
Text Analytics

Ulf Leser

Index-Structures for Information Retrieval

Ulf Leser: Information Retrieval 2

Erinnerung

• Diese Woche zwei Vorlesungen: Heute und Freitag, 9.15,
Humboldt-Kabinett

• Nächste Woche keine Vorlesung
• Dann wieder zwei in einer Woche: Montag (wie immer)

und Freitag, 9.15, Humboldt-Kabinett

Ulf Leser: Information Retrieval 3

Content of this Lecture

• Inverted files
• Storage structures
• Phrase and proximity search
• Building and updating the index
• Using a RDBMS

Ulf Leser: Information Retrieval 4

Full-Text Indexing

• Fundamental operation for all BoW-IR models: find(q, D)

– Given a term q, find all docs from D containing the term

• Can be implemented using online search
– Boyer-Moore, Keyword-Trees, etc.

• But
– We generally assume that D is stable (compared to q)
– We search for terms (after tokenization, not arbitrary substrings)
– The number of unique terms does not grow much with growing D

• Technique: Pre-compute a term index over D
– “Full-text index” or “inverted file” or “inverted index”

Ulf Leser: Information Retrieval 5

Inverted Files (or Inverted Index)

• Simple and effective index structure for terms
• Builds on the Bag of words approach

– We give up on order of terms in docs (reappears later)
– We cannot reconstruct docs based on index only

• Start from “docs containing terms” (~ “docs”) and invert to
“terms appearing in docs” (~ “inverted docs”)

t1: d1,d2,d4,d5,d6
t2: d3,d5,d6,d7,d8
t3: d1,d3,d5

d1: t1,t3
d2: t1
d3: t2,t3
d4: t1
d5: t1,t2,t3
d6: t1,t2
d7: t2
d8: t2

Ulf Leser: Information Retrieval 6

Building an Inverted File [Andreas Nürnberger, IR-2007]

Doc1:
Now is the time
for all good men
to come to the aid
of their country.

Doc2:
It was a dark and
stormy night in
the country
manor. The time
was past midnight.

Term Doc ID
now 1
is 1
the 1
time 1
for 1
all 1
good 1
men 1
to 1
come 1
to 1
the 1
aid 1
of 1
their 1
country 1
it 2
was 2
a 2
dark 2
and 2
stormy 2
night 2
in 2
the 2
country 2
manor 2
the 2
time 2
was 2
past 2
midnight 2

Term Doc ID
a 2
aid 1
all 1
and 2
come 1
country 1
country 2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1
the 1
the 2
the 2
their 1
time 1
time 2
to 1
to 1
was 2
was 2

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2

Sort Merge

Ulf Leser: Information Retrieval 7

Boolean Retrieval

• For each query term ki, look-up doc-list Di containing ki

• Evaluate query in the usual order
– ki ∧ kj : Di ∩ Dj
– ki ∨ kj : Di ∪ Dj
– NOT ki: D\Di

• Example

(time AND past AND the) OR (men)
= (Dtime ∩ Dpast ∩ Dthe) ∪ Dmen
= ({1,2} ∩ {2} ∩ {1,2}) ∪ {1}
= {1,2}

a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 2
was 2

Ulf Leser: Information Retrieval 8

Necessary and Obvious Tricks

• How do we efficiently look-up doc-list Di?

– Bin-search on inverted file: O(log(|K|))
– How to do this if D and index is very large? (later)

• How do we support union and intersection efficiently?
– Naïve algorithm requires O(|Di|*|Dj|)
– Better: Keep doc-lists sorted
– Intersection Di∩Dj : Sort-Merge in O(|Di| + |Dj|)
– Union Di∪Dj : Sort-Merge in O(|Di| + |Dj|)
– If |Di| << |Dj|, use binsearch in Dj for all terms in Di

• Whenever |Di| + |Dj| > |Di|*log(|Dj|)

Ulf Leser: Information Retrieval 9

Less Obvious Tricks

• Define selectivity sel(ki) = dfi / |D|
• Expected size of result is

– Assuming AND and independence of terms in query

• Intermediate result sizes vary greatly with different orders
– These sizes have a large influence on runtime
– How to keep sizes of intermediate results small?
– Consider terms in order of increasing selectivity
– Typically creates a few intersections at the beginning, then only

look-ups

• General queries: Disjunctions, negations, …
– sel(ki∪kj) = sel(ki)+sel(kj)-(sel(ki)*sel(kj))
– Optimization problem: Find optimal order of evaluation

∏==
i

ikselDqselDq)(*||)(*||||

Ulf Leser: Information Retrieval 10

Adding Frequency

• VSM with TF*IDF requires term frequencies
• Split up inverted file into dictionary (term, df) and

posting list (<docID, tf>)
Dictionary Postings Term docIDs DF

a 2 1
aid 1 1
all 1 1
and 2 1
come 1 1
country 1,2 2
dark 2 1
… … …
of 1 1
past 2 1
stormy 2 1
the 1,2 2
their 1 1
time 1,2 2
to 1 1
was 2 1

Term DF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
… …
of 1
past 1
stormy 1
the 2
their 1
time 2
to 1
was 1

Posting
(2,1)
(1,1)
(1,1)
(2,1)
(1,1)

(1,1), (2,1)
(2,1)
…

(1,1)
(2,1)
(2,1)

(1,2), (2,1)
(1,1)

(1,1), (2,1)
(1,2)
(2,2)

Ulf Leser: Information Retrieval 11

Searching in VSM

• Assume we want to retrieve the top-r docs
• Algorithm

– Initialize an empty doc-list S (as hash table or priority queue)
• Will manage pairs (docID, weight)
• Weight is computed incrementally, term by term

– Iterate through query terms ki
• Walk through posting list (elements (docID, TF))

– If docID∈S: S[docID] =+ IDF[ki]*TF
– else: S = S.append((docID, IDF[ki]*TF))

– For all pairs in S: Normalize scores
– Return top-r docs in S

• S contains all and only those docs containing at least one ki

Ulf Leser: Information Retrieval 12

Improvement

• Sort query terms by decreasing IDF Values – later terms

have smaller IDF values – less weight
• Sort posting lists by decreasing TF values – later docs have

smaller TF values – less weight
• Several heuristics to exploit these facts

– H1: Stop adding docs to S in each posting if TF value too small
– H2: Drop query terms whose IDF value is too small

• Typically stop words with long posting lists – much work, little effect

– H3: Assume we look at term ki and are at position TFj in the
posting list. If sr-sr+1> IDFi*TFj, stop searching this posting list

– …

Ulf Leser: Information Retrieval 13

Illustration H1
O

ut
er

 lo
op

:
D

ec
re

as
in

g
ID

F
va

lu
es

Inner loop:
Decreasing TF values

Stop adding docs to S in each
posting if current TF value too

small

Ulf Leser: Information Retrieval 14

Illustration H2
O

ut
er

 lo
op

:
D

ec
re

as
in

g
ID

F
va

lu
es

Inner loop:
Decreasing TF values

Drop query terms whose IDF value
is too small

Ulf Leser: Information Retrieval 15

Illustration H3
O

ut
er

 lo
op

:
D

ec
re

as
in

g
ID

F
va

lu
es

Inner loop:
Decreasing TF values

If sr-sr+1> IDFi*TFj, stop searching this
posting list

Ulf Leser: Information Retrieval 16

Space Usage

• Size of dictionary: |K|
– Zipf’s law: If D is large, adding docs to D adds only few terms to K

• But there are always new terms, no matter how large D
• Example: 1GB text (TREC-2) generates only 5MB dictionary

– Typically: |K|<1 Million
• Not true in multi-lingual corpora, web corpora, etc.

• Size of posting list
– Theoretic worst case: O(|K|*|D|)
– Average case analysis is difficult, but certainly still large (in |D|)

• Implementation
– Dictionary is small; should always fit into main memory
– Posting lists is large; remains on disk

Ulf Leser: Information Retrieval 17

Content of this Lecture

• General approach
• Storage structures

– The dictionary
– The posting lists

• Phrase and proximity search
• Building and updating the index
• Using a RDBMS

Ulf Leser: Information Retrieval 18

Storing the Dictionary

• Dictionary are always kept in main memory
• Suitable data structures?

Ulf Leser: Information Retrieval 19

Storing the Dictionary

• Dictionary are always kept in main memory
• Suitable data structures?

– Sorted keyword array: Small and fast (binsearch), static
– Balanced binary (AVL) tree: Larger and fast, dynamic
– Hashing: Either small and slow or large and very fast
– (Compressed) Prefix-tree: Much larger and very fast

• In the following
– Assume |ptr|=|DF|=4; |K|=1M
– Let |q| be total length of query in characters

• Usually small; used as upper bound on the number of char comparisons

– Let n=8*|K|=8M be the sum of lengths of all keywords
• Assuming average word length = 8

Ulf Leser: Information Retrieval 20

Dictionary as Sorted Array

• Elements: <keyword, DF, ptr>
• Since keywords have different lengths:

Implementation will be (ptr1, DF, ptr2)
– ptr1: To string (the keyword)
– ptr2: To posting list

• Search: Compute log(|K|) memory
addresses, follow ptr1, compare strings:
O(log(|K|)*|q|)

• Construction: O(|K|*log(|K|))
– Sorting K

• Space: (4+4+4)*1M +n ~ 20M bytes
• But: Adding keywords is painful

Term DF
a 1 ptr
aid 1 ptr
all 1 ptr
and 1 ptr
come 1 ptr
country 2 ptr
dark 1 ptr
for 1 ptr
good 1 ptr
in 1 ptr
is 1 ptr
it 1 ptr
manor 1 ptr
men 1 ptr
midnight 1 ptr
night 1 ptr
now 1 ptr

Ulf Leser: Information Retrieval 21

Dictionary as AVL-style Search Tree

dark all

and

come

…

Posting file

country aid

a

for

• Internal node:
(ptr1, ptr2, ptr3, ptr4, DF)
– String, posting, child1, child2

• Leaf: (ptr1, ptr2, DF)
• Search: Follow pointer, compare

strings: O(log(|K|)*|q|)
• Construction: O(|K|*log(|K|))
• Space

– Internal: 0.5M*(4+4+4+4+4)
– Leaves: 0.5M*(4+4+4)
– Together: 16M+n ~ 24MB

• Adding keywords is simple

Ulf Leser: Information Retrieval 22

Dictionary as Hash Table

• Idea: Hash keywords into a hash table

– Value is <ptr-to-posting-list,DF>

• In principle, O(1) access is possible …
– Construction: O(|K|)
– Search time: O(|q|)

• O(1) key comparisons, typical STRING hash functions look at all chars

– Space: Difficult
• Depends on size of hash table and expected length of overflow chains

• Only if collision-free hash function is used
– Which requires hash tables much larger than |K|

Ulf Leser: Information Retrieval 23

Dictionary as Prefix Tree (TRIE: Information ReTRIEval)

c

a

dark

all and

come

…

Posting file

country

aid

a d o
m

e
u

y

Term IDF
a 1
aid 1
all 1
and 1
come 1
country 2
dark 1
for 1
good 1
in 1
is 1
it 1
manor 1
men 1
midnight 1
night 1
now 1

n

d

Ulf Leser: Information Retrieval 24

Compressed Tries (Patricia Trees)

• Remove nodes with only one child
• Label edges with substrings,

not single characters
• Saves space and pointers
• Search: O(|q|)

– Maximally |q| char-comps +
max |q| ptr to follow

– Assumes O(1) for decision on child-pointer within each node

• Construction: O(n)
• Space …

a

dark

all
and come

…

country

aid

co

me

untry

Ulf Leser: Information Retrieval 25

Space of a Trie

• Space: Difficult to estimate
• Assume 4 full levels, then each last inner node having two

different suffixes (1M leaves, alphabet size 26)
– 26 nodes in 1st, 262~700 in 2nd, 263~17.000 in 3rd, 264~450K in 4th
– Assume each incoming edge stores only 1 character
– Nodes in first 3 levels store 26 pointer, nodes in 4th only two

• Beware: No O(|q|) search any more

• Inner: (26+700+17K)*(26*ptr+1)+450K*(2*ptr+1) ~ 6M
• Leaves: |K|*(string-ptr, posting-ptr, DF)+(n-|K|*4) ~ 16M

– We only need to store a suffix of each string, prefix is in tree

• Together: ~22M
– But assumptions are optimistic (keywords all of same length)
– Prefix trees are typically very space-consuming

Ulf Leser: Information Retrieval 26

Content of this Lecture

• General approach
• Storage structures

– The dictionary
– The posting lists

• Phrase and proximity search
• Building and updating the index
• Using a RDBMS

Ulf Leser: Information Retrieval 27

Storing the Posting File

• Posting file is usually kept on disk
• Thus, we need an IO-optimized data structure
• Suggestions?

Ulf Leser: Information Retrieval 28

Storing the Posting File

• Posting file kept on disk: IO-optimized data structure
• Static

– Store posting lists one after the other in large file
– Posting-ptr is offset in this file

• Prepare for inserts
– Reserve additional space per posting

• Good idea: Large initial posting lists get large extra space
• Many inserts can be handled internally

– Upon overflow, append entire posting list at the end of the file
• Place pointer at old position – at most two access per posting list
• Or update pointer in dictionary – better if only one copy around
• Generates unused space (holes) –regular reorganization
• Reorganization requires updating all pointers in the dictionary

Ulf Leser: Information Retrieval 29

Content of this Lecture

• General approach
• Storage structures
• Phrase and proximity search
• Building and updating the index
• Using a RDBMS

Ulf Leser: Information Retrieval 30

Doc2:
It was a dark and
stormy night in
the country
manor. The time
was past midnight.

Positional Information

• What if we search for phrases: “Bill Clinton”, “Ulf Leser”
– ~10% of web searches are phrase queries

• What if we search by proximity “car AND rent/5”
– “We rent cars”, “cars for rent”, “special care rent”, “if you want to

rent a car, click here”, “Cars and motorcycles for rent”, …

• We need positional information

Doc1:
Now is the time
for all good men
to come to the aid
of their country.

Term Doc #
a 1
aid 1
all 1
and 1
come 1
country 2
… …
the 2
their 1
time 2
… …

Doc # TF Pos
2 1 6
1 1 1
1 1 14
2 1 15
1 1 6
1 1 16
2 1 10
1 1 15

…
1 2 3,12
2 2 9,12

…

Ulf Leser: Information Retrieval 31

Answering Phrase Queries

• Search posting lists of all query terms
• During intersection, also positions must fit

Ulf Leser: Information Retrieval 32

Effects

• Dictionary is not affected
• Posting lists get much larger

– Store many tuples (docID, TF, <pos>) instead of few (docID,TF)
– Positional index typically 30-50% larger than the corpus itself
– Especially frequent words require excessive storage

• One trick: Compression of docIDs (delta encoding)
– In large corpora, docID is a large integer
– Trick: Store length of gaps instead of docID

• t1: 17654,3,17655,12,17862,8,17880,4,17884,9, …
• t1: 17654,3,1 ,12,207 ,8,18 ,4,4 ,9, …

– In contrast, positions are small ints – no compression

Ulf Leser: Information Retrieval 33

Encoding

• Only pays off if we need few bits for small numbers but
still have many bits for large numbers

• Variable-byte encoding
– Always use at least 1 byte
– Reserve first bit as “continuation bit” (cb) and 7 bit as payload
– If cb=1, also use payload of next byte

• t1: 17654,3,1 ,12,207 ,8, …
• t1: 17654,3,00000001,12,11001111|00000001,8, …

– Simple, small numbers not encoded optimally

• γ (gamma) codes (details skipped)
– Always use minimal number of bits for value
– Encode length in unary encoding

Ulf Leser: Information Retrieval 34

Bi-Gram Index

• Alternative for phrase queries: Index over bi-grams
– „The fat cat ate a rat“ – „the fat“, „fat cat“, „cat ate“, …

• Phrase query with |q| keywords gets translated into |q|-1
lookups

• Done?

Ulf Leser: Information Retrieval 35

Bi-Gram Index

• Alternative for phrase queries: Index over bi-grams
– „The fat cat ate a rat“ – „the fat“, „fat cat“, „cat ate“, …

• Phrase query with |q| keywords gets translated into |q|-1
lookups

• Done?
– Bi-gram need not appear sequentially in the doc
– Need to confirm match after loading the doc
– But very high disambiguation effect due to regularities in natural

languages

• Advantage: Simple, fast
• Disadvantage: Very large dictionary

Ulf Leser: Information Retrieval 36

Proximity Search

• Phrase search = proximity search with distance one
• Proximity search

– Search doc-lists with positional information for each term
– Upon intersection, consider doc-ID and position information
– Can get quite involved for multi-term queries

• “car AND rent/5 AND cheap/2 AND toyota/20” – “cheap” between 1
and 7 words from “car”, “toyota” between 1 and 22 words from rent …

– All conditions must be satisfied

Ulf Leser: Information Retrieval 37

Content of this Lecture

• General approach
• Storage structures
• Phrase and proximity search
• Building and updating the index
• Using a RDBMS

Ulf Leser: Information Retrieval 39

Building an Inverted File

• Assume a very large corpus: Billions of documents
– We still assume that dictionary fits in memory

• How can we efficiently build the index?

Ulf Leser: Information Retrieval 40

Blocked, Sort-Based Indexing

• Partition corpus in blocks fitting into memory
• Algorithm

– Keep dictionary always in memory
– For each block: Load, create postings, flash to disk
– Merge all blocks

• Open all blocks at once
• Skip through all files keyword-by-keyword in sort-order
• Merge doc-lists of equal keywords and flash to disk

– If doc-lists are very large, we need special means here

• Requires 2 reads and 2 writes of all data
– If there are enough file handles to open all blocks at once

• Requires many large sorts in main memory

Ulf Leser: Information Retrieval 41

Updating an index: INSERT dnew

• What has to be done?
– Foreach ki∈dnew

• Search ki in dictionary
• If present

– Follow pointer to posting file
– Add dnew to posting list of ki

– If list overflows, move posting list to end of file and place pointer

• If not present
– Insert ki into dictionary
– Add new posting list {dnew} at end of posting file

• Disadvantage
– Degradation: Many pointers in file, many terms require 2 IO

• Especially the frequent ones

– Index partly locked during updates

Ulf Leser: Information Retrieval 42

Using Auxiliary Indexes

• All inserts are performed on a second, auxiliary index

– Keep it small: Always in memory

• Searches need to search real and auxiliary index
• When aux index grows too large, merge into real index

– Try to append in-file: Same problem with degradation
– Or read both indexes and write a new “fresh” index
– In both cases, the index is locked
– Solution: Work on a copy, then switch file pointers

• Alternative: Ignore new docs during search and periodically
rebuild index on all docs

Ulf Leser: Information Retrieval 43

Content of this Lecture

• General approach
• Storage structures
• Phrase and proximity search
• Building and updating the index
• Using a RDBMS

Ulf Leser: Information Retrieval 44

Implementing an Inverted File using a RDBMS

Term-ID Term IDF

T1 Night 1

T2 To 2

… … …

Term-ID Doc-ID TF

T1 2 1

T2 1 2

… … …

Term-ID Doc-ID Pos

T1 2 6

T2 1 9

T2 1 11

… … …

night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 1,2
was 1,2

Doc # TF Pos
2 1 6
1 1 1
1 1 14
2 1 15
1 1 6
1 2 3
1 2 12
2 2 9
2 2 12
1 1 15
1 1 4
2 1 13
1 2 9
1 2 11

Ulf Leser: Information Retrieval 45

Example Query 1

• Boolean: All docs containing terms “night” and “to”
– SELECT D1.docid

FROM terms T1, terms T2, termdoc D1, termdoc D2
WHERE T1.term=‘night’ AND T2.term=‘to’ AND
 D1.termid=T1.termid AND
 D2.termid=T2.termid AND
 D1.docid = D2.docid;

Term-ID Term IDF

T1 Night 1

T2 To 2

Term-ID Doc-ID TF

T1 2 1

T2 1 2

… … …

Term-ID Doc-ID Pos

T1 2 6

T2 1 9

T2 1 11

terms
pos termdoc

Ulf Leser: Information Retrieval 46

Example Query 2

• VSM queries
– We need to compute the inner product of two vectors

• We ignore normalization
• We assume TF-values of query terms are 1, others are 0

– It suffices to aggregate TF values of matching terms per doc

• Example: Compute score for “night rider” (two terms)
– SELECT did, sum(tf)

FROM (SELECT D.docid did, T.term term, tf
 FROM terms T, termdoc D
 WHERE T.term=‘night’ AND D.termid=T.termid)
 UNION
 SELECT D.docid did, T.term term, tf
 FROM terms T, termdoc D
 WHERE T.term=‘rider’ AND D.termid=T.termid) docs
GROUP BY did;

Ulf Leser: Information Retrieval 47

Access Methods in a RDBMS

• Use B*-Indices on ID columns
• Searching a term

– Requires O(log(|K|) random-access IO
• Mind the base of the logarithm: Block size
• For <100M terms, this usually means <3 IO (cache!)

– Accessing the posting list: O(log(n)) quasi-random-access IO
• Where n is the number of term occurrences in D
• Access is a lookup with term-ID, then seq. scan along the B*-leaves

– Compared to IR: Dictionary in memory, posting is accessed by
direct link, then only sequential IO

• Advantages: Simple, easy to build
• Disadvantages: Much slower

– More IO, general RDBMS overhead, space overhead for keys, …

Ulf Leser: Information Retrieval 48

Self Assessment

• Explain idea and structure of inverted files?
• What are possible data structures for the dictionary?

Advantages / disadvantages?
• How can posting lists be managed?
• How much bigger is an inverted file with positions than

without?
• How can one efficiently build a large inverted file from

scratch?

	Foliennummer 1
	Erinnerung
	Content of this Lecture
	Full-Text Indexing
	Inverted Files (or Inverted Index)
	Building an Inverted File [Andreas Nürnberger, IR-2007]
	Boolean Retrieval
	Necessary and Obvious Tricks
	Less Obvious Tricks
	Adding Frequency
	Searching in VSM
	Improvement
	Illustration H1
	Illustration H2
	Illustration H3
	Space Usage
	Content of this Lecture
	Storing the Dictionary
	Storing the Dictionary
	Dictionary as Sorted Array
	Dictionary as AVL-style Search Tree
	Dictionary as Hash Table
	Dictionary as Prefix Tree (TRIE: Information ReTRIEval)
	Compressed Tries (Patricia Trees)
	Space of a Trie
	Content of this Lecture
	Storing the Posting File
	Storing the Posting File
	Content of this Lecture
	Positional Information
	Answering Phrase Queries
	Effects
	Encoding
	Bi-Gram Index
	Bi-Gram Index
	Proximity Search
	Content of this Lecture
	Building an Inverted File
	Blocked, Sort-Based Indexing
	Updating an index: INSERT dnew
	Using Auxiliary Indexes
	Content of this Lecture
	Implementing an Inverted File using a RDBMS
	Example Query 1
	Example Query 2
	Access Methods in a RDBMS
	Self Assessment

