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Networks 

 
How do we know? Network reconstruction 

Chemicals 
Enzymes 
Cofactors 
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Approaches to Network Reconstruction 

 
 
 
 

• By many, many small-scale experiments 
• By mathematical modeling from high-throughput data sets 
• By evolutionary inference from model organisms 
• By curation from the literature (see first bullet) 
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Reconstruction from Indirect High-Throughput Data 

 
• Network reconstruction, re-engineering, inference, … 
• Idea: Derive network from indirect observations 

– Network: Links and their effect (strength, activation, …) 
• We usually assume the players (genes, metabolites, …) to be given 

– Observation: High-throughput measurements 
• Here: Transcriptome, microarrays, RNA-Seq 

– Indirect: We try to infer physical causality by correlation of 
expression intensities 

• Warning: All current methods are highly reductionist 
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Reconstruction from Indirect High-Throughput Data 

 
 

• Quantitative time-resolved network inference: Infer 
intensities of activities over time 
– Very complicated 

• Dynamic networks: Synchronize time and discretize activity 
– Nodes get one of two states: active / inactive 
– Edged determine how states propagate through the network 
– Propagation proceeds in synchronized steps 
– Current states determine future states of connected nodes 
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Boolean Networks 

• Definition 
A Boolean Network is a set of nodes V with 
– Every node has an associated Boolean  

state (on/off) 
– Every node is labeled with a Boolean function  

over the states of nodes  

• Visualization 
– We map a BN V into a digraph G=(X,Y) by: 

• X = V 
• Y = { (v,w) | v,w ∈ X and w is part of the  

boolean function of node v} 

– G has less information than B 
• Boolean formulas cannot be derived from G 
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Boolean Network for Biology 

 
 
 

• Vertices = genes  
• Boolean formulas: Interplay of other genes necessary to 

active (reguate) a node 
• An edge (v,w) vizualises an effect of v on w 
• Simplistic: No cofactors, no cellular context, no binding 

affinity, no time, no kinetics, … 
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Static Boolean Networks 

• Definition 
A state of a Boolean Network is a labelling of all nodes 
with TRUE or FALSE. 
A state S of a Boolean Network is called consistent, when 
the state of every node equals the value of its boolean 
function 

• Remarks  
– Not very interesting – nothing ever changes 
– Not every BN has a consistent state (e.g. fA(B)=B, fB(A)=NOT A) 

fA(B)    = not B 
fB(A,B) = A and not C 
fC(B)    = B 

A B 

C 

A B 

C 
false 
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Network Dynamics 

• Definition 
A Dynamic Boolean Network (DBN) is a Boolean network 
where every node v is assigned a sequence of states 
v0,v1,v2,… such that the state of vt with t>0 equals the 
value of the Boolean function of v applied to the states wt-1 
of all incoming nodes w of v. The initial states at t=0 are 
arbitrary. 

• Remarks 
– Models the state of every gene over time 
– States at time point t only depend on states at time point t-1 

• No buffering, slow/fast reactions … 

– Deterministic: Given all states at a time t, any state at any later 
time point can be uniquely determined 
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Example 

Source: Filkov, „Modeling Gene Regulation“, 2003 

Transition table 
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Example: Changes over TIme 

genes 
time A B C 

0 1 1 0 

1 1 0 0 

2 0 0 0 

3 0 0 1 

4 0 0 1 

5 … … … 
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Network Analysis 

 
• Many things can be analyzed using DBN 
• For instance, an attractor is a (set of) states towards which 

the network state converges 
– Point attractor: State which cannot be left any more 
– Cyclic attractor: A series of states which will repeat forever 
– Every DBN must have at least one attractor, as the number of 

network states is finite – we must “repeat” after at most 2|V| steps 
– Number / shape of attractors depend largely on size of network 

and complexity of Boolean functions 

• However, we want to reconstruct networks 



Ulf Leser: Introduction to Bioinformatics        14 

Network Reconstruction 

• Assume we know all genes, but not their relationships  
• Assume that the states of genes only depends on (the 

states of) the other genes in the past 
• Assume we observe the states of n genes over m time 

points (a matrix S; the observations) 
• Can we re-engineer the Boolean function of every gene 

given a sequence of states? 
genes 

time A B C 

0 1 1 0 

1 0 0 1 

2 1 0 1 

3 1 1 0 

4 0 0 1 

5 … … … 

A B 

C 
S 
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Example 

A B 

C 

genes 
time A B C 

0 1 1 0 

1 0 0 1 

2 1 0 0 

3 1 1 0 

4 0 0 1 

5 … … … 

fA(B)    = not B 
fB(A,B) = A and not B 
fC(B)    = B 
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Formal Problem 

• Definition 
Let St, 0≤t≤m, be the vector of all observed states of all 
genes at time point t. A DBN G with functions f1,…fn, 
n=|V|, is called  
– consistent with St iff St=[f1(St-1), f2(St-1), … fn(St-1)] 
– consistent with S iff it is consistent for all St, 1≤t≤m 

• The Boolean network reconstruction problem 
Given an observation S over a set V, find a DBN G that is 
consistent with S. 

• Remark 
– Reconstruction means finding the functions f1,…fn 
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Solutions 

 
 

• Clearly, there are many observations S for which no 
consistent G exists 
– Recall that DBN are deterministic 
– Imagine St, St+1 and Su, Su+1 with St=Su but St+1≠Su+1 

• Also, there are many observation S for which more than 
one consistent G exists 

• Every time point narrows the options for G – the longer S, 
the (monotonically) less consistent G’s exist 
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Optimal Networks 

 
 

• Definition 
– For a DBN G, let size(G) be the total number of variables (edges) 

appearing in the Boolean functions of G 
– A DBN G is minimal for observation S, if G is consistent with S and 

there is no G’ which is also consistent with S and size(G’)<size(G) 

• Remark 
– Parsimony assumption: Small models are better 
– Thus, the smallest network is the best – functions are as simple as 

possible, nothing is inferred that is not enforced by the data 
– Not necessarily unique 
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Naïve Algorithm 

• Exhaustive naïve algorithm for finding minimal networks 
• Very complex (AND, OR, NOT, no paranthesis) 

– k=1: 2n functions 
– k=2: 2*2n*2n=O(n2) functions 
– … 
– General: O(22k-1*nk) functions 

N = V; 
for k=1…n   # length of functions 
  for every n in N  # all unexplained nodes 
    test all functions f of size k for n on S; 
    if f is consistent for n on S  
      N := N \ n;   # n is explained 
      Add f to network; 
    end if; 
  end for; 
end for; 
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Pros and Cons 

• Application (transcriptome data) 
– Perform time-series gene expression experiments 
– Brutally discretize each measurement: Genes are on or off 
– Reconstruct DBN 

• Pros: Simple 
• Cons 

– Binary values are not capturing reality 
– Nature has no synchronized time or reactions 
– No quantification (“it needs 2*A and one B to regulate C”) 
– Only small networks are solvable 
– No unique solutions 
– … 
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Content 

 
 
 

• Network reconstruction 
– Boolean models 
– Correlation-Based Approaches: REVEAL / ARACNE 
– Example 

• Quantitative network analysis  
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Towards Reality 

 
 
 

• There are less complex & more robust algorithms 
• REVEAL replaces Boolean functions by mutual information; 

correlations rather than deterministic switching 
• ARACNE is even simpler: Build correlation network and 

removal some (presumably indirect) correlations 
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Foundations 

• Definition 
Let X, Y be two discrete random variables. The mutual 
information MI(X,Y) is defined as 

  𝑀𝑀𝑀𝑀 𝑋𝑋,𝑌𝑌 = ∑ ∑ 𝑝𝑝 𝑥𝑥,𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝 𝑥𝑥 ∗𝑝𝑝(𝑦𝑦)𝑦𝑦∈𝑌𝑌𝑥𝑥∈𝑋𝑋  

• Remark 
– Measure the variable’s mutual dependency 

• Deviation of observation (p(x,y)) from expectation in case of 
independence (p(x)*p(y)) 

• How much does x determines the state of y (and vice versa)?  
• How important is it to know x to know y (and vice versa)? 

• Similar measures: Information gain, pearson correlation, 
conditional entropy, … 
– Many are assymetric 
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Example 

p(x,y) y=0 
p(y=0)=0.6 

y=1 
p(y=1)=0.4 

x=0; p(x=0)=0.2 0,12 0,08 

x=1; p(x=1)=0.8 0,48 0,32 

MI(X,Y)=0 

𝑀𝑀𝑀𝑀 𝑋𝑋,𝑌𝑌 = ��𝑝𝑝 𝑥𝑥,𝑦𝑦 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙 
𝑝𝑝(𝑥𝑥, 𝑦𝑦)

𝑝𝑝 𝑥𝑥 ∗ 𝑝𝑝(𝑦𝑦)
𝑦𝑦∈𝑌𝑌𝑥𝑥∈𝑋𝑋

 

p(x,y) y=0 
p(y=0)=0.6 

y=1 
p(y=1)=0.4 

x=0; p(x=0)=0.2 0,19 0,20 

x=1; p(x=1)=0.8 0,23 0,38 

MI(X,Y)=0,35 
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Two more Facts 

• With a little math, we find  
MI(X,Y) = H(X) – H(X|Y) = H(Y)-H(Y|X) 

 

– H(X): Entropy of X 
– H(X|Y): Conditional entropy of X given Y 

• It follows: MI(X,Y) < min(H(X),H(Y)) 
– In cace of H(X|Y)=0 or H(Y|X)=0, which means that X (Y) 

completely determines Y (X) 
– This defines a maximal value for MI(X,Y) 

• MI can be extended to sets of three, four, … variables 
– Like Boolean functions over three, four, … variables 
– Multivariate mutual information 
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Application 

• Assume m observation of n genes  
– Can be m time points, m conditions, m samples, m treatments … 
– REVEAL has no notion of time 

• Discretize expression values to 0 or 1 (again) 
• Compute for each gene X p(X=0) and p(X=1) is the 

fraction of observations in which X was 0 / 1 
– Compute for each pair X,Y the probabilities p(X=0, Y=0), …  
– Compute for each triple X,Y,Z the probabilities …  
– … 

• Task: Find network such that every node X has the 
minimal number of incoming edges with maximal mutual 
information  
– Minimal number of other variables offering maximal explanain 
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REVEAL Algorithm 

• Very strict: Y1,…,Yk must maximally explain X 
– Unrealistic – noise, neglected effects, … 
– Still very high complexity (“all subsets…”) 

• Practical modifications 
– Only require |MI(X,Y1,…Yk) - H(X)| < ε 
– Set a maximal k and find best explanation with ≤k edges 

N = V; 
for k=1…n   # number of nodes/variables 
  for every X in N  # all unexplained nodes 
    find subset T=(Y1,…Yk) with MI(X,Y1,…Yk) = H(X); 
    if T exists  
      N := N \ X;   # n is explained 
  end for; 
end for; 
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ARACNE 

 
 

• Fast variation of REVEAL which (a) considers each pair in 
isolation and (b) gives up model minimality 

• Idea 
– Compute mutual information between all pairs of genes 

• This gives a complete network 

– Remove edges where |MI(X,Y)-H(X)| > ε 
• ε can be estimated from the distribution of MI – created at random? 
• Do not consider composite effects – all Y in isolation 

– Remove certain indirect effects (“data processing inequalities”) 
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Data Processing Inequalities 

A B 

C 

Imagine 
with strong 

effects of A on 
B and B on C; 

A B 

C 

will 
appears 

as  

But if we 
find 

A B 

C 

which edge 
most probably 
is an artifact? 

• Assumption: If MI(X,Z) ≤ min(MI(X,Y),MI(Y,Z)), then the 
correlation between X-Z is an indirect effect and removed 

• Procedural: In every triangle, remove the smallest edge 
– But in which order should triangles be visited? 
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Content 
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• Quantitative network analysis  
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Reconstructing the Mammalian Clock 

 
• DA Sven Lund, 2015 
• Data 

– ~630 rather unspecific arrays 
from GEO 

– Compared to two time-
resolved clock-specific 
experiments 

• Reconstruction quality of 
three algorithms  
– Aracne, Bayes Networks, 

Time-Delay Aracne 
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Results 

• Filtering of ARACNE reduces recall a lot, while precision 
increases only marginally 

• Data set size outweighs specificity – reconstruction about 
as good using many untargeted arrays or using fewer 
targeted arrays 

Averages over all 
data sets 

Averages over all 
methods 
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Content 

 
 
 
 

• Network reconstruction 
• Quantitative network reconstruction 
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Networks as Equations 

• REVEAL / ARACNE infer relationships based on correlation 
• Alternative: Describe states as sets of (linear) equations 

– No discretization 
– Extensibility: Incorporate different types of experiments (“multi 

omics” – proteome, binding, epigenetic status, …) 
– Still many limitations: Synchronized time, no kinetics 

• We look at one simple approach in between reconstruction 
and analysis (Schacht et al., 2014) 
– Differentiates between regulators (transcription factors) and 

regulated entities (genes) 
– Goal: Rank transcription factors by effect strength 

• Which are the most important TFs in this data set? 
• This involves estimating the impact of TF on genes 
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Approach 

• Assume a network G=(V,E), where V consists of a set of 
transcription factors T and a set of genes G 
– Transcription factors regulate genes, but not vice versa 

• We ignore that a TF may regulate TFs (even including itself) 

– Each gene g is regulated by all TFs 
• For efficiency, we can also assume this set to be constrained – 

“potential regulators” 

• Measurements: m observations for n nodes (genes / TFs) 
• We model the expression values of all genes as linear 

combinations of the expression values of its regulating TFs 

𝑙𝑙𝑖𝑖,𝑠𝑠 = 𝛽𝛽0 + �𝛽𝛽𝑡𝑡 ∗ 𝛿𝛿𝑡𝑡,𝑖𝑖 ∗ 𝑒𝑒𝑡𝑡,𝑠𝑠

|𝑇𝑇|

𝑡𝑡=1
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𝑙𝑙𝑖𝑖,𝑠𝑠 = 𝛽𝛽0 + �𝛽𝛽𝑡𝑡 ∗ 𝛿𝛿𝑡𝑡,𝑖𝑖 ∗ 𝑒𝑒𝑡𝑡,𝑠𝑠

|𝑇𝑇|

𝑡𝑡=1

 

Model 

• gi,s: Expression of gene i in observation s 

• β0: Fixed additive offset 
• βt: Global activity parameter for transcription factor t 

– Independent of observation and gene 

• δt,i: Affinity of TF t to gene I 
– E.g. Binding strength to promoter 

• et,s: Expression of TF t in observation s 

Given Sought 

Measured 
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Optimization 

 
• Typically, these (large) systems cannot be solved exactly 
• Instead, minimize the error 

 
 
 

 

• … under a set of constraints  
• Several solvers available  

 

𝑙𝑙𝑖𝑖,𝑠𝑠 − 𝛽𝛽0 + �𝛽𝛽𝑡𝑡 ∗ 𝛿𝛿𝑡𝑡,𝑖𝑖 ∗ 𝑒𝑒𝑡𝑡,𝑠𝑠

|𝑇𝑇|

𝑡𝑡=1

= 𝑚𝑚𝑚𝑚𝑚𝑚 ! 
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Comparison (Trescher & Leser, 2018) 

• Comparison of different tools shows very little agreement 
• Research question essentially open – which method is 

best? How can we infer regulatory activitiy? 
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Many Other Models 

 
• Stoichiometric networks  

– Model the turnover of molecules 
• Especially metabolism 

– Needs to consider enzymatic effects 
– What will a network produce given a certain input? 
– Is a network in flux balance? 

• Kinetic networks 
– Takes into account reaction rates: How many in what time 

• No linear relationship 

– Leads to systems of differential equations 
– Can predict system behavior in time under realistic assumptions 
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