

Network Reconstruction

Ulf Leser

Content

- Network reconstruction
- Boolean models
- Correlation-Based Approaches: REVEAL / ARACNE
- Example
- Quantitative network reconstruction

Networks

How do we know? Network reconstruction

Approaches to Network Reconstruction

- By many, many small-scale experiments
- By mathematical modeling from high-throughput data sets
- By evolutionary inference from model organisms
- By curation from the literature (see first bullet)

Reconstruction from Indirect High-Throughput Data

- Network reconstruction, re-engineering, inference, ...
- Idea: Derive network from indirect observations
- Network: Links and their effect (strength, activation, ...)
- We usually assume the players (genes, metabolites, ...) to be given
- Observation: High-throughput measurements
- Here: Transcriptome, microarrays, RNA-Seq
- Indirect: We try to infer physical causality by correlation of expression intensities
- Warning: All current methods are highly reductionist

Reconstruction from Indirect High-Throughput Data

- Quantitative time-resolved network inference: Infer intensities of activities over time
- Very complicated
- Dynamic networks: Synchronize time and discretize activity
- Nodes get one of two states: active / inactive
- Edged determine how states propagate through the network
- Propagation proceeds in synchronized steps
- Current states determine future states of connected nodes

Boolean Networks

- Definition

A Boolean Network is a set of nodes V with

- Every node has an associated Boolean state (on/off)
- Every node is labeled with a Boolean function over the states of nodes
- Visualization
- We map a BN V into a digraph $G=(X, Y)$ by:
- $\mathrm{X}=\mathrm{V}$
- $Y=\{(v, w) \mid v, w \in X$ and w is part of the boolean function of node $v\}$
- G has less information than B
- Boolean formulas cannot be derived from G

Boolean Network for Biology

- Vertices = genes
- Boolean formulas: Interplay of other genes necessary to active (reguate) a node
- An edge (v, w) vizualises an effect of v on w
- Simplistic: No cofactors, no cellular context, no binding affinity, no time, no kinetics, ...

Static Boolean Networks

- Definition

A state of a Boolean Network is a labelling of all nodes with TRUE or FALSE.
A state S of a Boolean Network is called consistent, when the state of every node equals the value of its boolean function

- Remarks
- Not very interesting - nothing ever changes
- Not every BN has a consistent state (e.g. $f_{A}(B)=B, f_{B}(A)=$ NOT A)
$f_{A}(B)=\operatorname{not} B$
$f_{B}(A, B)=A$ and not C
$f_{C}(B)=B$

Network Dynamics

- Definition

A Dynamic Boolean Network (DBN) is a Boolean network where every node v is assigned a sequence of states $v_{0}, v_{1}, v_{2}, \ldots$ such that the state of v_{t} with $t>0$ equals the value of the Boolean function of v applied to the states w_{t-1} of all incoming nodes w of v. The initial states at $t=0$ are arbitrary.

- Remarks
- Models the state of every gene over time
- States at time point t only depend on states at time point t-1
- No buffering, slow/fast reactions ...
- Deterministic: Given all states at a time t, any state at any later time point can be uniquely determined

Example

Boolean Network Wiring Diagram

INPUT				OUTPUT			
A	B	C	A^{\prime}	B^{\prime}	C^{\prime}		
0	0	0	0	0	1		
0	0	1	0	0	1		
0	1	0	1	0	1		
0	1	1	1	0	1		
1	0	0	0	0	0		
1	0	1	0	1	0		
1	1	0	1	0	0		
1	1	1	1	1	0		

Transition table
Source: Filkov, „Modeling Gene Regulation", 2003

Example: Changes over TIme

$$
\begin{aligned}
& f_{A}(B)=B \\
& f_{B}(A, C)=A \text { and } C \\
& f_{C}(A)=\operatorname{not} A
\end{aligned}
$$

Boolean Network

genes time	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{0}$	1	1	0
$\mathbf{1}$	1	0	0
$\mathbf{2}$	0	0	0
$\mathbf{3}$	0	0	1
$\mathbf{4}$	0	0	1
$\mathbf{5}$	\ldots	\ldots	\ldots

Network Analysis

- Many things can be analyzed using DBN
- For instance, an attractor is a (set of) states towards which the network state converges
- Point attractor: State which cannot be left any more
- Cyclic attractor: A series of states which will repeat forever
- Every DBN must have at least one attractor, as the number of network states is finite - we must "repeat" after at most $2^{|V|}$ steps
- Number / shape of attractors depend largely on size of network and complexity of Boolean functions
- However, we want to reconstruct networks

Network Reconstruction

- Assume we know all genes, but not their relationships
- Assume that the states of genes only depends on (the states of) the other genes in the past
- Assume we observe the states of n genes over m time points (a matrix S; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?

genes time	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{0}$	1	1	0
$\mathbf{1}$	0	0	1
$\mathbf{2}$	1	0	1
$\mathbf{3}$	1	1	0
$\mathbf{4}$	0	0	1
$\mathbf{5}$	\ldots	\ldots	\ldots

Example

genes time	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{0}$	1	1	0
$\mathbf{1}$	0	0	1
$\mathbf{2}$	1	0	0
$\mathbf{3}$	1	1	0
$\mathbf{4}$	0	0	1
$\mathbf{5}$	\ldots	\ldots	\ldots

Formal Problem

- Definition

Let $S_{t} 0 \leq t \leq m$, be the vector of all observed states of all genes at time point t. A DBN G with functions f_{1}, \ldots, f_{n}, $n=/ V \mid$, is called

- consistent with S_{t} iff $S_{t}=\left[f_{1}\left(S_{t-1}\right), f_{2}\left(S_{t-1}\right), \ldots f_{n}\left(S_{t-1}\right)\right]$
- consistent with S iff it is consistent for all $S_{t} 1 \leq t \leq m$
- The Boolean network reconstruction problem Given an observation S over a set V, find a DBN G that is consistent with S.
- Remark
- Reconstruction means finding the functions $f_{1}, \ldots f_{n}$

Solutions

- Clearly, there are many observations S for which no consistent G exists
- Recall that DBN are deterministic
- Imagine $\mathrm{S}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}+1}$ and $\mathrm{S}_{\mathrm{u}}, \mathrm{S}_{\mathrm{u}+1}$ with $\mathrm{S}_{\mathrm{t}}=\mathrm{S}_{\mathrm{u}}$ but $\mathrm{S}_{\mathrm{t}+1} \neq \mathrm{S}_{\mathrm{u}+1}$
- Also, there are many observation S for which more than one consistent G exists
- Every time point narrows the options for G - the longer S, the (monotonically) less consistent G's exist

Optimal Networks

- Definition
- For a DBN G, let size(G) be the total number of variables (edges) appearing in the Boolean functions of G
- A DBN G is minimal for observation S, if G is consistent with S and there is no G^{\prime} which is also consistent with S and size $\left(G^{\prime}\right)<\operatorname{size}(G)$
- Remark
- Parsimony assumption: Small models are better
- Thus, the smallest network is the best - functions are as simple as possible, nothing is inferred that is not enforced by the data
- Not necessarily unique

Naïve Algorithm

```
N = V;
for k=1...n # length of functions
    for every n in N # all unexplained nodes
        test all functions f of size k for n on S;
        if f is consistent for n on S
            N := N \ n; # n is explained
            Add f to network;
        end if;
    end for;
end for;
```

- Exhaustive naïve algorithm for finding minimal networks
- Very complex (AND, OR, NOT, no paranthesis)
- $k=1$: $2 n$ functions
- $k=2: 2 * 2 n * 2 n=O\left(n^{2}\right)$ functions
...
- General: $\mathrm{O}\left(2^{2 k-1 *} \mathrm{n}^{\mathrm{k}}\right)$ functions

Pros and Cons

- Application (transcriptome data)
- Perform time-series gene expression experiments
- Brutally discretize each measurement: Genes are on or off
- Reconstruct DBN
- Pros: Simple
- Cons
- Binary values are not capturing reality
- Nature has no synchronized time or reactions
- No quantification ("it needs 2*A and one B to regulate C")
- Only small networks are solvable
- No unique solutions
- ...

Content

- Network reconstruction
- Boolean models
- Correlation-Based Approaches: REVEAL / ARACNE
- Example
- Quantitative network analysis

Towards Reality

- There are less complex \& more robust algorithms
- REVEAL replaces Boolean functions by mutual information; correlations rather than deterministic switching
- ARACNE is even simpler: Build correlation network and removal some (presumably indirect) correlations

Foundations

- Definition

Let X, Y be two discrete random variables. The mutual information $M I(X, Y)$ is defined as

$$
M I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) * \log \left(\frac{p(x, y)}{p(x) * p(y)}\right)
$$

- Remark
- Measure the variable's mutual dependency
- Deviation of observation ($p(x, y)$) from expectation in case of independence ($\mathrm{p}(\mathrm{x}) * \mathrm{p}(\mathrm{y})$)
- How much does x determines the state of y (and vice versa)?
- How important is it to know x to know y (and vice versa)?
- Similar measures: Information gain, pearson correlation, conditional entropy, ...
- Many are assymetric

Example

$$
M I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) * \log \left(\frac{p(x, y)}{p(x) * p(y)}\right)
$$

$\mathbf{p}(\mathbf{x}, \mathbf{y})$	$\mathbf{y}=\mathbf{0}$ $\mathbf{p}(\mathbf{y}=\mathbf{0})=\mathbf{0 . 6}$	$\mathbf{y}=\mathbf{1}$ $\mathbf{p}(\mathbf{y}=\mathbf{1})=\mathbf{0 . 4}$
$\mathbf{x}=\mathbf{0} ; \mathbf{p}(\mathbf{x}=\mathbf{0})=\mathbf{0 . 2}$	0,12	0,08
$\mathbf{x}=\mathbf{1} ; \mathbf{p}(\mathbf{x}=\mathbf{1})=\mathbf{0 . 8}$	0,48	0,32

$\mathrm{Ml}(\mathrm{X}, \mathrm{Y})=0$

$\mathbf{p}(\mathbf{x}, \mathbf{y})$	$\mathbf{y}=\mathbf{0}$ $\mathbf{p}(\mathbf{y}=\mathbf{0})=\mathbf{0 . 6}$	$\mathbf{y}=\mathbf{1}$ $\mathbf{p}(\mathbf{y}=\mathbf{1})=\mathbf{0 . 4}$
$\mathbf{x}=\mathbf{0} ; \mathbf{p}(\mathbf{x}=\mathbf{0})=\mathbf{0 . 2}$	0,19	0,20
$\mathbf{x}=\mathbf{1} ; \mathbf{p}(\mathbf{x}=\mathbf{1})=\mathbf{0 . 8}$	0,23	0,38

$\mathrm{Ml}(X, Y)=0,35$

Two more Facts

- With a little math, we find

$$
M I(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

- $H(X)$: Entropy of X
- $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$: Conditional entropy of X given Y
- It follows: $\mathrm{Ml}(\mathrm{X}, \mathrm{Y})<\min (\mathrm{H}(\mathrm{X}), \mathrm{H}(\mathrm{Y}))$
- In cace of $H(X \mid Y)=0$ or $H(Y \mid X)=0$, which means that $X(Y)$ completely determines $Y(X)$
- This defines a maximal value for $\mathrm{Ml}(\mathrm{X}, \mathrm{Y})$
- MI can be extended to sets of three, four, ... variables
- Like Boolean functions over three, four, ... variables
- Multivariate mutual information

Application

- Assume m observation of n genes
- Can be m time points, m conditions, m samples, m treatments ...
- REVEAL has no notion of time
- Discretize expression values to 0 or 1 (again)
- Compute for each gene $X p(X=0)$ and $p(X=1)$ is the fraction of observations in which X was 0 / 1
- Compute for each pair X, Y the probabilities $p(X=0, Y=0), \ldots$
- Compute for each triple X, Y, Z the probabilities ...
- ...
- Task: Find network such that every node X has the minimal number of incoming edges with maximal mutual information
- Minimal number of other variables offering maximal explanain

REVEAL Algorithm

```
N = V;
for k=1...n # number of nodes/variables
    for every X in N # all unexplained nodes
        find subset T=( }\mp@subsup{Y}{1}{},\ldots...\mp@subsup{Y}{k}{})\mathrm{ with MI(X, Y , ,..Y (k) = H(X);
        if T exists
        N := N \ X; # n is explained
    end for;
end for;
```

- Very strict: $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{k}}$ must maximally explain X
- Unrealistic - noise, neglected effects, ...
- Still very high complexity ("all subsets...")
- Practical modifications
- Only require $\mid \mathrm{Ml}\left(\mathrm{X}, \mathrm{Y}_{1}, \ldots \mathrm{Y}_{\mathrm{k}}\right)$ - $\mathrm{H}(\mathrm{X}) \mid<\varepsilon$
- Set a maximal k and find best explanation with $\leq k$ edges

ARACNE

- Fast variation of REVEAL which (a) considers each pair in isolation and (b) gives up model minimality
- Idea
- Compute mutual information between all pairs of genes
- This gives a complete network
- Remove edges where $|\mathrm{Ml}(\mathrm{X}, \mathrm{Y})-\mathrm{H}(\mathrm{X})|>\varepsilon$
- ε can be estimated from the distribution of MI - created at random?
- Do not consider composite effects - all Y in isolation
- Remove certain indirect effects ("data processing inequalities")

Data Processing Inequalities

But if we find

with strong	will
effects of A on	appears
B and B on $C ;$	as

- Assumption: If $\operatorname{MI}(X, Z) \leq \min (M I(X, Y), M I(Y, Z))$, then the correlation between $X-Z$ is an indirect effect and removed
- Procedural: In every triangle, remove the smallest edge
- But in which order should triangles be visited?

Content

- Network reconstruction
- Boolean models
- Correlation-Based Approaches: REVEAL ARACNE
- Example
- Quantitative network analysis

Reconstructing the Mammalian Clock

Abbildung 2: Zentrale Gene der zirkadianen Uhr und deren wechselseitiger Einfluss. [UHC ${ }^{+}$05] (Kïsten: Cis-Elemente/Grüne Ovale: Positiv regulierende Gene/Rote Ovnle: Negativ regulierende Gene/Regulationssrichtung 1 Von Gen über farbige Kante xu Cis-Element/Regulationsrichtung 2: Von Cis-Element über graue Kante zn Gen)

- DA Sven Lund, 2015
- Data
- ~630 rather unspecific arrays from GEO
- Compared to two timeresolved clock-specific experiments
- Reconstruction quality of three algorithms
- Aracne, Bayes Networks, Time-Delay Aracne

Results

Kennzatil	Verfahren	TP	TN	FP	FN	Recall	Precision
$\overline{\text { I }}$	Prarson	$5{ }^{5} .75$	20.00	41.00	21.25	0.72	0.57
3	Pearson	4.979	8.718	8.718	4.979	0.068	0.070
$\overline{\bar{x}}$	Bayes	W6.00	73.50	27.50	39.00	0.49	0.57
3	Bays	12.789	10.282	10.282	12.739	0.170	0.020
$\overline{\text { I }}$	ARACNE	18.83	48.00	12.00	56.15	0.25	0.59
5	ARACNE	5.515					

Averages over all methods

Averages over all data sets

Kennzahl	Datemquelle	TP	TN	FP	FN	Recrall	Precision
$\underline{\underline{x}}$	CEO	45.00	26.00	35.00	30.00	0.60	0.57
5	GEO	17.550	16.450	16.450	17.550	0.235	0.094
\underline{x}	Koren*is	95.67	35.22	24.78	39.35	0.48	0.60
5	Korenkitis	16.462	12940	12.940	16.462	0.219	0.097
$\underline{\text { I }}$	Hogenesch	\%0.69	36.67	24.59	44.11	0.41	0.55
5	Hogenewch	15.648	12.708	12.708	15.648	0.208	0.094

- Filtering of ARACNE reduces recall a lot, while precision increases only marginally
- Data set size outweighs specificity - reconstruction about as good using many untargeted arrays or using fewer targeted arrays

Content

- Network reconstruction
- Quantitative network reconstruction

Networks as Equations

- REVEAL / ARACNE infer relationships based on correlation
- Alternative: Describe states as sets of (linear) equations
- No discretization
- Extensibility: Incorporate different types of experiments ("multi omics" - proteome, binding, epigenetic status, ...)
- Still many limitations: Synchronized time, no kinetics
- We look at one simple approach in between reconstruction and analysis (Schacht et al., 2014)
- Differentiates between regulators (transcription factors) and regulated entities (genes)
- Goal: Rank transcription factors by effect strength
- Which are the most important TFs in this data set?
- This involves estimating the impact of TF on genes

Approach

- Assume a network $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where V consists of a set of transcription factors T and a set of genes G
- Transcription factors regulate genes, but not vice versa
- We ignore that a TF may regulate TFs (even including itself)
- Each gene g is regulated by all TFs
- For efficiency, we can also assume this set to be constrained "potential regulators"
- Measurements: m observations for n nodes (genes / TFs)
- We model the expression values of all genes as linear combinations of the expression values of its regulating TFs

$$
g_{i, s}=\beta_{0}+\sum_{t=1}^{|T|} \beta_{t} * \delta_{t, i} * e_{t, s}
$$

- $\mathrm{g}_{\mathrm{i}, \mathrm{s}}$: Expression of gene i in observation s
- β_{0} : Fixed additive offset
- β_{t} : Global activity parameter for transcription factor t
- Independent of observation and gene
- $\delta_{\mathrm{t}, \mathrm{i}}$: Affinity of TF t to gene I
- E.g. Binding strength to promoter
- $\mathrm{e}_{\mathrm{t}, \mathrm{s}}$: Expression of TF t in observation s

Optimization

- Typically, these (large) systems cannot be solved exactly
- Instead, minimize the error

$$
\left|g_{i, s}-\left(\beta_{0}+\sum_{t=1}^{|T|} \beta_{t} * \delta_{t, i} * e_{t, s}\right)\right| \stackrel{!}{=} \min
$$

- ... under a set of constraints
- Several solvers available

Comparison (Trescher \& Leser, 2018)

- Comparison of different tools shows very little agreement
- Research question essentially open - which method is best? How can we infer regulatory activitiy?

Many Other Models

- Stoichiometric networks
- Model the turnover of molecules
- Especially metabolism

- Needs to consider enzymatic effects
- What will a network produce given a certain input?
- Is a network in flux balance?
- Kinetic networks
- Takes into account reaction rates: How many in what time
- No linear relationship
- Leads to systems of differential equations
- Can predict system behavior in time under realistic assumptions

Further Reading

- Liang, S., S. Fuhrman and R. Somogyi (1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symposium on Biocomputing., Hawaii, US.
- Margolin, A. A., I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera and A. Califano (2006). "ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context." BMC Bioinformatics 7((Suppl 1), S7).
- Schacht, T., Oswald, M., Eils, R., Eichmuller, S. B. and Konig, R. (2014). "Estimating the activity of transcription factors by the effect on their target genes." Bioinformatics 30(17): 1401-7.
- Trescher, S., Münchmeyer, Y. and Leser, U. (2017). "Estimating Genome-Wide Regulatory Activity from Multi-Omics Data Sets using Mathematical Optimization." BMC Systems Biology 11:41.
- Klipp, E., Liebermeister, W., Wierling, C. and Kowald, A. (2016). "Systems Biology - a Textbook", Wiley VCH
- Markowetz, F. and Spang, R. (2007). "Inferring cellular networks--a review." BMC Bioinformatics 8 Suppl 6: S5.

