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Erinnerung 

 
 
 

• Diese Woche zwei Vorlesungen: Heute und Freitag, 9.15, 
Humboldt-Kabinett 

• Nächste Woche keine Vorlesung 
• Dann wieder zwei in einer Woche: Montag (wie immer) 

und Freitag, 9.15, Humboldt-Kabinett 
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Content of this Lecture 

 
 
 

• Inverted files 
• Storage structures 
• Phrase and proximity search 
• Building and updating the index 
• Using a RDBMS 
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Full-Text Indexing 

 
• Fundamental operation for all BoW-IR models: find( q, D) 

– Given a term q, find all docs from D containing the term 

• Can be implemented using online search 
– Boyer-Moore, Keyword-Trees, etc. 

• But 
– We generally assume that D is stable (compared to q) 
– We search for terms (after tokenization, not arbitrary substrings) 
– The number of unique terms does not grow much with growing D 

• Technique: Pre-compute a term index over D 
– “Full-text index” or “inverted file” or “inverted index” 
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Inverted Files (or Inverted Index) 

• Simple and effective index structure for terms 
• Builds on the Bag of words approach 

– We give up on order of terms in docs (reappears later) 
– We cannot reconstruct docs based on index only 

• Start from “docs containing terms” (~ “docs”) and invert to 
“terms appearing in docs” (~ “inverted docs”) 

t1: d1,d2,d4,d5,d6 
t2: d3,d5,d6,d7,d8 
t3: d1,d3,d5 

d1: t1,t3 
d2: t1 
d3: t2,t3 
d4: t1 
d5: t1,t2,t3 
d6: t1,t2 
d7: t2 
d8: t2 
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Building an Inverted File [Andreas Nürnberger, IR-2007]  

Doc1: 
Now is the time 
for all good men 
to come to the aid 
of their country. 

Doc2: 
It was a dark and 
stormy night in  
the country  
manor. The time  
was past midnight. 

Term Doc ID
now 1
is 1
the 1
time 1
for 1
all 1
good 1
men 1
to 1
come 1
to 1
the 1
aid 1
of 1
their 1
country 1
it 2
was 2
a 2
dark 2
and 2
stormy 2
night 2
in 2
the 2
country 2
manor 2
the 2
time 2
was 2
past 2
midnight 2

Term Doc ID
a 2
aid 1
all 1
and 2
come 1
country 1
country 2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1
the 1
the 2
the 2
their 1
time 1
time 2
to 1
to 1
was 2
was 2

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2

Sort Merge 
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Boolean Retrieval 

• For each query term ki, look-up doc-list Di containing ki 

• Evaluate query in the usual order 
– ki ∧ kj  : Di ∩ Dj 
– ki ∨ kj : Di ∪ Dj 
– NOT ki: D\Di  

• Example 
 
(time AND past AND the) OR (men) 
= (Dtime ∩ Dpast ∩ Dthe) ∪ Dmen 
= ({1,2} ∩ {2} ∩ {1,2}) ∪ {1} 
= {1,2} 
 

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2
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Necessary and Obvious Tricks 

 
• How do we efficiently look-up doc-list Di? 

– Bin-search on inverted file: O( log(|K|) ) 
– How to do this if D and index is very large? (later) 

• How do we support union and intersection efficiently? 
– Naïve algorithm requires O(|Di|*|Dj|) 
– Better: Keep doc-lists sorted 
– Intersection Di∩Dj : Sort-Merge in O(|Di| + |Dj|) 
– Union Di∪Dj : Sort-Merge in O(|Di| + |Dj|) 
– If |Di| << |Dj|, use binsearch in Dj for all terms in Di  

• Whenever |Di| + |Dj| > |Di|*log(|Dj|) 
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Less Obvious Tricks 

• Define selectivity sel(ki) = dfi / |D| 
• Expected size of result is 

– Assuming AND and independence of terms in query 

• Intermediate result sizes vary greatly with different orders 
– These sizes have a large influence on runtime 
– How to keep sizes of intermediate results small? 
– Consider terms in order of increasing selectivity 
– Typically creates a few intersections at the beginning, then only 

look-ups 

• General queries: Disjunctions, negations, … 
– sel(ki∪kj) = sel(ki)+sel(kj)-(sel(ki)*sel(kj)) 
– Optimization problem: Find optimal order of evaluation  

∏==
i

ikselDqselDq )(*||)(*||||
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Adding Frequency 

• VSM with TF*IDF requires term frequencies 
• Split up inverted file into dictionary (term, df) and  

posting list (<docID, tf>) 
Dictionary            Postings Term docIDs DF

a 2 1
aid 1 1
all 1 1
and 2 1
come 1 1
country 1,2 2
dark 2 1
… … …
of 1 1
past 2 1
stormy 2 1
the 1,2 2
their 1 1
time 1,2 2
to 1 1
was 2 1

Term DF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
… …
of 1
past 1
stormy 1
the 2
their 1
time 2
to 1
was 1

Posting
(2,1)
(1,1)
(1,1)
(2,1)
(1,1)

(1,1), (2,1)
(2,1)
…

(1,1)
(2,1)
(2,1)

(1,2), (2,1)
(1,1)

(1,1), (2,1)
(1,2)
(2,2)
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Searching in VSM 

• Assume we want to retrieve the top-r docs 
• Algorithm 

– Initialize an empty doc-list S (as hash table or priority queue) 
• Will manage pairs (docID, weight) 
• Weight is computed incrementally, term by term 

– Iterate through query terms ki 
• Walk through posting list (elements (docID, TF)) 

– If docID∈S: S[docID] =+ IDF[ki]*TF 
– else: S = S.append( (docID, IDF[ki]*TF)) 

– For all pairs in S: Normalize scores  
– Return top-r docs in S 

• S contains all and only those docs containing at least one ki 
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Improvement 

 
• Sort query terms by decreasing IDF Values – later terms 

have smaller IDF values – less weight 
• Sort posting lists by decreasing TF values – later docs have 

smaller TF values – less weight 
• Several heuristics to exploit these facts 

– H1: Stop adding docs to S in each posting if TF value too small 
– H2: Drop query terms whose IDF value is too small 

• Typically stop words with long posting lists – much work, little effect 

– H3: Assume we look at term ki and are at position TFj in the 
posting list. If sr-sr+1> IDFi*TFj, stop searching this posting list 

– … 
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Illustration H1 
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Inner loop: 
Decreasing TF values 

Stop adding docs to S in each 
posting if current TF value too 

small 
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Illustration H2 
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Inner loop: 
Decreasing TF values 

Drop query terms whose IDF value 
is too small 
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Illustration H3 
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Inner loop: 
Decreasing TF values 

If sr-sr+1> IDFi*TFj, stop searching this 
posting list 
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Space Usage 

• Size of dictionary: |K| 
– Zipf’s law: If D is large, adding docs to D adds only few terms to K 

• But there are always new terms, no matter how large D 
• Example: 1GB text (TREC-2) generates only 5MB dictionary 

– Typically: |K|<1 Million 
• Not true in multi-lingual corpora, web corpora, etc. 

• Size of posting list 
– Theoretic worst case: O(|K|*|D|) 
– Average case analysis is difficult, but certainly still large (in |D|) 

• Implementation 
– Dictionary is small; should always fit into main memory 
– Posting lists is large; remains on disk 
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Content of this Lecture 

 
 

• General approach 
• Storage structures 

– The dictionary 
– The posting lists 

• Phrase and proximity search 
• Building and updating the index 
• Using a RDBMS 
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Storing the Dictionary 

• Dictionary are always kept in main memory 
• Suitable data structures? 
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Storing the Dictionary 

• Dictionary are always kept in main memory 
• Suitable data structures? 

– Sorted keyword array: Small and fast (binsearch), static 
– Balanced binary (AVL) tree: Larger and fast, dynamic 
– Hashing: Either small and slow or large and very fast 
– (Compressed) Prefix-tree: Much larger and very fast 

• In the following 
– Assume |ptr|=|DF|=4; |K|=1M 
– Let |q| be total length of query in characters 

• Usually small; used as upper bound on the number of char comparisons 

– Let n=8*|K|=8M be the sum of lengths of all keywords 
• Assuming average word length = 8 
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Dictionary as Sorted Array 

• Elements: <keyword, DF, ptr> 
• Since keywords have different lengths: 

Implementation will be (ptr1, DF, ptr2) 
– ptr1: To string (the keyword) 
– ptr2: To posting list 

• Search: Compute log(|K|) memory 
addresses, follow ptr1, compare strings: 
O(log(|K|)*|q|) 

• Construction: O(|K|*log(|K|)) 
– Sorting K 

• Space: (4+4+4)*1M +n ~ 20M bytes 
• But: Adding keywords is painful 

Term DF
a 1 ptr
aid 1 ptr
all 1 ptr
and 1 ptr
come 1 ptr
country 2 ptr
dark 1 ptr
for 1 ptr
good 1 ptr
in 1 ptr
is 1 ptr
it 1 ptr
manor 1 ptr
men 1 ptr
midnight 1 ptr
night 1 ptr
now 1 ptr
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Dictionary as AVL-style Search Tree 

dark all 

and 

come 

… 

Posting file 

country aid 

a 

for 

• Internal node:  
(ptr1, ptr2, ptr3, ptr4, DF) 
– String, posting, child1, child2 

• Leaf: (ptr1, ptr2, DF) 
• Search: Follow pointer, compare 

strings: O(log(|K|)*|q|) 
• Construction: O(|K|*log(|K|)) 
• Space 

– Internal: 0.5M*(4+4+4+4+4) 
– Leaves: 0.5M*(4+4+4) 
– Together: 16M+n ~ 24MB 

• Adding keywords is simple 
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Dictionary as Hash Table 

 
• Idea: Hash keywords into a hash table 

– Value is <ptr-to-posting-list,DF> 

• In principle, O(1) access is possible … 
– Construction: O(|K|) 
– Search time: O(|q|) 

• O(1) key comparisons, typical STRING hash functions look at all chars  

– Space: Difficult 
• Depends on size of hash table and expected length of overflow chains 

• Only if collision-free hash function is used 
– Which requires hash tables much larger than |K| 
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Dictionary as Prefix Tree (TRIE: Information ReTRIEval) 

c 

a 

dark 

all and 

come 

… 

Posting file 

country 

aid 

a d o 
m 

e 
u 

y 

Term IDF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
for 1
good 1
in 1
is 1
it 1
manor 1
men 1
midnight 1
night 1
now 1

n 

d 
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Compressed Tries (Patricia Trees) 

 
• Remove nodes with only one child 
• Label edges with substrings,  

not single characters 
• Saves space and pointers 
• Search: O(|q|) 

– Maximally |q| char-comps +  
max |q| ptr to follow 

– Assumes O(1) for decision on child-pointer within each node 

• Construction: O(n) 
• Space … 

a 

dark 

all 
and come 

… 

country 

aid 

co 

me 

untry 
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Space of a Trie 

• Space: Difficult to estimate 
• Assume 4 full levels, then each last inner node having two 

different suffixes (1M leaves, alphabet size 26) 
– 26 nodes in 1st, 262~700 in 2nd, 263~17.000 in 3rd, 264~450K in 4th  
– Assume each incoming edge stores only 1 character 
– Nodes in first 3 levels store 26 pointer, nodes in 4th only two  

• Beware: No O(|q|) search any more 

• Inner: (26+700+17K)*(26*ptr+1)+450K*(2*ptr+1) ~ 6M 
• Leaves: |K|*(string-ptr, posting-ptr, DF)+(n-|K|*4) ~ 16M 

– We only need to store a suffix of each string, prefix is in tree 

• Together: ~22M 
– But assumptions are optimistic (keywords all of same length) 
– Prefix trees are typically very space-consuming 
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Content of this Lecture 

 
 

• General approach 
• Storage structures 

– The dictionary 
– The posting lists 

• Phrase and proximity search 
• Building and updating the index 
• Using a RDBMS 
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Storing the Posting File 

• Posting file is usually kept on disk 
• Thus, we need an IO-optimized data structure 
• Suggestions? 
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Storing the Posting File 

• Posting file kept on disk: IO-optimized data structure 
• Static 

– Store posting lists one after the other in large file 
– Posting-ptr is offset in this file 

• Prepare for inserts 
– Reserve additional space per posting  

• Good idea: Large initial posting lists get large extra space 
• Many inserts can be handled internally 

– Upon overflow, append entire posting list at the end of the file 
• Place pointer at old position – at most two access per posting list 
• Or update pointer in dictionary – better if only one copy around 
• Generates unused space (holes) –regular reorganization  
• Reorganization requires updating all pointers in the dictionary 
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Content of this Lecture 

 
 

• General approach 
• Storage structures 
• Phrase and proximity search 
• Building and updating the index 
• Using a RDBMS 
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Doc2: 
It was a dark and 
stormy night in  
the country  
manor. The time  
was past midnight. 

Positional Information 

• What if we search for phrases: “Bill Clinton”, “Ulf Leser” 
– ~10% of web searches are phrase queries 

• What if we search by proximity “car AND rent/5” 
– “We rent cars”, “cars for rent”, “special care rent”, “if you want to 

rent a car, click here”, “Cars and motorcycles for rent”, … 

• We need positional information 

Doc1: 
Now is the time 
for all good men 
to come to the aid 
of their country. 

Term Doc #
a 1
aid 1
all 1
and 1
come 1
country 2
… …
the 2
their 1
time 2
… …

Doc # TF Pos
2 1 6
1 1 1
1 1 14
2 1 15
1 1 6
1 1 16
2 1 10
1 1 15

…
1 2 3,12
2 2 9,12

…
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Answering Phrase Queries 

 
 
 

• Search posting lists of all query terms 
• During intersection, also positions must fit 
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Effects  

• Dictionary is not affected 
• Posting lists get much larger 

– Store many tuples (docID, TF, <pos>) instead of few (docID,TF) 
– Positional index typically 30-50% larger than the corpus itself 
– Especially frequent words require excessive storage 

• One trick: Compression of docIDs (delta encoding) 
– In large corpora, docID is a large integer 
– Trick: Store length of gaps instead of docID 

• t1: 17654,3,17655,12,17862,8,17880,4,17884,9, … 
• t1: 17654,3,1    ,12,207  ,8,18   ,4,4    ,9, … 

– In contrast, positions are small ints – no compression 
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Encoding 

• Only pays off if we need few bits for small numbers but 
still have many bits for large numbers 

• Variable-byte encoding 
– Always use at least 1 byte 
– Reserve first bit as “continuation bit” (cb) and 7 bit as payload 
– If cb=1, also use payload of next byte 

• t1: 17654,3,1       ,12,207              ,8, … 
• t1: 17654,3,00000001,12,11001111|00000001,8, … 

– Simple, small numbers not encoded optimally 

• γ (gamma) codes (details skipped) 
– Always use minimal number of bits for value 
– Encode length in unary encoding 
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Bi-Gram Index 

• Alternative for phrase queries: Index over bi-grams  
– „The fat cat ate a rat“ – „the fat“, „fat cat“, „cat ate“, … 

• Phrase query with |q| keywords gets translated into |q|-1 
lookups 

• Done? 
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Bi-Gram Index 

• Alternative for phrase queries: Index over bi-grams  
– „The fat cat ate a rat“ – „the fat“, „fat cat“, „cat ate“, … 

• Phrase query with |q| keywords gets translated into |q|-1 
lookups 

• Done? 
– Bi-gram need not appear sequentially in the doc 
– Need to confirm match after loading the doc 
– But very high disambiguation effect due to regularities in natural 

languages 

• Advantage: Simple, fast 
• Disadvantage: Very large dictionary 
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Proximity Search 

 
 

• Phrase search = proximity search with distance one 
• Proximity search 

– Search doc-lists with positional information for each term 
– Upon intersection, consider doc-ID and position information 
– Can get quite involved for multi-term queries 

•  “car AND rent/5 AND cheap/2 AND toyota/20” – “cheap” between 1 
and 7 words from “car”, “toyota” between 1 and 22 words from rent … 

– All conditions must be satisfied 
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Content of this Lecture 

 
 

• General approach 
• Storage structures 
• Phrase and proximity search 
• Building and updating the index 
• Using a RDBMS 
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Building an Inverted File 

 
 
 
 

• Assume a very large corpus: Billions of documents 
– We still assume that dictionary fits in memory 

• How can we efficiently build the index? 
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Blocked, Sort-Based Indexing  

• Partition corpus in blocks fitting into memory 
• Algorithm 

– Keep dictionary always in memory 
– For each block: Load, create postings, flash to disk 
– Merge all blocks  

• Open all blocks at once 
• Skip through all files keyword-by-keyword in sort-order 
• Merge doc-lists of equal keywords and flash to disk 

– If doc-lists are very large, we need special means here  

• Requires 2 reads and 2 writes of all data 
– If there are enough file handles to open all blocks at once 

• Requires many large sorts in main memory 
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Updating an index: INSERT dnew 

• What has to be done? 
– Foreach ki∈dnew 

• Search ki in dictionary 
• If present 

– Follow pointer to posting file 
– Add dnew to posting list of ki 

– If list overflows, move posting list to end of file and place pointer 

• If not present  
– Insert ki into dictionary 
– Add new posting list {dnew} at end of posting file 

• Disadvantage 
– Degradation: Many pointers in file, many terms require 2 IO 

• Especially the frequent ones 

– Index partly locked during updates 
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Using Auxiliary Indexes 

 
• All inserts are performed on a second, auxiliary index 

– Keep it small: Always in memory 

• Searches need to search real and auxiliary index 
• When aux index grows too large, merge into real index 

– Try to append in-file: Same problem with degradation 
– Or read both indexes and write a new “fresh” index 
– In both cases, the index is locked 
– Solution: Work on a copy, then switch file pointers 

• Alternative: Ignore new docs during search and periodically 
rebuild index on all docs 
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Content of this Lecture 

 
 

• General approach 
• Storage structures 
• Phrase and proximity search 
• Building and updating the index 
• Using a RDBMS 
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Implementing an Inverted File using a RDBMS 

Term-ID Term IDF 

T1 Night 1 

T2 To 2 

… … … 

Term-ID Doc-ID TF 

T1 2 1 

T2 1 2 

… … … 

Term-ID Doc-ID Pos 

T1 2 6 

T2 1 9 

T2 1 11 

… … … 

night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 1,2
was 1,2

Doc # TF Pos
2 1 6
1 1 1
1 1 14
2 1 15
1 1 6
1 2 3
1 2 12
2 2 9
2 2 12
1 1 15
1 1 4
2 1 13
1 2 9
1 2 11
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Example Query 1 

• Boolean: All docs containing terms “night” and “to” 
– SELECT D1.docid 

FROM terms T1, terms T2, termdoc D1, termdoc D2 
WHERE  T1.term=‘night’ AND T2.term=‘to’ AND 
        D1.termid=T1.termid AND  
  D2.termid=T2.termid AND 
  D1.docid = D2.docid; 

Term-ID Term IDF 

T1 Night 1 

T2 To 2 

Term-ID Doc-ID TF 

T1 2 1 

T2 1 2 

… … … 

Term-ID Doc-ID Pos 

T1 2 6 

T2 1 9 

T2 1 11 

terms 
pos termdoc 
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Example Query 2 

• VSM queries 
– We need to compute the inner product of two vectors 

• We ignore normalization 
• We assume TF-values of query terms are 1, others are 0 

– It suffices to aggregate TF values of matching terms per doc 

• Example: Compute score for “night rider” (two terms) 
– SELECT did, sum(tf) 

FROM ( SELECT D.docid did, T.term term, tf 
     FROM terms T, termdoc D 
      WHERE T.term=‘night’ AND D.termid=T.termid) 
       UNION  
       SELECT D.docid did, T.term term, tf 
      FROM terms T, termdoc D 
      WHERE T.term=‘rider’ AND D.termid=T.termid) docs 
GROUP BY did; 
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Access Methods in a RDBMS  

• Use B*-Indices on ID columns 
• Searching a term 

– Requires O(log(|K|) random-access IO 
• Mind the base of the logarithm: Block size 
• For <100M terms, this usually means <3 IO (cache!) 

– Accessing the posting list: O(log(n)) quasi-random-access IO 
• Where n is the number of term occurrences in D 
• Access is a lookup with term-ID, then seq. scan along the B*-leaves 

– Compared to IR: Dictionary in memory, posting is accessed by 
direct link, then only sequential IO 

• Advantages: Simple, easy to build 
• Disadvantages: Much slower 

– More IO, general RDBMS overhead, space overhead for keys, … 



Ulf Leser: Information Retrieval        48 

Self Assessment 

 
• Explain idea and structure of inverted files? 
• What are possible data structures for the dictionary? 

Advantages / disadvantages? 
• How can posting lists be managed?  
• How much bigger is an inverted file with positions than 

without? 
• How can one efficiently build a large inverted file from 

scratch? 
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