

Algorithms and Data Structures

Asymptotic Time Complexity

Ulf Leser Mit Beiträgen von Patrick Schäfer

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

Efficiency of Algorithms

- Algorithms have an input and solve a defined problem
 - Sort this list of names
 - Compute the running 3-month average over this table of 10 years of daily revenues
 - Find the shortest path between node X and node Y in this graph with n nodes and m edges
- Research in algorithms focuses on efficiency
 - Efficiency: Use as few resources as possible for solving the task
 - Resources: CPU cycles, memory cells, (network traffic, disk IO, ...)
 - CPU cycles are directly correlated with time
- How can we measure efficiency for different inputs?
- How can we compare the efficiency of two algorithms solving the same problem?

Option 1: Use a Reference Machine

- Empirical evaluation
 - Chose a concrete machine (CPU, RAM, BUS, ...)
 - Or many different machines
 - Chose a set of different input data sets (workloads)
 - The more, the better
 - Real, synthetic, realistic, ...
 - Run algorithm on all inputs and measure time (or space or ...)
- Pro: Gives real runtimes and practical guidance
- Contra
 - Will all potential users have this machine?
 - Performance dependent on prog language and skills of engineer
 - Are the datasets used typical for what we expect in an application?
 - Can we extrapolate results beyond the measured data sets?

Option 2: Computational Complexity

- Derive an estimate of the maximal (worst-case) number of operations as a function of the size of the input
 - "For an input of size n, the alg. will perform app. n^3 operations"
 - Abstraction: Based on a universal yet realistic machine model
- Advantages
 - Analyses the algorithm, not its concrete implementation
 - Independent of concrete hardware; future-proof
- Disadvantages
 - No real runtimes
 - What is an operation? What do we count?
 - Requires assumptions on the cost of primitive operations
 - Assumes that all machines offer the same set of operations

- In this lecture, we focus on computational complexity
- We need to define what we count: Machine model
- We need to define how we estimate: O-notation
- Complexity analysis: Versatile & elegant yet coarse-grained

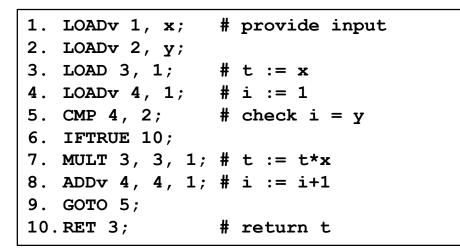
- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

Our Machine Model: Random Access Machines

- Very simple model: Random Access Machines (RAM)
- Work: What a conventional CPU can execute in 1 cycle
 - Addition, comparison, jumps, ...
 - Forget multi-core, disks, ALUs, GPUs, FPGA, cache levels, pipelining, hyper-threading, ...
 - Note: There are proper machine models for such variations
- Space: Unlimited number of storage cells
 - Each cell holds one (possibly infinitely large) value (number)
 - Cells are addressed by consecutive integers
 - Access (read/write) to each cell in one CPU cycle
 - Special treatment of input and output
 - One special register (switch) storing results of a comparison

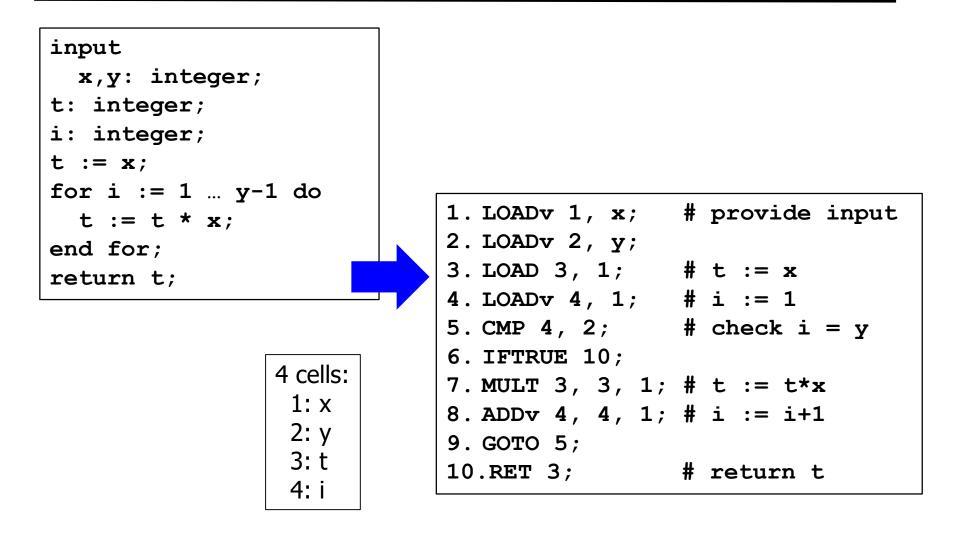
Programs

- Programs
 - Consists of atomic operations with 1-3 parameters
 - Are stored consecutively in memory cells
 - Separate address space no interference with data
 - Each operation one cell
 - For simplicity, we assume that parameters take no space
 - Address of operations can be used for jumps



Operations

- Load value into cell, move value from cell to cell
 - LOADv 3, 5; Load value "5" in cell 3
 - LOAD 3, 5; Copy value of cell 5 into cell 3
- Add/subtract/multiply/divide value/cell to/from/by cell and store in cell
 - ADDv 3, 5, 6; Add "6" to value of cell 5 and store result in cell 3
 - ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3
- Compare values of two cells
 - CMP 4, 2; If equal, set switch to TRUE, otherwise to FALSE
- Conditional jumps
 - IFTRUE 10; Jump to position 10 if switch is TRUE
- Absolute jumps
 - сото 5; Jump to command at position 5
- Stop
 - RET 6; Returns value of cell 6 as result and stop



Cost Models

- We count the number of operations (time) performed
 - And sometimes the number of cells (space) required
- This is called uniform cost model (UCM)
 - Every operation costs 1 time unit, every value needs 1 space unit
 - Not realistic
 - Data access has non-uniform cost (cache lines)
 - Not every value can be stored in one cell
 - Comparing two real numbers costs more work than two integers
- Alternative: Machine cost (logarithmic cost)
 - Consider concrete machine representation of every data element
 - Cells hold 1 byte how many bytes do we need?
 - More realistic, yet more complex
 - Derives identical time complexity results as UCM for most cases

```
1. LOADv 1, x; # input
2. LOADv 2, y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i=y
6. IFTRUE 10;
7. MULT 3, 3, 1; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t
```

- If y>1
 - Startup (lines 1-4) costs 4
 - Loop (line 5) is passed y times
 - (y-1)-times costs 5 (lines 5-9)
 - 1-time costs 2 (lines 5-6)
 - Return costs 1
 - Total costs: $4 + (y 1) \cdot 5 + 3$
- If y=1
 - Total costs: $7 = 4 + (y 1) \cdot 5 + 3$

```
1. S: array of names;
2. n := |S|
3. for i := 1...-1 do
     for j := i+1..n do
4.
5.
       if S[i]>S[j] then
6.
    tmp := S[i];
7.
  S[i] := S[j];
8.
      S[j] := tmp;
       end if;
9.
10.
     end for;
11. end for:
```

- With UCM, we showed f(n)~3n²+3n
 - But: Every cell needs to hold a namestring of arbitrary length
 - We used a UCM including strings
- Towards machine cost
 - Assume max length m for a string S[i]
 - Then, line 5 costs m comparisons WC
 - Lines 6-8; additional cost for loops for copying char-by-char
- We did not consider super-long strings (n>2⁶⁴), or super-large alphabets (char comp always in 1 cycle?)

Conclusions

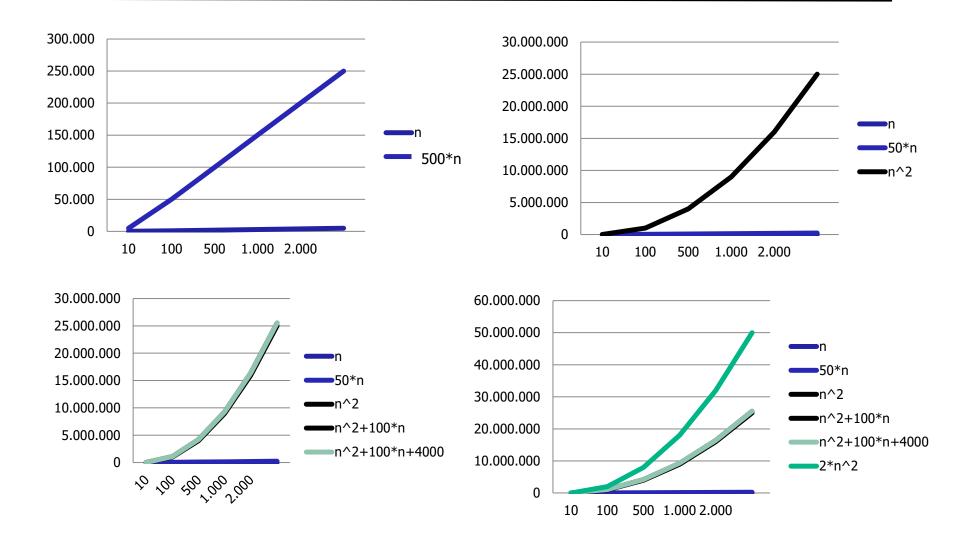
- We usually assume RAM with UCM, but will not give the RAM program itself
 - Translation from pseudo code is simple and adds only constant costs per operation – which we will (later) ignore anyways
- We assume UCM for primitive data types: numbers, strings
 - We will sometimes look at strings in more detail
 - More complex data type (lists, sets etc.) will be analyzed in detail
- When analyzing real programs, many more issues arise
 - Performance killer in Java: Garbage collection
 - Performance trick in Java: Object reuse
 - Performance killer in Java: new Vector (1,1);

- ...

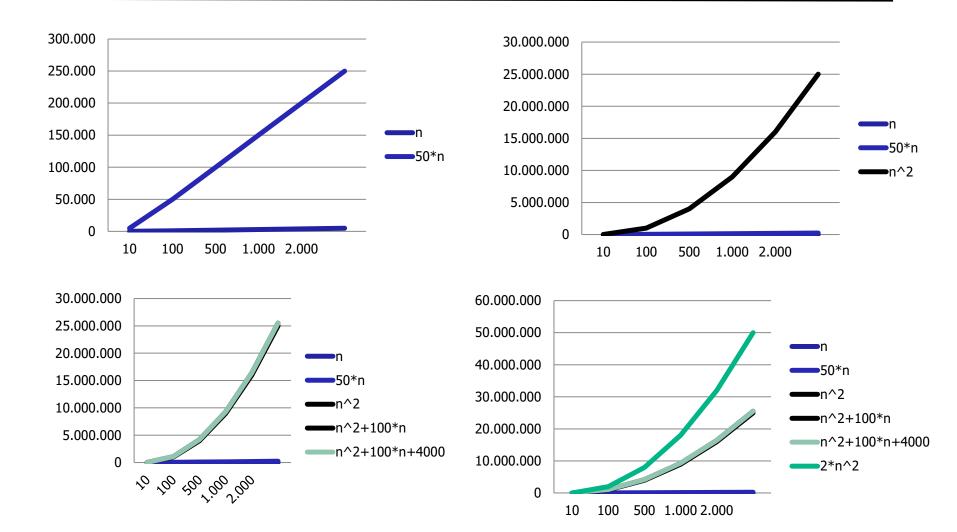
- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples

- Counting the exact number of operations for an algorithm (wrt. input size) seems overly complicated
 - Linear speed-ups are often possible by using newer/more hardware
 - Estimations need not be good for all cases for small inputs, many algorithms are fast anyway
 - We don't want long formulas focus on dominant factors
- Intuitive goal: Analyze the major cost drivers when the input size gets large
- Formal: Asymptotic complexity: analyze number of operations when input size goes to infinity

Examples

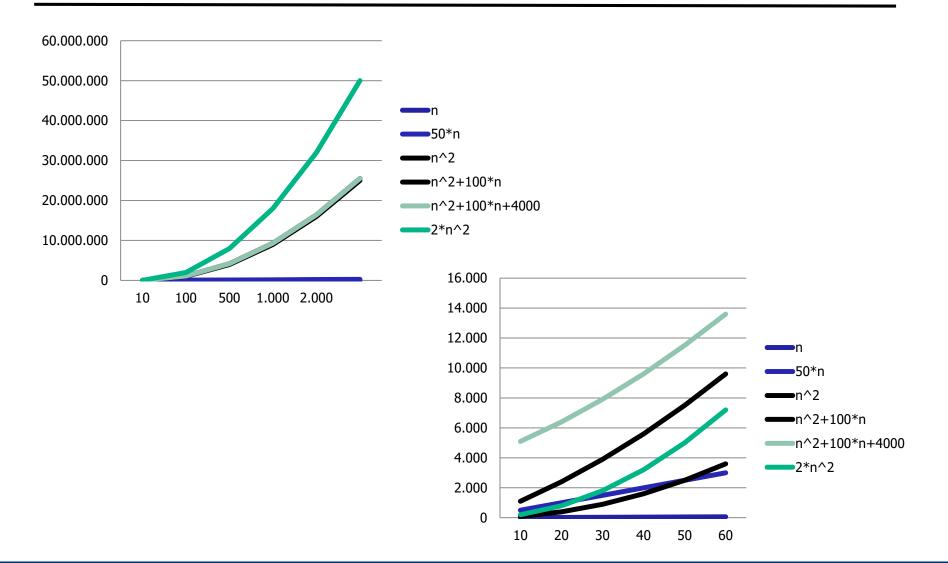


Examples



Ulf Leser: Algorithms and Data Structures

Small Values



• Everything except the term with the highest exponent doesn't matter much once n is large enough

- Therefore, we will ignore all other

- This term can have a factor, but the effect of this factor usually can be outweighed by newer/more machines
 - Therefore, we will not consider it
- Assume we have developed a polynomial *f*(*n*) capturing the exact cost of an algorithm A for input size n
- Intuitively, the complexity of A is the term in *f* with the highest exponent after stripping linear factors

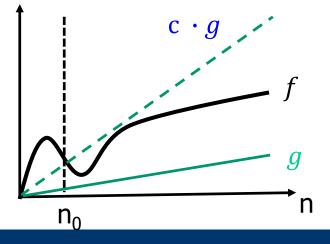
Overview

- Assume *f*(*n*) gives the number of operations performed by algorithm A in worst case for an input of size n
- We are interested in the essence of *f*, i.e., the dominating factors when n grows large
- We do this by defining a hierarchy of classes of functions
 - For a function g, define the set O(g) as the class of functions that is asymptotically smaller than or equal to g
 - If $f \in O(g)$, then f will be asymptotically smaller than or equal to g
 - I.e.: for large input sizes, the number of ops counted by *f* will be smaller than or equal to the one estimated through *g*
 - Asymptotically, g is an upper bound for f
 - We want a simple *g*; simpler than *f*
 - Not necessarily the lowest

• Definition

Let $g: \mathbb{N}_0^+ \to \mathbb{R}_0^+$. O(g) is the class of functions defined as $O(g) = \{f: \mathbb{N}_0^+ \to \mathbb{R}_0^+ | \exists c > 0, \exists n_0 \ge 0, \forall n \ge n_0: f(n) \le c \cdot g(n)\}$

- Explanation
 - O(g) is the class of all functions which compute lower or equal values than g for any sufficiently large n, ignoring linear factors
 - O(g) is the class of functions that are asymptotically smaller than or equal g
- If f∈O(g), we say that
 "f is in O(g)" or "f is O(g)" or
 "f has complexity O(g)"



Examples

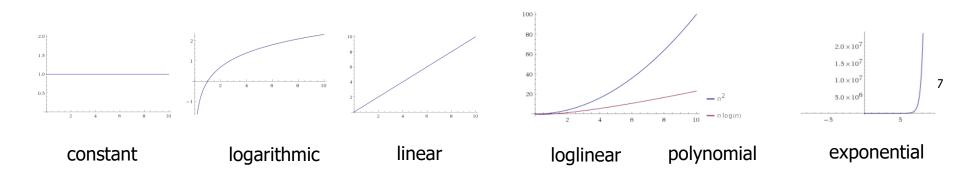
 $O(g) = \{f: \mathbb{N}_0^+ \to \mathbb{R}_0^+ | \exists c > 0, \exists n_0 \ge 0, \forall n \ge n_0: f(n) \le c \cdot g(n)\}$

- 1. $f(n) = 3n^2 + 6n + 7$ is $O(n^2)$
- 2. $f(n) = n^3 + 7000n 300$ is $O(n^3)$
- 3. $f(n) = 4n^2 + 200n^2 100$ is $O(n^2)$
- 4. f(n) = log(n) + 300 is O(log(n))
- 5. f(n) = log(n) + n is O(n)
- 6. $f(n) = n \cdot log(n)$ is $O(n \cdot log(n))$
- 7. f(n) = 10 is O(1)
- 8. $f(n) = n^2$ is $O(n^3)$ but also $O(n^2)$ or $O(n^4), O(n^2 logn), ...$

- Proof-Example: First *f*(n)
 - We need to show: $f(n) \in O(n^2) \Rightarrow \exists c \exists n_0 : f(n) \le cn^2$
 - Choose c = 16 and $n_0 = 1$
 - Now, for $n > 1 = n_0$: $\Rightarrow 3n^2 + 6n + 7$ $\leq 3n^2 + 6n^2 + 7n^2$ $= 16n^2 = cn^2$
 - Would also work for c=17,18, ...
- Concrete choice of values of c and n₀ don't matter
 - Especially: No need to search for smallest values for proving complexity

Common Complexity Classes

• O(1):	constant	(Array Access)
 O(log n): 	logarithmic	(Binary Search)
• O(n):	linear	(Sequential Search)
 O(n log n): 	loglinear	(MergeSort)
• O(n ²):	quadratic	(Selection Sort, BubbleSort, QuickSort)
 O(n^k): 	polynomial	(Floyd-Warshall)
• O(2 ⁿ):	exponential	(Knapsack Problem)



General Result

- Lemma: All constant functions are in O(1)
 - All f(n) = k for some constant k > 0
- Examples:
 - $f(n) = 10^6$ is O(1)
 - f(n) = 3 is O(1)
- Proof:
 - Let g(n) = 1
 - We need to show that $f \in O(g) \Leftrightarrow k \in O(1) \Rightarrow \exists c \exists n_0: k \leq c \cdot 1$
 - Chose c = k and $n_0 = 0$
 - Clearly: $\forall n \ge n_0$, we now have $f(n) = k \le c \cdot g(n) = k \cdot 1$
- Any part of an algorithm whose extend of work is independent of input size *n* is summarized as *O*(1)

- Computational complexity not only leads to short formulas
- It also makes program analysis much easier
- We show that computing the complexity of a program p by aggregating the complexities of its individual steps is much simpler then first finding f, i.e., the real cost of p by aggregating the real cost of individual steps
- We need rules to combine the complexity of steps into the complexity of subprograms

```
1. S: array of names;
2. n := |S|
3. for i := 1...-1 do
    for j := i+1..n do
4.
5.
      if S[i]>S[j] then
6.
  tmp := S[i];
7.
      S[i] := S[j];
8.
     S[j] := tmp;
9. end if;
10. end for;
11.end for;
```

- We want to derive the complexity of a program without calculating its exact cost
 - Estimate a tight g without knowing f
- Some observations
 - Having many ops with cost 1 yields the same complexity as having only 1
 - Lines 5-8 cost 4 times $1 \in O(1)$
 - If we see a polynomial, we can forget terms except the largest
 - As we certainly need O(n) for the outer loop (line 3), we can forget the startup which is O(1)

Formally: O-Calculus

- Such observations can be cast into a set of rules
- Lemma

Let k be a constant. The following equivalences are true

- O(k+f) = O(f);
- $O(k \cdot f) = O(f);$
- $O(f) + O(g) = O(\max(f,g)) \leftarrow$
- $O(f) \cdot O(g) = O(f \cdot g)$
- Explanations

with "slight misuse of notations":

Let $f_0 \in O(f)$ and $g_0 \in O(g)$ then

•
$$f_0 + g_0 \in O(\max(f,g))$$

•
$$f_0 \cdot g_0 \in O(f \cdot g)$$

- Rule 3 (4) actually implies rule 1 (2), as $k \in O(1)$
- Rule 3 is used for sequentially executed parts of a program
- Rule 4 is used for nested parts of a program (loops)

Example

- There is a typo in this slide: Somewhere, I typed "und" instead of "and". Where?
- Abstract problem: Given a string T (template) und a pattern P (pattern), find all occurrences of P in T
 - Exact substring search
- Algorithm:
 - Note: There are more efficient ones
- Note: We have two inputs, and both must be considered

1. for i := 1 T -	P +1 do
2. match := true;	
3. j := 1;	
4. while match	
5. if T[i+j-1]=	P[j] then
6. if j= P t	hen
7. print i;	
8. match :=	<pre>false;</pre>
9. end if;	
10. j := j+1;	
11. else	
12. match := f	alse;
13. end if;	
14. end while;	
15.end for;	

Example

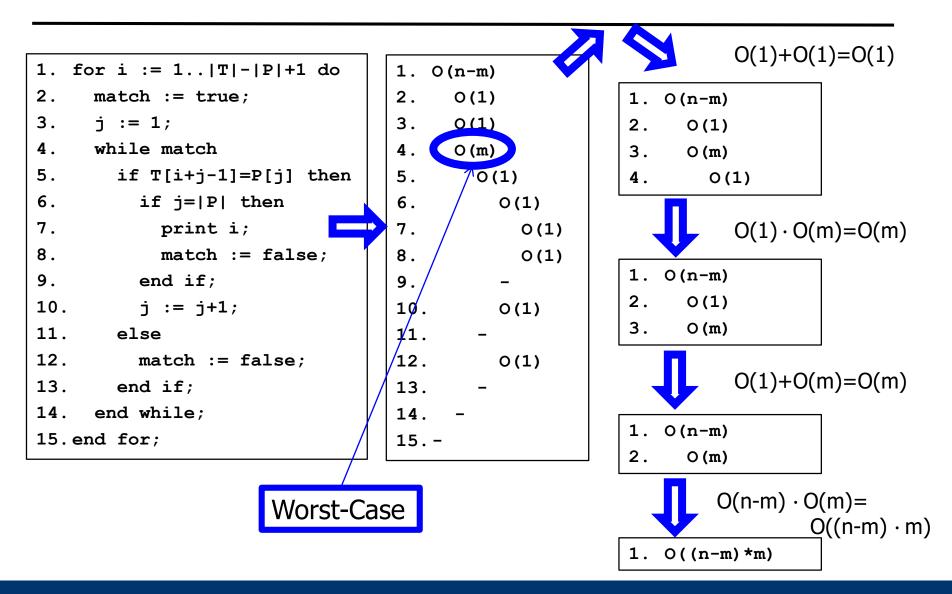
- Example
 - We use two counters: i, j
 - One (outer, i) runs through T
 - One (inner, j) runs through P

123456789...

Т	ctgagatcgcgta
Ρ	gagatc gagatc gagatc gagatc gagatc gatatc gatatc gatatc gatatc
	- · · · · ·

```
1. for i := 1 \dots |T| - |P| + 1 do
2.
    match := true;
3. i := 1;
4. while match
5.
      if T[i+j-1]=P[j] then
6.
        if j=|P| then
7.
         print i;
          match := false;
8.
9.
      end if;
10.
     j := j+1;
11. else
12.
        match := false;
13.
      end if;
14. end while;
15.end for;
```

Complexity Analysis (n=|T|, m=|P|)



- Lemma: If $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$
- Proof
 - We know by def.: $\exists c, n_0: \forall n \ge n_0: f(n) \le c \cdot g(n)$
 - We know by def.: $\exists c', n'_0: \forall n \ge n'_0: g(n) \le c' \cdot h(n)$
 - We need to show: $\exists c'', n''_0: \forall n \ge n''_0: f(n) \le c'' \cdot h(n)$
 - We chose: $n''_0 = \max(n_0, n'_0)$; $c'' = c \cdot c'$
 - This gives:

 $\forall n \ge n''_0: f(n) \le c \cdot g(n) \le c \cdot c' \cdot h(n) \le c'' \cdot h(n)$

– q.e.d.

Ω -Notation

- O-Notation denotes an upper bound for the amount of computations necessary to run an algorithm for asymptotically large inputs
 - "f will always be faster than g on large inputs"
- Sometimes, we also want lower bounds
 - "f will never be faster than g on large inputs"
- Definition $Let g: \mathbb{N}_0^+ \to \mathbb{R}_0^+$, $\Omega(g)$ is the class of functions defined as $\Omega(g) = \{f: \mathbb{N}_0^+ \to \mathbb{R}_0^+ | \exists c > 0, \exists n_0 \ge 0, \forall n \ge n_0; f(n) \ge c * g(n)\}$
- Explanation
 - $\Omega(g)$ is the class of functions that are asymptotically larger than g
 - Again: Not necessarily the largest smaller one

Examples

 $\Omega(g) = \{ f \colon \mathbb{N}_0^+ \to \mathbb{R}_0^+ | \exists c > 0, \exists n_0 \ge 0, \forall n \ge n_0 \colon f(n) \ge c * g(n) \}$

$$f(n) = 3n^2 + 6n + 7$$
 is $\Omega(n^2)$ but also $\Omega(n)$, $\Omega(1)$, ...
 $f(n) = n^3 + 7000n - 300$ is $\Omega(n^3)$ but also $\Omega(n^2)$, $\Omega(n)$, ...
 $f(n) = log(n) + 300$ is $\Omega(log(n))$ but also $\Omega(1)$, ...
 $f(n) = 10$ is $\Omega(1)$
 $f(n) = n^2$ is $\Omega(n^2)$ but also $\Omega(n)$, $\Omega(\log n)$, ...

Further Notation

$$\begin{array}{l} - & O(g) = \left\{ f \colon \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \middle| \begin{array}{l} \exists c \in \mathbb{R}^{+} > 0 & \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \ge n_{0} \colon f(n) \le c \cdot g(n) \end{array} \right\} \\ - & \Omega(g) = \left\{ f \colon \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \middle| \begin{array}{l} \exists c \in \mathbb{R}^{+} > 0 & \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \ge n_{0} \colon f(n) \ge c \cdot g(n) \end{array} \right\} \\ - & \Theta(g) = \left\{ f \colon \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \middle| \begin{array}{l} \exists c_{1}, c_{2} \in \mathbb{R}^{+} > 0 & \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \ge n_{0} \colon c_{1} \cdot g(n) \le f(n) \le c_{2} \cdot g(n) \end{array} \right\} \\ - & o(g) = \left\{ f \colon \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \middle| \begin{array}{l} \forall c \in \mathbb{R}^{+} > 0 & \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \ge n_{0} \colon f(n) < c \cdot g(n) \end{array} \right\} \\ - & \omega(g) = \left\{ f \colon \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \middle| \begin{array}{l} \forall c \in \mathbb{R}^{+} > 0 & \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \ge n_{0} \colon f(n) < c \cdot g(n) \end{array} \right\} \\ - & \omega(g) = \left\{ f \colon \mathbb{R}_{0}^{+} \to \mathbb{R}_{0}^{+} \middle| \begin{array}{l} \forall c \in \mathbb{R}^{+} > 0 & \exists n_{0} \in \mathbb{R}_{0}^{+} > 0 \\ \forall n \ge n_{0} \colon f(n) < c \cdot g(n) \end{array} \right\} \end{array} \right\}$$

- Interpretation: "f" is asymptotically...
 - 1. $f \in O(g)$: ... smaller than or equal to "g"
 - 2. $f \in \Omega(g)$: ... larger than or equal to "g"
 - *3.* $f \in \theta(g)$: ... exactly like "g"
 - 4. $f \in o(g)$: ... smaller than "g"
 - 5. $f \in \omega(g)$: ... larger than "g"

Reads:

- Big O
- Big Omega
- Theta
- Small O
- Small Omega

- Definition
 - We call an algorithm A with cost function f
 - polynomial, iff there exists a polynomial p with $f \in O(p)$
 - exponential, iff $\exists \varepsilon > 0$ with $f \in \Omega(2^{n^{\varepsilon}})$
- General assumption: If A is exponential, it cannot be executed in reasonable time for non-trivial input
 - But: If A is exponential, this does not imply that the problem solved by A cannot be solved in polynomial time
 - Of course: If A is bounded by a polynomial, then also the problem solved by A can be solved in polynomial time (by A)
 - Much research in finding good solutions for difficult problems

- Please go to https://pingo.coactum.de
- Enter ID: 729357

- Efficiency of Algorithms
- Machine Model
- Complexity
- Examples
 - Exact substring search (average-case versus worst-case)
 - Knapsack problem (exponential problem)

Exact Substring Search: Average Case

1.	for i := $1 T - P + 1$ do
2.	<pre>match := true;</pre>
3.	j := 1;
4.	while match
5.	if T[i+j-1]=P[j] then
6.	if j= P then
7.	print i;
8.	<pre>match := false;</pre>
9.	end if;
10.	j := j+1;
11.	else
12.	<pre>match := false;</pre>
13.	end if;
14.	end while;
15.	end for;

- We showed that the algorithm's WC is $O((n-m) \cdot m) \sim O(n \cdot m)$
 - If we assume $m \ll n$
- What does a worst case look like?

Exact Substring Search: Beyond Worst Case

1. for i := $1 T - P + 1$ do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if $j= P $ then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15.end for;

• We showed that the algorithm's WC is $O((n-m) \cdot m) \sim O(n \cdot m)$

– If we assume $m \ll n$

• What does a worst case look like?

$- T = a^n$	Т	aaaaaaaaaaaaaa
$P=a^m$	Ρ	aaaaaa

- What about the average case?
 - The outer loop is passed by n-m+1 times, no matter what T/P look like
 - This already is in $\Omega(n-m)$
 - Let's look at the inner loop

Exact Substring Search: Average Case

- How often do we pass by the inner loop?
- Need a model of "average strings"
- Simplest model:
 T and P are randomly generated from the same alphabet Σ
 Every character appears with equal probability at every position

1. O(n)

while match

0(1)

else

if T[i+j-1]=P[j] then

O(1); # end loop

2.

3.

4.

5.

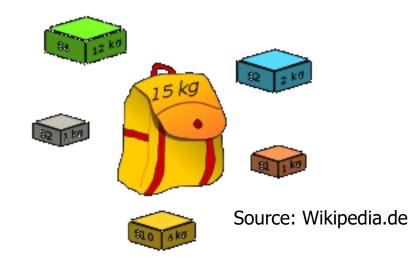
6.

• Gives a chance of $p = 1/|\Sigma|$ for every test "T[i+j-1]=P[j]"

• Derive the expected number of comparisons in line 3 = $1(1-p) + 2 \cdot p(1-p) + 3 \cdot p^2(1-p) + \dots + m \cdot p^{m-1}$ = $1-p + 2p - 2p^2 + 3p^2 - 3p^3 + \dots + m \cdot p^{m-1}$ = $1 + p + p^2 + p^3 + \dots + p^{m-1} = \sum_{i=1}^{m-1} p^i$ Cost 1 for mismatch at first position; probability is (1-p)

- Assume |T|=50.000 and |P|=8 and |Σ|=29
 - German text, including Umlaute, excluding upper/lower case letters
 - Worst-case estimate: ~400.000 comparisons
 - Note: Here, $O(m \cdot n)$ is quite tight, no linear factors ignored
 - Average-case estimate: ~51.851 comparisons
 - We expect a mismatch after every 1,03 comparisons
- Assume |T|=50.000, |P|=8, |Σ|=4 (e.g., DNA)
 - Worst-case: 400.000 comparisons
 - Average-case: 65.740
- Best algorithms are $O(m + n) \sim 50.008$ comparisons
- Much better WC result, but not much better AC result
- But: Are German texts random strings?

Example 2: Knapsack Problem



 Given a set S of items with weights w[i] and value v[i] and a maximal weight m; find the subset T_⊆S such that:

$$\sum_{i \in T} w[i] \le m \text{ and } \sum_{i \in T} v[i] \text{ is maximal}$$

Algorithm and its Complexity

- Imagine an algorithm which enumerates all possible subsets T
- For each T, computing its value and its weight is in O(|S|)
 - Testing for maximum is O(1)
- But how many different T exist?

Algorithm and its Complexity

- Imagine an algorithm which enumerates all possible subsets T
- For each T, computing its value and its weight is in O(|S|)
 - Testing for maximum is O(1)
- But how many different T exist?
 - Every item from S can be part of T or not
 - This gives $2 \cdot 2 \cdot 2 \cdot \cdots \cdot 2 = 2^{|S|}$ different options
- Together: This algorithm is in $O(2^{|S|})$
- Actually, the knapsack problem is NP-hard
- Thus, very likely no polynomial algorithm exists

- Given the following algorithm: ... Analyze its worst case and average case complexity
- Prove that $O(f^*g) = O(f)^*O(g)$
- Order the following functions by their complexity class: n², 100n, n*log(n), n*2^{log(n)}, sqrt(n), n!
- Let $f \in \Omega(g)$ and $g \in \Omega(h)$. Show that $f \in \Omega(h)$
- Find a function f such that: $f \in \Omega(n)$ and $f \notin O(n^{3*}\log(n))$