

Algorithms and Data Structures

Asymptotic Time Complexity

Ulf Leser

Mit Beiträgen von Patrick Schäfer

Content of this Lecture

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

Efficiency of Algorithms

- Algorithms have an input and solve a defined problem
- Sort this list of names
- Compute the running 3-month average over this table of 10 years of daily revenues
- Find the shortest path between node X and node Y in this graph with n nodes and m edges
- Research in algorithms focuses on efficiency
- Efficiency: Use as few resources as possible for solving the task
- Resources: CPU cycles, memory cells, (network traffic, disk IO, ...)
- CPU cycles are directly correlated with time
- How can we measure efficiency for different inputs?
- How can we compare the efficiency of two algorithms solving the same problem?

Option 1: Use a Reference Machine

- Empirical evaluation
- Chose a concrete machine (CPU, RAM, BUS, ...)
- Or many different machines
- Chose a set of different input data sets (workloads)
- The more, the better
- Real, synthetic, realistic, ...
- Run algorithm on all inputs and measure time (or space or ...)
- Pro: Gives real runtimes and practical guidance
- Contra
- Will all potential users have this machine?
- Performance dependent on prog language and skills of engineer
- Are the datasets used typical for what we expect in an application?
- Can we extrapolate results beyond the measured data sets?

Option 2: Computational Complexity

- Derive an estimate of the maximal (worst-case) number of operations as a function of the size of the input
- "For an input of size n, the alg. will perform app. n^{3} operations"
- Abstraction: Based on a universal yet realistic machine model
- Advantages
- Analyses the algorithm, not its concrete implementation
- Independent of concrete hardware; future-proof
- Disadvantages
- No real runtimes
- What is an operation? What do we count?
- Requires assumptions on the cost of primitive operations
- Assumes that all machines offer the same set of operations

Next steps

- In this lecture, we focus on computational complexity
- We need to define what we count: Machine model
- We need to define how we estimate: O-notation
- Complexity analysis: Versatile \& elegant yet coarse-grained

Content of this Lecture

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

Our Machine Model: Random Access Machines

- Very simple model: Random Access Machines (RAM)
- Work: What a conventional CPU can execute in 1 cycle
- Addition, comparison, jumps, ...
- Forget multi-core, disks, ALUs, GPUs, FPGA, cache levels, pipelining, hyper-threading, ...
- Note: There are proper machine models for such variations
- Space: Unlimited number of storage cells
- Each cell holds one (possibly infinitely large) value (number)
- Cells are addressed by consecutive integers
- Access (read/write) to each cell in one CPU cycle
- Special treatment of input and output
- One special register (switch) storing results of a comparison

Programs

- Programs
- Consists of atomic operations with 1-3 parameters
- Are stored consecutively in memory cells
- Separate address space - no interference with data
- Each operation one cell
- For simplicity, we assume that parameters take no space
- Address of operations can be used for jumps

```
1. LOADv 1, x; # provide input
2. LOADv 2, y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i = y
6. IFTRUE 10;
7. MULT 3, 3, 1; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t
```


Operations

- Load value into cell, move value from cell to cell
- LOADv 3, 5; Load value " 5 " in cell 3
- LOAD 3, 5; Copy value of cell 5 into cell 3
- Add/subtract/multiply/divide value/cell to/from/by cell and store in cell
- ADDv 3, 5, 6; Add " 6 " to value of cell 5 and store result in cell 3
- ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3
- Compare values of two cells
- CMP 4, 2; If equal, set switch to TRUE, otherwise to FALSE
- Conditional jumps
- IFTRUE 10; Jump to position 10 if switch is true
- Absolute jumps
- GOTO 5; Jump to command at position 5
- Stop
- Ret 6; Returns value of cell 6 as result and stop

Example: x^{y} (for $\mathrm{y}>0$)

```
input
    x,y: integer;
t: integer;
i: integer;
t := x;
for i := 1 ... y-1 do
    t := t * x;
end for;
return t;
```

1. LOADv 1, \mathbf{x}; \# provide input
2. LOADv 2, y ;
3. LOAD 3, 1; \# t := x
4. LOADv 4, $1 ; \quad$ \# i := 1
5. CMP 4, 2;
\# check i $=\mathrm{y}$
4 cells:
1: x
2: y
3: t
4: i
6. IFTRUE 10;
7. MULT 3, 3, 1; \# t := t*x
8. ADDv 4, 4, 1; \# i := i+1
9. GOTO 5;
10.RET 3;
\# return t

Cost Models

- We count the number of operations (time) performed
- And sometimes the number of cells (space) required
- This is called uniform cost model (UCM)
- Every operation costs 1 time unit, every value needs 1 space unit
- Not realistic
- Data access has non-uniform cost (cache lines)
- Not every value can be stored in one cell
- Comparing two real numbers costs more work than two integers
- Alternative: Machine cost (logarithmic cost)
- Consider concrete machine representation of every data element
- Cells hold 1 byte - how many bytes do we need?
- More realistic, yet more complex
- Derives identical time complexity results as UCM for most cases

Counting Operations in the RAM Model with UCM

```
1. LOADv 1, x; # input
2. LOADv 2, Y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i=y
6. IFTRUE 10;
7. MULT 3, 3, 1; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t
```

- If $\mathrm{y}>1$
- Startup (lines 1-4) costs 4
- Loop (line 5) is passed y times
- ($\mathrm{y}-1$)-times costs 5 (lines 5-9)
- 1 -time costs 2 (lines 5-6)
- Return costs 1
- Total costs: $4+(y-1) \cdot 5+3$
- If $y=1$
- Total costs: $7=4+(y-1) \cdot 5+3$

Selection Sort: Uniform versus Machine Cost

```
1. S: array_of_names;
2. n := |S|
3. for i := 1..n-1 do
4. for j := i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11. end for;
```

- With UCM, we showed $f(n) \sim 3 n^{2}+3 n$
- But: Every cell needs to hold a name = string of arbitrary length
- We used a UCM including strings
- Towards machine cost
- Assume max length m for a string S[i]
- Then, line 5 costs m comparisons WC
- Lines 6-8; additional cost for loops for copying char-by-char
- We did not consider super-long strings ($n>22^{64}$), or super-large alphabets (char comp always in 1 cycle?)

Conclusions

- We usually assume RAM with UCM, but will not give the RAM program itself
- Translation from pseudo code is simple and adds only constant costs per operation - which we will (later) ignore anyways
- We assume UCM for primitive data types: numbers, strings
- We will sometimes look at strings in more detail
- More complex data type (lists, sets etc.) will be analyzed in detail
- When analyzing real programs, many more issues arise
- Performance killer in Java: Garbage collection
- Performance trick in Java: Object reuse
- Performance killer in Java: new Vector (1,1);
— $\cdot!$

Content of this Lecture

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

Computational Complexity

- Counting the exact number of operations for an algorithm (wrt. input size) seems overly complicated
- Linear speed-ups are often possible by using newer/more hardware
- Estimations need not be good for all cases - for small inputs, many algorithms are fast anyway
- We don't want long formulas - focus on dominant factors
- Intuitive goal: Analyze the major cost drivers when the input size gets large
- Formal: Asymptotic complexity: analyze number of operations when input size goes to infinity

Examples

Examples

Small Values

Intuitive Observations

- Everything except the term with the highest exponent doesn't matter much once n is large enough
- Therefore, we will ignore all other
- This term can have a factor, but the effect of this factor usually can be outweighed by newer/more machines
- Therefore, we will not consider it
- Assume we have developed a polynomial $f(n)$ capturing the exact cost of an algorithm A for input size n
- Intuitively, the complexity of A is the term in f with the highest exponent after stripping linear factors

Overview

- Assume $f(n)$ gives the number of operations performed by algorithm A in worst case for an input of size n
- We are interested in the essence of f, i.e., the dominating factors when n grows large
- We do this by defining a hierarchy of classes of functions
- For a function g, define the set $O(g)$ as the class of functions that is asymptotically smaller than or equal to g
- If $f \in O(g)$, then f will be asymptotically smaller than or equal to g
- I.e.: for large input sizes, the number of ops counted by f will be smaller than or equal to the one estimated through g
- Asymptotically, g is an upper bound for f
- We want a simple g; simpler than f
- Not necessarily the lowest

Formally: O-Notation

- Definition

Let $g: \mathbb{N}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} . O(g)$ is the class of functions defined as
$O(g)=\left\{f: \mathbb{N}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} \mid \exists c>0, \exists n_{0} \geq 0, \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}$

- Explanation
- $O(g)$ is the class of all functions which compute lower or equal values than g for any sufficiently large n, ignoring linear factors
- $O(g)$ is the class of functions that are asymptotically smaller than or equal g
- If $f \in O(g)$, we say that " f is in $O(g)$ " or " f is $O(g)$ " or " f has complexity $O(g)$ "

Examples

$$
O(g)=\left\{f: \mathbb{N}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} \mid \exists c>0, \exists n_{0} \geq 0, \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\right\}
$$

$$
\begin{aligned}
& \text { 1. } f(n)=3 n^{2}+6 n+7 \text { is } O\left(n^{2}\right) \\
& \text { 2. } f(n)=n^{3}+7000 n-300 \text { is } O\left(n^{3}\right) \\
& \text { 3. } f(n)=4 n^{2}+200 n^{2}-100 \text { is } O\left(n^{2}\right) \\
& \text { 4. } f(n)=\log (n)+300 \text { is } O(\log (n)) \\
& \text { 5. } f(n)=\log (n)+n \text { is } O(n) \\
& \text { 6. } f(n)=n \cdot \log (n) \text { is } O(n \cdot \log (n)) \\
& \text { 7. } f(n)=10 \text { is } O(1)
\end{aligned}
$$

- Proof-Example: First $f(\mathrm{n})$
- We need to show:

$$
f(n) \in O\left(n^{2}\right) \Rightarrow \exists c \exists n_{0}: f(n) \leq c n^{2}
$$

- Choose $c=16$ and $n_{0}=1$
- Now, for $\mathrm{n}>1=\mathrm{n}_{0}$:

$$
\begin{aligned}
& \Rightarrow 3 n^{2}+6 n+7 \\
& \leq 3 n^{2}+6 n^{2}+7 n^{2} \\
& =16 n^{2}=c n^{2}
\end{aligned}
$$

- Would also work for $\mathrm{c}=17,18, \ldots$

8. $f(n)=n^{2}$ is $O\left(n^{3}\right)$ but also $O\left(n^{2}\right)$
or $O\left(n^{4}\right), O\left(n^{2} \log n\right), \ldots$

Common Complexity Classes

- O(1):
- O($\log \mathrm{n}):$
- $\mathrm{O}(\mathrm{n})$:
- $O(\mathrm{n} \log \mathrm{n})$:
- $O\left(n^{2}\right)$:
- $O\left(n^{k}\right)$:
- $\mathrm{O}\left(2^{\mathrm{n}}\right):$
constant
logarithmic
linear
loglinear
quadratic
polynomial
exponential
(Array Access)
(Binary Search)
(Sequential Search)
(MergeSort)
(Selection Sort, BubbleSort, QuickSort)
(Floyd-Warshall)
(Knapsack Problem)

General Result

- Lemma: All constant functions are in O(1)
- All $f(n)=k$ for some constant $k>0$
- Examples:
- $f(n)=10^{6}$ is $O(1)$
- $f(n)=3$ is $O(1)$
- Proof:
- Let $g(n)=1$
- We need to show that $f \in O(g) \Leftrightarrow k \in O(1) \Rightarrow \exists c \exists n_{0}: k \leq c \cdot 1$
- Chose $c=k$ and $n_{0}=0$
- Clearly: $\forall n \geq n_{0}$, we now have $f(n)=k \leq c \cdot g(n)=k \cdot 1$
- Any part of an algorithm whose extend of work is independent of input size n is summarized as O (1)

Computational Complexity and Program Analysis

- Computational complexity not only leads to short formulas
- It also makes program analysis much easier
- We show that computing the complexity of a program p by aggregating the complexities of its individual steps is much simpler then first finding f, i.e., the real cost of p by aggregating the real cost of individual steps
- We need rules to combine the complexity of steps into the complexity of subprograms

Calculating with Complexities

- We want to derive the complexity of a program without calculating its exact cost
- Estimate a tight g without knowing f
- Some observations
- Having many ops with cost 1 yields the same complexity as having only 1
- Lines $5-8$ cost 4 times $1 \in O(1)$
- If we see a polynomial, we can forget terms except the largest
- As we certainly need $O(n)$ for the outer loop (line 3), we can forget the startup which is $O(1)$

Formally: O-Calculus

- Such observations can be cast into a set of rules
- Lemma

Let k be a constant. The following equivalences are true
$-O(k+f)=O(f)$;

- $O(k \cdot f)=O(f)$;
$-O(f)+O(g)=O(\max (f, g))$
$-O(f) \cdot O(g)=O(f \cdot g)$
- Explanations
with "slight misuse of notations":
Let $f_{0} \in O(f)$ and $g_{0} \in O(g)$ then
- $f_{0}+g_{0} \in O(\max (f, g))$
- $f_{0} \cdot g_{0} \in O(f \cdot g)$
- Rule 3 (4) actually implies rule 1 (2), as $k \in O$ (1)
- Rule 3 is used for sequentially executed parts of a program
- Rule 4 is used for nested parts of a program (loops)

Example

- There is a typo in this slide: Somewhere, I typed "und" instead of "and". Where?
- Abstract problem: Given a string T (template) und a pattern P (pattern), find all occurrences of P in T
- Exact substring search
- Algorithm:
- Note: There are more efficient ones
- Note: We have two inputs, and both must be considered

```
1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15.end for;
```


Example

- Example
- We use two counters: i, j
- One (outer, i) runs through T
- One (inner, j) runs through P

123456789...

T ctgagatcgcgta
P gagatc
gagatc
gagatc
gagatc
gagatc
gatatc
gatatc gatatc

```
1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15.end for;
```


Complexity Analysis ($\mathrm{n}=|\mathrm{T}|, \mathrm{m}=|\mathrm{P}|$)

```
1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15. end for;
```

1.	$O(n-m)$
2.	$O(1)$
3.	$O(1)$
4.	$O(m)$
5.	$O(1)$
6.	$O(1)$
7.	$O(1)$
8.	$O(1)$
9.	-
10.	$O(1)$
1.	-
12.	$O(1)$
13.	-
14.	-
$15 .-$	

Worst-Case

Transitivity of O-Membership

- Lemma: If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$
- Proof
- We know by def.: $\exists c, n_{0}: \forall n \geq n_{0}: f(n) \leq c \cdot g(n)$
- We know by def.: $\exists c^{\prime}, n^{\prime}{ }_{0}: \forall n \geq n^{\prime}{ }_{0}: g(n) \leq c^{\prime} \cdot h(n)$
- We need to show: $\exists c^{\prime \prime}, n^{\prime \prime}{ }_{0}: \forall n \geq n^{\prime \prime}{ }_{0}: f(n) \leq c^{\prime \prime} \cdot h(n)$
- We chose: $n^{\prime \prime}{ }_{0}=\max \left(n_{0}, n_{0}^{\prime}\right) ; c^{\prime \prime}=c \cdot c^{\prime}$
- This gives:

$$
\forall n \geq n^{\prime \prime}{ }_{0}: f(n) \leq c \cdot g(n) \leq c \cdot c^{\prime} \cdot h(n) \leq c^{\prime \prime} \cdot h(n)
$$

- q.e.d.

ת-Notation

- O-Notation denotes an upper bound for the amount of computations necessary to run an algorithm for asymptotically large inputs
- "f will always be faster than g on large inputs"
- Sometimes, we also want lower bounds
- "f will never be faster than g on large inputs"
- Definition

Let $g: \mathbb{N}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} . \Omega(g)$ is the class of functions defined as
$\Omega(g)=\left\{f: \mathbb{N}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} \mid \exists c>0, \exists n_{0} \geq 0, \forall n \geq n_{0}: f(n)(c * g(n)\}\right.$

- Explanation
- $\Omega(g)$ is the class of functions that are asymptotically larger than g
- Again: Not necessarily the largest smaller one

Examples

$$
\Omega(g)=\left\{f: \mathbb{N}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} \mid \exists c>0, \exists n_{0} \geq 0, \forall n \geq n_{0}: f(n) \geq c * g(n)\right\}
$$

$$
\begin{aligned}
& f(n)=3 n^{2}+6 n+7 \text { is } \Omega\left(n^{2}\right) \text { but also } \Omega(n), \Omega(1), \ldots \\
& f(n)=n^{3}+7000 n-300 \text { is } \Omega\left(n^{3}\right) \text { but also } \Omega\left(n^{2}\right), \Omega(n), \ldots \\
& f(n)=\log (n)+300 \text { is } \Omega(\log (n)) \text { but also } \Omega(1), \ldots \\
& f(n)=10 \text { is } \Omega(1) \\
& f(n)=n^{2} \text { is } \Omega\left(n^{2}\right) \text { but also } \Omega(n), \Omega(\log n), \ldots
\end{aligned}
$$

Further Notation

$-\mathrm{O}(g)=\left\{\begin{array}{l|l}f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} & \begin{array}{c}\exists c \in \mathbb{R}^{+}>0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+}>0 \\ \forall n \geq n_{0}: f(n) \leq c \cdot g(n)\end{array}\end{array}\right\}$
$-\Omega(g)=\left\{\begin{array}{l|l}f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} & \begin{array}{c}\exists c \in \mathbb{R}^{+}>0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+}>0 \\ \forall n \geq n_{0}: f(n) \geq c \cdot g(n)\end{array}\end{array}\right\}$
$-\Theta(g)=\left\{\begin{array}{l|l}f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} & \begin{array}{c}\exists c_{1}, c_{2} \in \mathbb{R}^{+}>0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+}>0 \\ \forall n \geq n_{0}: c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)\end{array}\end{array}\right\}$

- o(g) $=\left\{\begin{array}{l|l}f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} & \begin{array}{c}\forall c \in \mathbb{R}^{+}>0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+}>0 \\ \forall n \geq n_{0}: f(n)<c \cdot g(n)\end{array}\end{array}\right\}$
$-\omega(g)=\left\{\begin{array}{l|l}f: \mathbb{R}_{0}^{+} \rightarrow \mathbb{R}_{0}^{+} & \begin{array}{c}\forall c \in \mathbb{R}^{+}>0 \quad \exists n_{0} \in \mathbb{R}_{0}^{+}>0 \\ \forall n \geq n_{0}: f(n)>c \cdot g(n)\end{array}\end{array}\right\}$
- Interpretation: „f" is asymptotically...

1. $f \in O(g): \ldots$ smaller than or equal to „g"
2. $f \in \Omega(g):$:.. larger than or equal to „ $\mathrm{g}^{\prime \prime}$
3. $f \in \theta(g):$:.. exactly like „g"
4. $f \in o(g):$... smaller than „ $g^{\prime \prime}$
5. $f \in \omega(g):$:... larger than "g"

Reads:

- Big 0
- Big Omega
- Theta
- Small O
- Small Omega

Not Every Problem is Simple

- Definition

We call an algorithm A with cost function f

- polynomial, iff there exists a polynomial p with $f \in O(p)$
- exponential, iff $\exists \varepsilon>0$ with $f \in \Omega\left(2^{n^{\varepsilon}}\right)$
- General assumption: If A is exponential, it cannot be executed in reasonable time for non-trivial input
- But: If A is exponential, this does not imply that the problem solved by A cannot be solved in polynomial time
- Of course: If A is bounded by a polynomial, then also the problem solved by A can be solved in polynomial time (by A)
- Much research in finding good solutions for difficult problems

Questions - Online Quiz

- Please go to https://pingo.coactum.de
- Enter ID: 729357

Content of this Lecture

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples
- Exact substring search (average-case versus worst-case)
- Knapsack problem (exponential problem)

Exact Substring Search: Average Case

- We showed that the algorithm's WC is $O((n-m) \cdot m) \sim O(n \cdot m)$
- If we assume $m \ll n$
- What does a worst case look like?

```
1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15. end for;
```


Exact Substring Search: Beyond Worst Case

- We showed that the algorithm's WC is $O((n-m) \cdot m) \sim O(n \cdot m)$
- If we assume $m \ll n$
- What does a worst case look like?
- $T=a^{n} \quad$ T aaaaaaaaaaaaa...
$P=a^{m} \quad \mathbf{P} \quad$ aaaaaa print i; match := false; end if; j $:=$ j+1;
else
match := false;
end if;

14. end while;
15. end for;

- What about the average case?
- The outer loop is passed by $n-m+1$ times, no matter what T/P look like
- This already is in $\Omega(n-m)$
- Let's look at the inner loop

Exact Substring Search: Average Case

- How often do we pass by the inner loop?
- Need a model of "average strings"
- Simplest model:

T and P are randomly generated from the same alphabet Σ

- Every character appears with equal probability at every position
- Gives a chance of $p=1 /|\Sigma|$ for every test "T $[\mathrm{i}+\mathrm{j}-1]=\mathrm{P}[\mathrm{j}]$ "
- Derive the expected number of comparisons in line 3

$$
\begin{aligned}
& =1(1-p)+2 \cdot p(1-p)+3 \cdot p^{2}(1-p)+\cdots+m \cdot p^{m-1} \\
& =1-p+2 p-2 p^{2}+3 p^{2}-3 p^{3}+\cdots+m \cdot p^{m-1} \\
& =1+p+p^{2}+p^{3}+\cdots+p^{m-1}=\sum_{i=1}^{m-1} p^{i}
\end{aligned}
$$

Cost 1 for mismatch at first position; probability is (1-p)

Differences On Real Data

- Assume $|T|=50.000$ and $|\mathrm{P}|=8$ and $|\Sigma|=29$
- German text, including Umlaute, excluding upper/lower case letters
- Worst-case estimate: ~400.000 comparisons
- Note: Here, $O(m \cdot n)$ is quite tight, no linear factors ignored
- Average-case estimate: ~51.851 comparisons
- We expect a mismatch after every 1,03 comparisons
- Assume $|T|=50.000,|P|=8,|\Sigma|=4$ (e.g., DNA)
- Worst-case: 400.000 comparisons
- Average-case: 65.740
- Best algorithms are $O(m+n) \sim 50.008$ comparisons
- Much better WC result, but not much better AC result
- But: Are German texts random strings?

Example 2: Knapsack Problem

- Given a set S of items with weights $w[i]$ and value $v[i]$ and a maximal weight m; find the subset $T \subseteq S$ such that:

$$
\sum_{i \in T} w[i] \leq m \text { and } \quad \sum_{i \in T} v[i] \text { is maximal }
$$

Algorithm and its Complexity

- Imagine an algorithm which enumerates all possible subsets T
- For each T , computing its value and its weight is in $\mathrm{O}(|\mathrm{S}|)$
- Testing for maximum is $\mathrm{O}(1)$
- But how many different T exist?

Algorithm and its Complexity

- Imagine an algorithm which enumerates all possible subsets T
- For each T , computing its value and its weight is in $\mathrm{O}(|\mathrm{S}|)$
- Testing for maximum is $\mathrm{O}(1)$
- But how many different T exist?
- Every item from S can be part of T or not
- This gives $2 \cdot 2 \cdot 2 \cdot \cdots \cdot 2=2^{|S|}$ different options
- Together: This algorithm is in $O\left(2^{|S|}\right)$
- Actually, the knapsack problem is NP-hard
- Thus, very likely no polynomial algorithm exists

Exemplary Questions for Examination

- Given the following algorithm: ... Analyze its worst case and average case complexity
- Prove that $\mathrm{O}\left(\mathrm{f}^{*} \mathrm{~g}\right)=\mathrm{O}(\mathrm{f}) * \mathrm{O}(\mathrm{g})$
- Order the following functions by their complexity class: n^{2}, $100 n, n * \log (n), n * 2^{\log (n)}, \operatorname{sqrt}(n), n!$
- Let $f \in \Omega(\mathrm{~g})$ and $\mathrm{g} \in \Omega(\mathrm{h})$. Show that $\mathrm{f} \in \Omega(\mathrm{h})$
- Find a function f such that: $f \in \Omega(n)$ and $f \notin O\left(n^{3 *} \log (n)\right)$

