O(n)
InsertAfter e O(n) O(1) O(1)
Delete at p O(n) O(n) O(n)
DeleteThis e O(n) O(n) O(1)
Search O(n) O(n) O(n)
Add to start of list O(n) O(1) O(1)
Add to end of list O(1) O(n) O(1)
elementAt O(1) O(n) O(n)
concatenate O(n) O(n) O(1)
Space Static n+1 add. pointers 2n+2 add. point.

Both first have to search
– critical operation

Very important
advantage

Ulf Leser: Algorithms and Data Structures 35

Outlook

• Can we do any better in search?
– Many lists are searched much more often than modified
– Queues / stacks are never “searched” and very often modified

• Yes – if we sort the list on the searchable value
• Yes – if we know which elements are searched most often

Ulf Leser: Algorithms and Data Structures 36

Content of this Lecture

• ADT List
• Using an Array
• Using a Linked List
• Using a Double-linked List
• Iterators

Ulf Leser: Algorithms and Data Structures 37

Example

Meier Berlin
Müller Hamburg
Meyer Dresden
Michel Hamburg
Schmid Berlin
Schmitt Hamburg
Schmidt Wanne-Eikel
Schmied Hamburg

Berlin 2
Hamburg 4
Dresden 1
Wanne-Eikel 1

• Assume we have a list of customers with home addresses
• We want to know how many customers we have per city

– This is a “group-by” in database terms

Ulf Leser: Algorithms and Data Structures 38

Using a List

func void group_by(customers list;
g groups) {

if customers.isEmpty() then
return;

end if;
c : customer;
for i:= 1 .. customers.size do
c := customers.elementAt(i);
g.increment(c.city);

end for;
}

class group {
count: integer;
city: string;

}

class groups
import group
…
increment: …

class customer{
name: string;
city: string;

}

• Assume we have a data type groups which maintains a list
of city and offers an operation increment(city)

Ulf Leser: Algorithms and Data Structures 39

Complexity?

• We run once through costumers: O(n)
• Complexity of elementAt depends on list implementation
• For linked lists, this gives O(n2) in total

– Only O(n) for arrays, but these had other problems
• Not satisfactory: We are doing unnecessary work

– We only need to follow pointers – but driven by the client
– One useful access pattern: Access all elements one after the other
– But our data type “list” has no state, i.e., no “current” position
– Without in-list state, the state (variable i) must be managed

outside the list, and the list must be put to the right state again for
every operation (elementAt)

– Solution: Stateful lists

Ulf Leser: Algorithms and Data Structures 40

Stateful Lists

type slist(T)
import
operators
isEmpty: slist → bool;
setState: slist x integer → slist;
insertHere: slist x T → slist;
deleteHere: slist x T → slist;
getNext: slist → T;
search: slist x T → integer;
size: slist → integer;

• Impl: List holds an internal
pointer p_current
– This is the state

• p_current can be set to
position p using setState()

• insertHere inserts after
p_current, deleteHere
deletes p_current

• getNext() returns element
at position p_current and
increments p_current by 1

Ulf Leser: Algorithms and Data Structures 41

Using Stateful Lists

• Advantage: getNext() can be implemented in O(1)
– Using linked lists or arrays

• Iterating over list is O(n) also for linked lists

func void group_by(customers stateful_list;
g groups) {

if customers.isEmpty() then
return;

end if;
c : customer;
customers.setState(1);
for i:= 1 .. customers.size-1 do
c := customers.getNext();
groups.increment(c.city);

end for;
print groups;

}

Ulf Leser: Algorithms and Data Structures 42

Iterators

• slist only manages one state per list
• What if multiple clients want to read the list concurrently?

– Every client needs its own pointer
– These pointers cannot be managed easily in the (one and only) list

itself
• Iterators

– An iterator is an object created by a list which holds list state
• One p_current per iterator

– Multiple iterators can operate independently on the same list
– Implementation of iterator depends on implementation of list, but

can be kept secret from the client
– Iterators know about list states (more exposure), but clients don’t

Ulf Leser: Algorithms and Data Structures 43

Using an Iterator

func void group_by(customers stateful_list
g groups) {

if customers.isEmpty() then
return;

end if;
c : customer;
it := customers.getIterator();
while it.hasNext() do
c := it.getNext();
groups.increment(c.city);

end while;
print groups;

}

class iterator_for_linked_list (T) {
p_current: T;

func iterator init(l list) {
p_current := l.getFirst();

}

func bool hasNext() {
return (p_current ≠ null);

}

func T getNext() {
if p_current = null then
return ERROR;

end if;
tmp := p_current;
p_current := p_current.next;
return tmp;

}
}

Ulf Leser: Algorithms and Data Structures 44

New problems

• Iterators store information about internals of a list
– Pointer to a “current” element

• Iterators are used when multiple clients read a list
• But what if multiple clients manipulate a list?

– Other client might delete element that is “current” in some iterator
– Error

• We need a synchronized list
– Considerable overhead
– Makes list operations slower – do you need this?
– Watch out for concrete implementation of the lists you use

Ulf Leser: Algorithms and Data Structures 45

Take Home Message

• Arrays are efficient for accessing elements by position
• LinkedLists are efficient data structures for stacks
• DoubleLinkedLists are efficient data structures for queues
• None of the three allow searching in less than O(n)

Ulf Leser: Algorithms and Data Structures 46

Exemplary Questions

• Give pseudo-code for an efficient implementation to delete
all elements with a given value v in a (a) linked list, (b)
double-linked list

• What is the complexity of searching in an array (a) value at
given position p; (b) value at the end of the list; (c) all
positions with a given value

• A skip list is a linked list where every element also holds a
pointer to the 1st, 2nd, 4th, 8th, … log(n)th successor
element. (a) Analyze the space complexity of a skip list.
What is the complexity of (b) accessing the ith element and
of (c) accessing the first element with value v?

	Foliennummer 1
	Content of this Lecture
	Lists
	List Operations
	Question
	Implementing Lists
	Just a Start
	Just a Start
	Content of this Lecture
	Lists based on Arrays
	Insert, Delete, Search (Array of reals)
	Properties
	Arrays of Strings
	Arrays of Strings
	Summary
	Content of this Lecture
	Linked Lists (here: of real values)
	Caveat
	Search
	Search
	Insert
	InsertAfter
	Caution
	Delete
	Delete – Bug-free?
	Delete – Bug-free
	Delete – faster?
	DeleteThis
	Two More Issues
	Summary
	Linked lists as Queues and Stacks
	Double-Linked List
	Summary
	Outlook
	Content of this Lecture
	Example	
	Using a List
	Complexity?
	Stateful Lists
	Using Stateful Lists
	Iterators
	Using an Iterator
	New problems
	Take Home Message
	Exemplary Questions

