

Algorithms and Data Structures

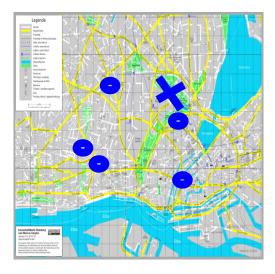
(Abstract) Data Types

- Example
- Abstract Data Types
- Two important Examples: Stacks and Queues

- Suppose you are in the centre of Hamburg and are looking for the next (i.e., closest) laptop repair shop
- Fortunately, your mobile knows your position and has a list of laptop repair shops in Hamburg
- How does your mobile find the closest shop?

- Suppose a city with n boxes located at arbitrary positions
- You wake up in the middle of the city with a letter in your hand; the letter should be thrown in the closest post box
- How do you find the closest post box?
 - You have a list with locations of all post boxes
- Looking at a map is not the answer
- Devise an algorithm

```
S: set_of_coordinates;
c: coordinate (x,y)
```



```
Input
S: set_of_coordinates;
c: coordinate (x,y); # your loc
t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c`∈S do
if m > distance(c,c`) then
m := distance(c,c`);
t := c`;
end if;
end for;
return t;
```

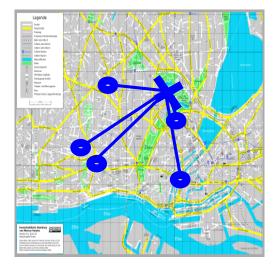
• How much work?

```
Input
```

```
S: set_of_coordinates;
c: coordinate (x,y); # your loc
t: coordinate; # closest box
m: real := MAXREAL; # smal. dist
for each c`∈S do
if m > distance(c,c`) then
m := distance(c,c`);
t := c`;
end if;
end for;
return t;
```

- Clearly, we can save the second call to "distance"
- Thus, we need to compute [S] distances, make |S| comparisons, and perform at most 2*|S| assignments
- Together: We perform O(|S|) operations, which are either in O(1) or distance computations

Simple Solution



- We compute |S| distances ...
- Euclidian distance
 - In 2D: 6 arithmetic ops

$$dist((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

- We compute |S| distances
- Manhattan distance
 - 5 basic operations

 $dist((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$

. . .

Complexity

- We compute |S| distances
- Both cases: O(|S|*dim(S))

. . .

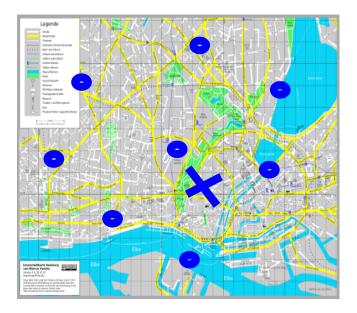
- dim(S): Number of dimensions of points in S
- If dim(S)=k and considered a constant: O(|S|)

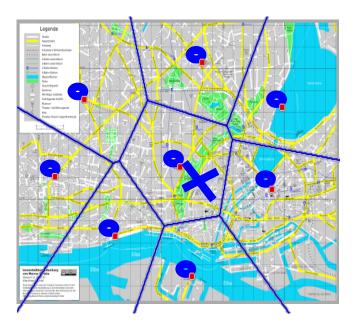
```
input
```

```
S: set_of_coordinates;
c: coordinate (x,y);
t: coordinate;
m: real := MAXREAL;
For each c`∈S do
    if m > dist(c,c`) then
       m := dist(c,c`);
       t := c`;
    end if;
end for;
return t;
```

- Data structures
 - We need a set S of 2D-coordinates
 - For NN-search, the algorithm must iterate over the elements of this set in any order
- Now assume we need to perform such searches very often
 - Can we represent S in another way (S'), such that searching requires less work?
 - Note: Time for computing S' from S will be ignored
 - Perform before searching starts
 - Assuming that S does not change

Voronoi Diagrams





- Pre-processing: Compute for every point s∈S its Voronoi area, i.e., the area in which all points have s as nearest point from S
 - Can be achieved in O(|S|*log(|S|)) time (no details here)
- Nearest-neighbor search using Voronoi diagrams is O(log(|S|))
- Conclusion: Finding a proper data structure does pay off

- A data structure is a computational representation of elementary objects
 - An array, a linked list, a matrix, a tree, a graph,
- A combination of data structure and operations on this structure is called a data type
 - "Operations": Application programming interface (API)
 - If we ignore implementation: Abstract data type
 - Also called signature
 - No complexity analysis, but correctness proofs
 - With concrete implementation: Physical data type
 - Software libraries
- ADT: Like a class in Java, i.e. variables and interface

Searching Shops

- We want a piece of software T that ...
- T must store data
 - Set of coordinates (data structure)
- T must support (at least) two operations
 - T.init (S: set_of_coordinates)
 - T.nearestNeighbor(c: coordinate): coordinate
 - T apparently uses another data structure: "coordinate"
- T could have many more operations
 - T.insert(c: coordinate)
 - T.delete(c: coordinate)
 - T.print()

— ...

- Example
- Abstract Data Types
- Two important Examples: Stacks and Queues

- An ADT defines a set of operations over a set of objects of a certain (more basic) type
 - Or over multiple sets of objects of different or same types
- An ADT is independent of an implementation
 - Different physical means to represent the objects
 - Different algorithms to implement the operations
- Typical requirement: Encapsulation
 - Objects are accessed only through the operations

Example ADT

type points				
import				
<pre>coordinate;</pre>				
operators				
add:	points	х	coordinate \rightarrow points;	
n_neighbor:	points	x	coordinate \rightarrow coordinate;	

- ADT that we could use for our app for searching shops
- Defines two operations
 - A way to insert shops (with their coordinates)
 - A way to get the nearest shop with respect to a given coordinate
- Assumes a data type "coordinate" to be given
 - We always assume basic data types to be given: Int, real, string,...
- Not the only way

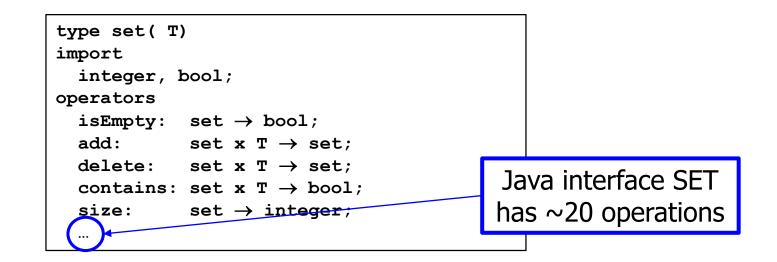
	type shops
type shop	import
import	shop;
coordinate;	operators
operators	add: shops x shop \rightarrow shops;
getName: shop \rightarrow string;	n_neighborC: shops x coordinate \rightarrow coordinate;
getCoor: shop \rightarrow coordinate;	n_neighborN: shops x coordinate \rightarrow string;
	n_neighborS: shops x coordinate \rightarrow shop;

- An ADT defines what is necessary and convenient
- Specifying an ADT is a design process
 - Shop owner? Laptop models being repaired? Opening hours?
 - Depends on requirements, ease-of-use, extensibility, personal preferences, existing ADTs, ...
 - See lectures on Software Engineering

- For implementing shops, it would be helpful to reuse something that can manage a set of objects
- We need a set an ADT in itself
 - A parameterized ADT- a set of elements of arbitrary type T
 - For our ADT points, T will manage objects of type coordinate

type set((T) A data type – not a import integer, bool; variable operators is Empty: set \rightarrow bool; add: set $x T \rightarrow set$; delete: set $x T \rightarrow set;$ contains: set $x T \rightarrow bool;$ size: set \rightarrow integer;

- For implementing shops, it would be helpful to reuse something that can manage a set of objects
- We need a set an ADT in itself
 - A parameterized ADT- a set of elements of arbitrary type T
 - For our ADT points, T will manage objects of type coordinate



Axioms: What we know about an ADT

- We expect operations on sets to have a certain semantic
 - Adding an element increases size by one
 - If a set is empty, its length is 0
- These can be encoded as axioms: Conditions that must always hold
 - Defined as logical formulas
 - Also called invariants

```
type set( T)
import
operators
  isEmpty: set \rightarrow bool;
  add: set x T \rightarrow set;
  contains: set x T \rightarrow bool;
  delete: set x T \rightarrow bool;
  delete: set x T \rightarrow set;
  length: set \rightarrow integer;
axioms: \forall f: set, \forall t: T
  size(add(f,t)) = size(f) + 1;
  size(f)=0 \Leftrightarrow isEmpty(f);
```

Axioms: What we know about an ADT

- We expect operations on sets to have a certain semantic
 - Adding an element increases size by one
 - If a set is empty, its length is 0
- These can be encoded as axioms: Conditions that must always hold
 - Defined as logical formulas
 - Also called invariants
- But stop! Where is the error!

```
type set( T)
import
operators
  isEmpty: set \rightarrow bool;
  add: set x T \rightarrow set;
  contains: set x T \rightarrow bool;
  delete: set x T \rightarrow set;
  length: set \rightarrow integer;
axioms: \forall f: set, \forall t: T
  size(add(f,t)) = size(f) + 1;
  size(f)=0 \Leftrightarrow isEmpty(f);
...
```

Axioms: What we know about an ADT

- We expect operations on sets to have a certain semantic
 - Adding an element increases size by one if not a duplicate
 - If a set is empty, its length is 0
- These can be encoded as axioms: Conditions that must always hold
 - Defined as logical formulas
 - Also called invariants

```
type set( T)
import
operators
  isEmpty: set \rightarrow bool;
  add: set x T \rightarrow set;
  contains: set x T \rightarrow bool;
  delete: set x T \rightarrow set;
  length: set \rightarrow integer;
  axioms: \forall f: set, \forall t: T
  if contains(f,t) then
      ERROR;
  else
      size(add(f,t)) = size(f) + 1;
  size(f)=0 \Leftrightarrow isEmpty(f);
```

Set versus Points

- points can build on a set, but must add further operations
- But there is a problem ... which one?
 - What happens if multiple x have the same distance to c?

Set versus Points

- Data Structures Again
- Abstract Data Types
- Two important examples: Stacks and Queues

- We looked at data types (points, shops) which essentially are sets
 - Canonical operations: add, contains, delete, size, ...
 - And special operation: nearestNeighbor
- A related ADT is list
 - In a list, elements are ordered (arbitrarily yet fixed)
 - Canonical operations: addAt, contains, deleteAt, length, ...
 - Different behavior (axioms)
 - Duplicates are no problem (same object at different positions)
 - No insertion after list end

• ...

- This lecture will be obsessed with lists and sets
- Why?
 - There are things
 - ... and there a lists of things
- In CS, we need lists everywhere
 - Basis of every non-trivial algorithm
 - Investing effort in getting them efficient pays of in many many applications

- Two related ADTs are of exceptional importance in computer science: Stacks and Queues
 - Both support mostly two operations
 - No contains, length, addAt, deleteAt, ...
 - These suffice for surprisingly many problems and applications
 - Both ADTs can be implemented very efficiently
 - More efficiently than sets or lists

- Two operations: Enqueue, dequeue
 - No access to objects of the list except the "head"
- Special semantic: First in, first out (FIFO)
- Apps: Breadth-first traversal, shortest paths, BucketSort, ...

Stacks

OUT

Z

- Operations: push, pop
 - No access to objects of the list except the "top"
- Special semantic: Last in, first out (LIFO)
- Apps: Call stacks, backtracking, "Kellerautomaten", ...

type stack(T) import				
operators				
isEmpty:	stack \rightarrow bool;			
push:	stack x T \rightarrow stack;			
pop:	$stack \rightarrow stack;$			
top:	stack \rightarrow T;			

type queue(T)					
import					
operators					
isEmpty: queue	\rightarrow bool;				
enqueue: queue	x T \rightarrow queue;				
dequeue: queue	\rightarrow queue;				
head: queue	\rightarrow T;				

• Where is the difference?

type a(T) import	
operators	
isEmpty:	$a \rightarrow bool;$
add:	$a \times T \rightarrow a;$
remove:	$a \rightarrow a;$
give:	$a \rightarrow T;$

```
type a(T)

import

operators

isEmpty: a \rightarrow bool;

add: a \ge T \rightarrow a;

remove: a \rightarrow a;

give: a \rightarrow T;
```

- Where is the difference?
- From the signature alone, there is no difference
- Yet we expect a different behavior

```
type stack( T)
import
operators
  isEmpty: stack → bool;
  push: stack x T → stack;
  pop: stack → stack;
  top: stack → T;
axioms ∀ s:stack, ∀ t:T
  top( push( s, t)) = t;
  pop( push( s, t)) = s;
```

```
type queue( T)
import
operators
  isEmpty: queue → bool;
  enqueue: queue x T → queue;
  dequeue: queue → queue;
  head: queue → T;
axioms ∀ q:queue, ∀ t:T
  head( enqueue(q, t)) =
    if isEmpty(q): t
    else head(q);
  dequeue( enqueue(q, t)) =
    if isEmpty(q): q
    else enqueue( dequeue(q), t);
```

- Compared to sets
 - No contains
 - No duplicate checks before insertion
 - Much faster!
 - Typically no size
 - Additional behavior with push/pop
- Compared to lists
 - No contains, no order, no positions
 - Much faster!
 - Typically no size
 - Additional behavior with push/pop

Summary

- We very briefly sneaked into (abstract) data types
 - Formal syntax for specification, semantics of axioms in physical data types, concrete language for axioms, specialization hierarchies, formal correctness proofs, ...
 - See module on "Methoden und Modelle des Systementwurfs"
- An old dream: Provide only precise specification and let all code be generated automatically
 - Provide so many axioms that all relevant behavior is covered
 - Enables formal proofs of correctness
 - Relevant especially for security-relevant domains
 - E.g. embedded systems in cars, airplanes, ...
- Practically: Very time consuming, error prone, and hard to maintain

- Algorithms take an input; input has a type; this type may offer special operations
 - Whose complexity depends on the physical implementation
- We rarely talk about the "data structure" aspect but about implementation of operations
 - Whose complexity also depend on complexity of operations on basic types
- As basic types, we assume Int, real, string
 - With operations add, multiply, compare, ...
 - We assume O(1) for all basic operations

- What is an abstract data type, what is a physical data type?
- What are typical operations of a list? Of a stack?
- Imagine a class storing rectangles in a plane. We want to add and remove rectangles, test if there are any rectangles, and find all rectangles intersection of given one. Define the ADT. What could be possible axioms?