

Network Reconstruction

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL / ARACNE
 - Example
- Quantitative network reconstruction

Networks

Abbildung 2: Zentrale Gene der zirkadianen Uhr und deren wechselseitiger Einfluss. [UHC+05] (Kästen: Cis-Elemente/Grüne Ovale: Positiv regulierende Gene/Rote Ovale: Negativ regulierende Gene/Regulationsrichtung 1: Von Gen über farbige Kante zu Cis-Element/Regulationsrichtung 2: Von Cis-Element über graue Kante zu Gen)

How do we know? Network reconstruction

- By many, many small-scale experiments
- By mathematical modeling from high-throughput data sets
- By evolutionary inference from model organisms
- By curation from the literature (see first bullet)

- Network reconstruction, re-engineering, inference, ...
- Idea: Derive network from indirect observations
 - Network: Links and their effect (strength, activation, ...)
 - We usually assume the players (genes, metabolites, ...) to be given
 - Observation: High-throughput measurements
 - Here: Transcriptome, microarrays, RNA-Seq
 - Indirect: We try to infer physical causality by correlation of expression intensities
- Warning: All current methods are highly reductionist

- Quantitative time-resolved network inference: Infer intensities of activities over time
 - Very complicated
- Dynamic networks: Synchronize time and discretize activity
 - Nodes get one of two states: active / inactive
 - Edged determine how states propagate through the network
 - Propagation proceeds in synchronized steps
 - Current states determine future states of connected nodes

Boolean Networks

- Definition
 - A Boolean Network is a set of nodes V with
 - Every node has an associated Boolean state (on/off)
 - Every node is labeled with a Boolean function over the states of nodes
- Visualization
 - We map a BN V into a digraph G=(X,Y) by:
 - X = V
 - Y = { (v,w) | v,w ∈ X and w is part of the boolean function of node v}
 - G has less information than B
 - Boolean formulas cannot be derived from G

 $f_A(B) = B$ $f_B(A,C) = A$ and C $f_C(A) = \text{not } A$ Boolean Network

- Vertices = genes
- Boolean formulas: Interplay of other genes necessary to active (reguate) a node
- An edge (v,w) vizualises an effect of v on w
- Simplistic: No cofactors, no cellular context, no binding affinity, no time, no kinetics, ...

• Definition

A state of a Boolean Network is a labelling of all nodes with TRUE or FALSE.

A state S of a Boolean Network is called consistent, when the state of every node equals the value of its boolean function

- Remarks
 - Not very interesting nothing ever changes
 - Not every BN has a consistent state (e.g. $f_A(B)=B$, $f_B(A)=NOT A$)

• Definition

A Dynamic Boolean Network (DBN) is a Boolean network where every node v is assigned a sequence of states $v_0, v_1, v_2, ...$ such that the state of v_t with t>0 equals the value of the Boolean function of v applied to the states w_{t-1} of all incoming nodes w of v. The initial states at t=0 are arbitrary.

- Remarks
 - Models the state of every gene over time
 - States at time point t only depend on states at time point t-1
 - No buffering, slow/fast reactions ...
 - Deterministic: Given all states at a time t, any state at any later time point can be uniquely determined

Example

Transition table

Source: Filkov, "Modeling Gene Regulation", 2003

$$f_A(B) = B$$

$$f_B(A,C) = A \text{ and } C$$

$$f_C(A) = \text{not } A$$

Boolean Network

genes time	А	В	С		
0	1	1	0		
1	1	0	0		
2	0	0	0		
3	0	0	1		
4	0	0	1		
5	5				

- Many things can be analyzed using DBN
- For instance, an attractor is a (set of) states towards which the network state converges
 - Point attractor: State which cannot be left any more
 - Cyclic attractor: A series of states which will repeat forever
 - Every DBN must have at least one attractor, as the number of network states is finite – we must "repeat" after at most 2^{|V|} steps
 - Number / shape of attractors depend largely on size of network and complexity of Boolean functions
- However, we want to reconstruct networks

- Assume we know all genes, but not their relationships
- Assume that the states of genes only depends on (the states of) the other genes in the past
- Assume we observe the states of n genes over m time points (a matrix S; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?

A	В	•
С		5

genes time	А	В	С	
0	1	1	0	
1	0	0	1	
2	1	0	1	
3	1	1	0	
4	0	0		
5				

Example

genes time	А	В	С		
0	1	1	0		
1	0	0	1		
2	1	0	0		
3	1	1	0		
4	4 0		1		
5	5				

• Definition

Let S_t , $0 \le t \le m$, be the vector of all observed states of all genes at time point t. A DBN G with functions f_1, \dots, f_n , n=|V|, is called

- consistent with S_t iff $S_t = [f_1(S_{t-1}), f_2(S_{t-1}), \dots, f_n(S_{t-1})]$
- consistent with S iff it is consistent for all S_t , $1 \le t \le m$
- The Boolean network reconstruction problem Given an observation S over a set V, find a DBN G that is consistent with S.
- Remark
 - Reconstruction means finding the functions $f_1, \dots f_n$

- Clearly, there are many observations S for which no consistent G exists
 - Recall that DBN are deterministic
 - Imagine S_{t} , S_{t+1} and S_{u} , S_{u+1} with $S_t=S_u$ but $S_{t+1} \neq S_{u+1}$
- Also, there are many observation S for which more than one consistent G exists
- Every time point narrows the options for G the longer S, the (monotonically) less consistent G's exist

- Definition
 - For a DBN G, let size(G) be the total number of variables (edges) appearing in the Boolean functions of G
 - A DBN G is minimal for observation S, if G is consistent with S and there is no G' which is also consistent with S and size(G')<size(G)
- Remark
 - Parsimony assumption: Small models are better
 - Thus, the smallest network is the best functions are as simple as possible, nothing is inferred that is not enforced by the data
 - Not necessarily unique

Naïve Algorithm

- Exhaustive naïve algorithm for finding minimal networks
- Very complex (AND, OR, NOT, no paranthesis)
 - k=1: 2n functions
 - $k=2: 2*2n*2n=O(n^2)$ functions
 - ...
 - General: O(2^{2k-1}*n^k) functions

Pros and Cons

- Application (transcriptome data)
 - Perform time-series gene expression experiments
 - Brutally discretize each measurement: Genes are on or off
 - Reconstruct DBN
- Pros: Simple
- Cons
 - Binary values are not capturing reality
 - Nature has no synchronized time or reactions
 - No quantification ("it needs 2*A and one B to regulate C")
 - Only small networks are solvable
 - No unique solutions

— ...

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL / ARACNE
 - Example
- Quantitative network analysis

- There are less complex & more robust algorithms
- REVEAL replaces Boolean functions by mutual information; correlations rather than deterministic switching
- ARACNE is even simpler: Build correlation network and removal some (presumably indirect) correlations

Foundations

• Definition

Let X, Y be two discrete random variables. The mutual information MI(X,Y) is defined as

$$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) * \log\left(\frac{p(x,y)}{p(x)*p(y)}\right)$$

- Remark
 - Measure the variable's mutual dependency
 - Deviation of observation (p(x,y)) from expectation in case of independence (p(x)*p(y))
 - How much does x determines the state of y (and vice versa)?
 - How important is it to know x to know y (and vice versa)?
- Similar measures: Information gain, pearson correlation, conditional entropy, ...
 - Many are assymetric

Example

$$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) * \log\left(\frac{p(x,y)}{p(x) * p(y)}\right)$$

р(х,у)	y=0 p(y=0)=0.6	y=1 p(y=1)=0.4		
x=0; p(x=0)=0.2	0,12	0,08		
x=1; p(x=1)=0.8	0,48	0,32		

$$MI(X,Y)=0$$

р(х,у)	y=0 p(y=0)=0.6	y=1 p(y=1)=0.4		
x=0; p(x=0)=0.2	0,19	0,20		
x=1; p(x=1)=0.8	0,23	0,38		

$$MI(X,Y) = 0,35$$

Two more Facts

• With a little math, we find

MI(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

- H(X): Entropy of X
- H(X|Y): Conditional entropy of X given Y
- It follows: MI(X,Y) < min(H(X),H(Y))
 - In cace of H(X|Y)=0 or H(Y|X)=0, which means that X (Y) completely determines Y (X)
 - This defines a maximal value for MI(X,Y)
- MI can be extended to sets of three, four, ... variables
 - Like Boolean functions over three, four, ... variables
 - Multivariate mutual information

Application

- Assume m observation of n genes
 - Can be m time points, m conditions, m samples, m treatments ...
 - REVEAL has no notion of time
- Discretize expression values to 0 or 1 (again)
- Compute for each gene X p(X=0) and p(X=1) is the fraction of observations in which X was 0 / 1
 - Compute for each pair X,Y the probabilities p(X=0, Y=0), ...
 - Compute for each triple X,Y,Z the probabilities ...
 - ...
- Task: Find network such that every node X has the minimal number of incoming edges with maximal mutual information
 - Minimal number of other variables offering maximal explanain

REVEAL Algorithm

- Very strict: Y₁,...,Y_k must maximally explain X
 - Unrealistic noise, neglected effects, ...
 - Still very high complexity ("all subsets...")
- Practical modifications
 - Only require $|MI(X,Y_1,...Y_k) H(X)| < \epsilon$
 - Set a maximal k and find best explanation with \leq k edges

- Fast variation of REVEAL which (a) considers each pair in isolation and (b) gives up model minimality
- Idea
 - Compute mutual information between all pairs of genes
 - This gives a complete network
 - Remove edges where $|MI(X,Y)-H(X)| > \varepsilon$
 - ϵ can be estimated from the distribution of MI created at random?
 - Do not consider composite effects all Y in isolation
 - Remove certain indirect effects ("data processing inequalities")

Data Processing Inequalities

- Assumption: If MI(X,Z) ≤ min(MI(X,Y),MI(Y,Z)), then the correlation between X-Z is an indirect effect and removed
- Procedural: In every triangle, remove the smallest edge
 - But in which order should triangles be visited?

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL/ ARACNE
 - Example
- Quantitative network analysis

Reconstructing the Mammalian Clock

Abbildung 2: Zentrale Gene der zirkadianen Uhr und deren wechselseitiger Einfluss. [UHC+05] (Kästen: Cis-Elemente/Grüne Ovale: Positiv regulierende Gene/Rote Ovale: Negativ regulierende Gene/Regulationsrichtung 1: Von Gen über farbige Kante zu Cis-Element/Regulationsrichtung 2: Von Cis-Element über graue Kante zu Gen)

- DA Sven Lund, 2015
- Data
 - ~630 rather unspecific arrays from GEO
 - Compared to two timeresolved clock-specific experiments
- Reconstruction quality of three algorithms
 - Aracne, Bayes Networks, Time-Delay Aracne

Results

Kennzahl	Verfahren	тР	TN	FP	FN	Rec	all P	recision				
I	Pearson	53.75	20.00	41.00	21.25	0.7	2	0.57]			
.5	Pearson	4.979	8.718	8.718	4.979	0.06	8	0.070				
Ī	Bayes	36.00	33.50	27.50	39.00	0.4	8	0.57				
.5	Bayes	12.739	10.282	10.282	12.739	0.15	10	0.020	Averages over all		r all	
\bar{x}	ARACNE	18.88	48.00	13.00	56.13	0.2	5	0.59	Averages over all			
.5	ARACNE	5.515								m	ethous	
_			K	ennzahl	Datenq	uelle	тР	TN	FP	FN	Recall	Precision
Averages over all			ž	GEO		45.00	26.00	35.00	30.00	0.60	0.57	
data sets			s GEO)	17.550	16.480	16.480	17.550	0.235	0.034	
			ź	Korenčič		35.67	36.22	24.78	39.33	0.48	0.60	
			5	s Korenčič		16.462	12.940	12.940	16.462	0.219	0.037	
			ź	Hogenesch		30.89	36.67	24.33	44.11	0.41	0.55	
					1	11 C 10 AV	1.00 2000	19.700	15,640	(1) (1) (2) (2)	(1) (1) (2)	

- Filtering of ARACNE reduces recall a lot, while precision increases only marginally
- Data set size outweighs specificity reconstruction about as good using many untargeted arrays or using fewer targeted arrays

- Network reconstruction
- Quantitative network reconstruction

- REVEAL / ARACNE infer relationships based on correlation
- Alternative: Describe states as sets of (linear) equations
 - No discretization
 - Extensibility: Incorporate different types of experiments ("multi omics" – proteome, binding, epigenetic status, ...)
 - Still many limitations: Synchronized time, no kinetics
- We look at one simple approach in between reconstruction and analysis (Schacht et al., 2014)
 - Differentiates between regulators (transcription factors) and regulated entities (genes)
 - Goal: Rank transcription factors by effect strength
 - Which are the most important TFs in this data set?
 - This involves estimating the impact of TF on genes

Approach

- Assume a network G=(V,E), where V consists of a set of transcription factors T and a set of genes G
 - Transcription factors regulate genes, but not vice versa
 - We ignore that a TF may regulate TFs (even including itself)
 - Each gene g is regulated by all TFs
 - For efficiency, we can also assume this set to be constrained "potential regulators"
- Measurements: m observations for n nodes (genes / TFs)
- We model the expression values of all genes as linear combinations of the expression values of its regulating TFs

$$g_{i,s} = \beta_0 + \sum_{t=1}^{|T|} \beta_t * \delta_{t,i} * e_{t,s}$$

- g_{i,s}: Expression of gene i in observation s
- β₀: Fixed additive offset
- β_t : Global activity parameter for transcription factor t
 - Independent of observation and gene
- $\delta_{t,i}$: Affinity of TF t to gene I
 - E.g. Binding strength to promoter
- e_{t,s}: Expression of TF t in observation s

- Typically, these (large) systems cannot be solved exactly
- Instead, minimize the error

$$\left|g_{i,s} - \left(\beta_0 + \sum_{t=1}^{|T|} \beta_t * \delta_{t,i} * e_{t,s}\right)\right| \stackrel{!}{=} min$$

- ... under a set of constraints
- Several solvers available

- Comparison of different tools shows very little agreement
- Research question essentially open which method is best? How can we infer regulatory activitiy?

Many Other Models

- Stoichiometric networks
 - Model the turnover of molecules
 - Especially metabolism
 - Needs to consider enzymatic effects
 - What will a network produce given a certain input?
 - Is a network in flux balance?
- Kinetic networks
 - Takes into account reaction rates: How many in what time
 - No linear relationship
 - Leads to systems of differential equations
 - Can predict system behavior in time under realistic assumptions

- Liang, S., S. Fuhrman and R. Somogyi (1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symposium on Biocomputing., Hawaii, US.
- Margolin, A. A., I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera and A. Califano (2006). "ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context." BMC Bioinformatics 7((Suppl 1), S7).
- Schacht, T., Oswald, M., Eils, R., Eichmuller, S. B. and Konig, R. (2014). "Estimating the activity of transcription factors by the effect on their target genes." Bioinformatics 30(17): i401-7.
- Trescher, S., Münchmeyer, Y. and Leser, U. (2017). "Estimating Genome-Wide Regulatory Activity from Multi-Omics Data Sets using Mathematical Optimization." BMC Systems Biology 11:41.
- Klipp, E., Liebermeister, W., Wierling, C. and Kowald, A. (2016). "Systems Biology a Textbook", Wiley VCH
- Markowetz, F. and Spang, R. (2007). "Inferring cellular networks--a review." BMC Bioinformatics 8 Suppl 6: S5.