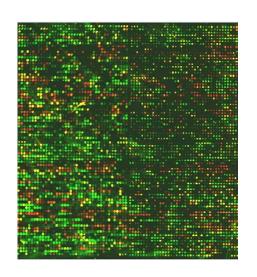
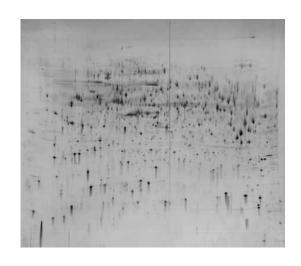



# Proteomics: Large-Scale Identification of Proteins

**Ulf Leser** 

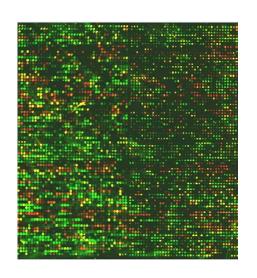

#### This Lecture


- Proteomics
- Separation
- Identification: Mass Spectrometry

#### **Proteomics**

- Genomics =
  Determining the genome of a species
- Transcriptomics =
  Determining the mRNA of a cell / tissue / state
- Proteomics =
  Determining the proteins in a cell / tissue / state
- Proteomics and transcriptomics have mostly identical goals
  - Understanding the processes happening in a cell
  - Differentiate between states, tissues, developmental state, ...
  - Biomarker: Finding protein/mRNA/... (forms, concentrations) that are characteristic for a certain phenotype (e.g., a disease)
- Metabolomics, epigenomics, bibliomics, ...

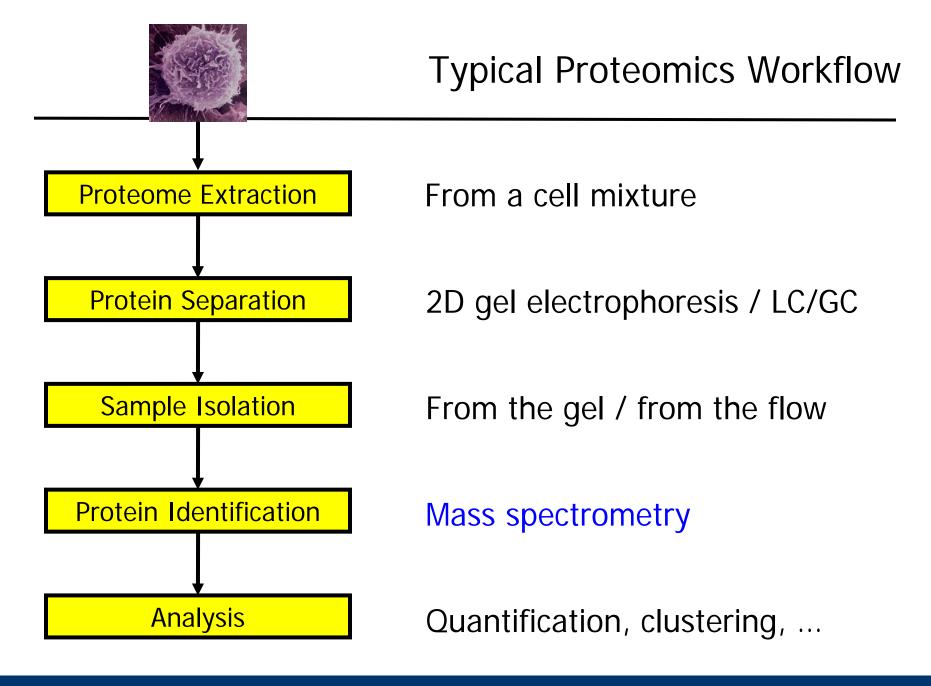
### Proteomics versus Transcriptomics






#### Advantages

- Proteins make you live, not mRNA
- mRNA is only indirect evidence with little correlation with proteome
  - Regulation by miRNA, post-translation modifications, decay, ...
- Protein survive (some time), mRNA is (mostly) transient
- Proteins are favorite drug targets

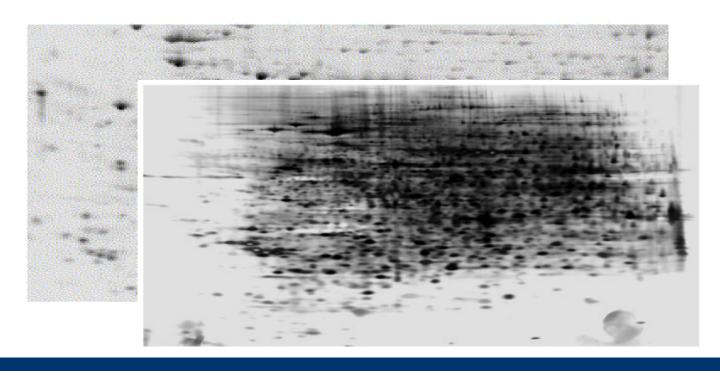

### Proteomics versus Transcriptomics



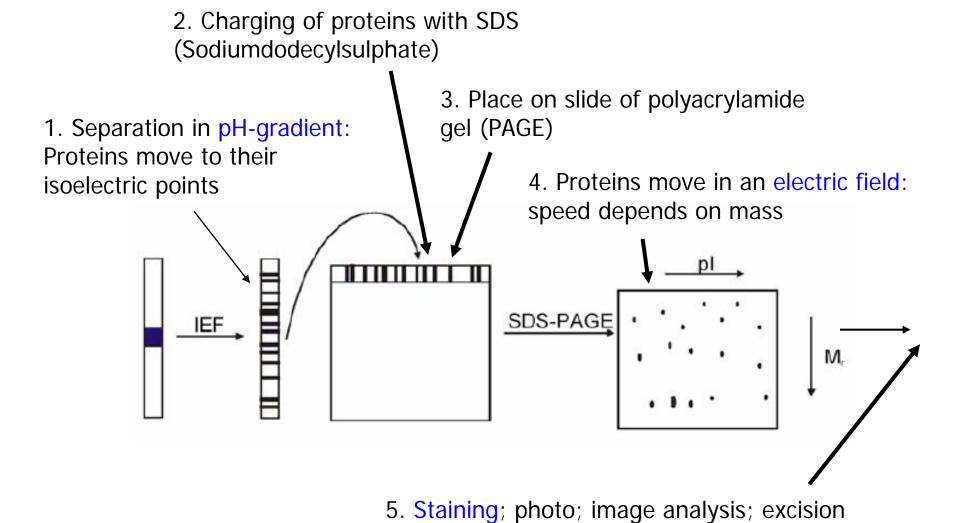


#### Disadvantages

- Scale: ~20K genes, ~300K proteins, ~1M protein forms
- Handling: No PCR, no hybridization, no simple synthesis, no sequencing, no long-term "storage" as clones, high reactivity, ...
- Behavior highly context-dependent: Temperature, solution, pH, ...



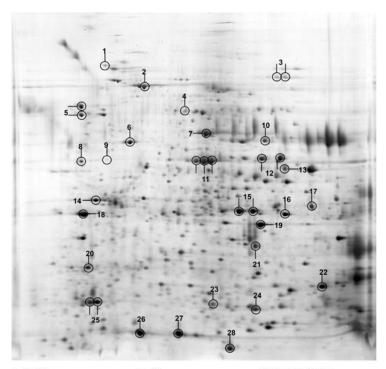

#### This Lecture


- Proteomics
- Separation
- Identification: Mass Spectrometry

### 2D Gel Elektrophoresis

- Separation of proteins in two dimensions
  - Mass
  - Charge
- Every "spot" one protein (hopefully)




#### Method



Ulf Leser: Introduction to Bioinformatics

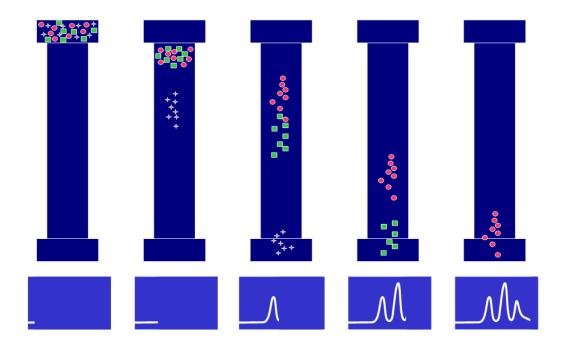
# Analysis

- 2D-Page may separate up to 10.000 proteins
- Under identical conditions, the position of a particular protein is fairly stable
- Software for identification of proteins by position
  - After photo and image analysis
  - Align image to reference
- Various databases of 2D-Gels



- ATP:Guanidino Kinase
- Adenylate Dehydrogenase Calreticulin Actin
- Enolase
- Tropomyosin
- Serpin-like 10 Phosphoglycerate kinase
- 12 Aldolase
- 13 GAPDH
- 14 14-3-3 e
- 15 GST28 16 Triose Phosphate Isomerase
- 17 Elongation Factor Ia 18 14-3-3 homolog I
- 19 GST26 20 Calpain

- 21 Myosin Light Chain
  - 22 Cycophilin
  - 23 Superoxide Dismutase 24 Fatty Acid Binding Protein (Sm14)
  - 25 SME16 26 Thioredoxin
  - 27 Dynein Light Chain
  - 28 Ubiquitin 29 Adenylate Kinase


10

#### Pro / Contra

- Comparably simple and cheap
- Disadvantages
  - No high-throughput much manual work
  - No robust quantification (spot intensity depends on staining)
  - Similar proteins (e.g. protein forms) build overlapping spots
  - Many restrictions
    - No proteins with <20KD or >200KD
    - No highly charged proteins
    - No detection of low concentrations
    - No membrane proteins (depending on method)
    - ...
  - No de-novo protein identification
  - Limited accuracy in comparative identification

# Liquide / Gas Chromatography

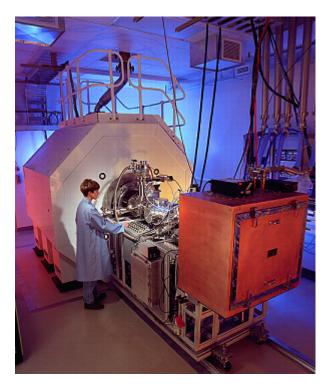
- Other option: GC/LC
  - Chamber contains two phases (liquid / liquid, liquid/gas)
  - Different speeds depending on mass/charge ratio
  - Separation by retention times



#### This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
  - Method
  - Algorithms: Naïve, probabilistic

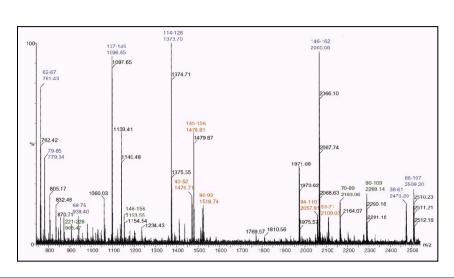
# Mass Spectrometry


- Accelerate particles (must be charged) in an electric field
- Detector measures hits at back wall
- Time of flight (ToF) proportional to mass
  - Other techniques exist (magnetic drift, ...)
- Spectrum of mass peaks is used to identify particle



# Mass Spectrometry




Source: http://imr.osu.edu



Source: http://www.sysbio.org

#### MS for Protein Identification

- Problem: Proteins are fragile and break during acceleration
- Solution
  - Break proteins into peptides before acceleration (digestion)
  - Measure peptides ToF (each peptide one signal)
  - Identify protein based on spectrum of peptide signals
- In theory, every protein has an almost unique spectrum
  - Using modern MS/MS, even different forms of the same protein are separable



# Digestion

#### Trypsin:

Cleaves after Arginine und Lysine if next AA is not Proline

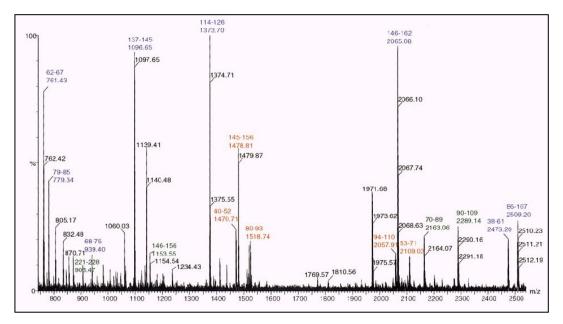
N-Asp-Ala-Gly-Arg

Ser-Glu-Asn-Leu-Ile-Arg

His-Cys-Lys-Pro Lys

Thr-Tyr-C

#### Chymotrypsin:


After Tyr, Trp, Phe, Met

#### Ionization

- Problem: Peptides often are uncharged no acceleration
- Solution
  - MALDI Matrix Assisted Laser Desorption / Ionization
  - Peptide are embedded in a "matrix"
    - Crystallization with charged, light-sensitive molecules
  - Fire on crystal with laser
  - Light-sensitive molecules vaporize and carry peptides with them
  - Accelerate
- Other techniques known
  - E.g. ESI: electrospray ionization

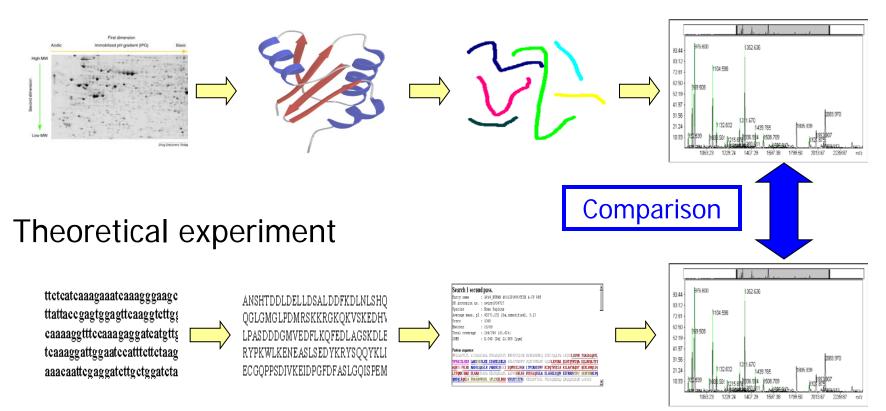
### From Spectra to Peaks

- Detecting peaks and assigning them to peptides is difficult
  - Technical biasin runs / machines
  - Inaccuracies of measurement
  - Inhomogeneous sample preparation
    - Matrix etc.
  - Different quantities of peptides



- Creating a spectrum: Signal processing (not covered here)
  - Peak detection, peak disambiguation, noise filtering, ...

#### This Lecture


- Proteomics
- Separation
- Identification: Mass Spectrometry
  - Method
  - Algorithms: Naïve, probabilistic

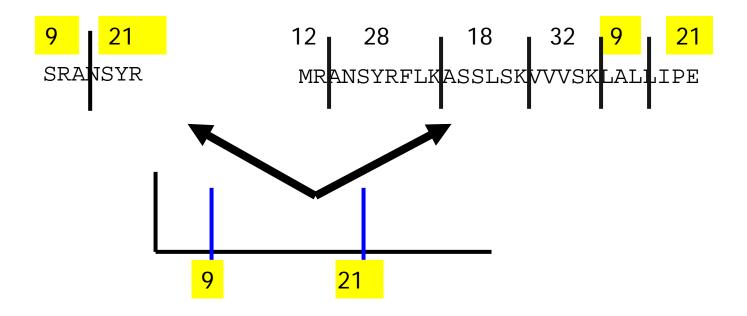
# Algorithms for Protein Identification from Spectra

- We focus on database-based identification
- Idea
  - We have a database D of protein sequences d<sub>1</sub>, d<sub>2</sub>, ...
    - Each d<sub>i</sub> is subjected to electronic digestion set of peptides
    - · For each peptide, we know its theoretical ToF
    - Compute a theoretical spectrum s<sub>i</sub> for each d<sub>i</sub>
  - Measure real spectrum s of unknown protein k
  - Compare empirical spectrum s with all theoretical spectra s<sub>i</sub>
- We can only find what we already know

#### Illustration

#### Real experiment




### Naive Algorithm: Hitcount

- Compare measured spectrum s with all s<sub>i</sub> in DB
- Protein d<sub>i</sub> which has the most peaks in common wins
  - Input:  $s = \{p_1, ..., p_m\}$ , database D with many  $s_i = \{q_{i1}, ..., q_{ij}\}$
  - For each  $s_i$ : Compute  $|s \cap s_i|$
  - Protein d<sub>i</sub> where s<sub>i</sub> has maximal overlap wins
- Complexity?
  - Keep peak lists s and s<sub>i</sub> sorted
  - We need to compare |s| hits with |D| proteins in DB
  - Let q be the average number of peaks in a database spectrum
  - Together:  $\sim (|s|+q)^*|D|$  comparisons
  - Can be sped-up further (indexing)

# Why "Naïve"?

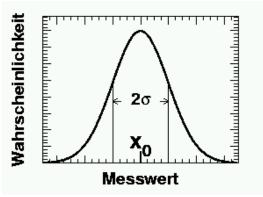
- Peptide masses are not really equal (e.g. isotopes)
  - Small deviation nearest peak; match might not be unique
- Some (short) peptides are more frequent than others
  - Some peptides appear in almost all proteins little signal
  - Smaller peptides are much more frequent but much less specific
    - And peptide length is stochastic
  - Frequent peptides should have a lower impact
- Proteins have different lengths
  - Longer proteins have a higher a-priori chance for more peak matches

# Example



Which one would you prefer?

#### More Problems


- Many sources of error
  - Enzymes don't work 100%
    - Theoretical spectra don't match
  - Protein sequences in DB contain errors
    - Especially when directly translated from genome
    - Leads to theoretical spectra not existing in nature
  - Posttranslational modifications modify real spectra
  - MS is not perfect spurious, shifted, missing peaks
  - Lead to false positive and false negative peak matches
- Closed-world assumption
  - What if real sequence is not in the database?
  - Some protein always has the highest count high enough?
  - No confidence scores

# Practically Relevant Algorithms ??? SEQUAN?

- Heuristic: MOWSE (outdated)
  - Considers total protein mass and peptide frequencies
  - Generates a score
- Probabilistic algorithm: Profound
  - Copes with measurement errors, deviation in protein mass, and different peptide frequencies
  - Generates a probability of match for each protein (~ confidence)
- Many more (and newer) algorithms
  - MASCOT, PeptIdent, ProteinProspector, SEQAN, ...

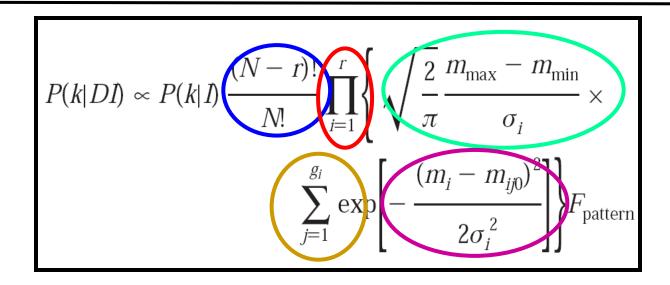
### Example of a Probabilistic Method: ProFound [zcoo]

- Given: Measured spectrum D and a protein k
  - D: Previously s; k: previously s<sub>i</sub>
- ProFound computes prob. p(k|D) that D was produced by k
- The formula is complex; its derivation is even more complex and skipped
- Basic assumption: Measured peptide masses are normally distributed around the "canonical" value
  - Most probable isotope composition



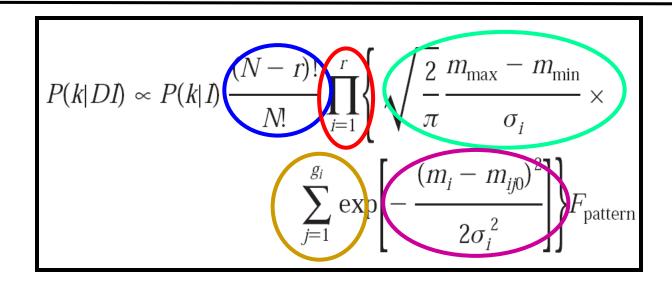
### ProFound Approach

- First step: Assign peaks from k to closest peaks from D
  - A-priori assignment is a strong first filter; errors are propagated
- Then compute probabilities using


$$P(k|DI) \propto P(k|I) \frac{(N-r)!}{N!} \prod_{i=1}^{r} \left\{ \sqrt{\frac{2}{\pi}} \frac{m_{\text{max}} - m_{\text{min}}}{\sigma_i} \times \sum_{j=1}^{g_i} \exp\left[-\frac{(m_i - m_{ij0})^2}{2\sigma_i^2}\right] \right\} F_{\text{pattern}}$$

# Legend

$$P(k|DI) \propto P(k|I) \frac{(N-r)!}{N!} \prod_{i=1}^{r} \left\{ \sqrt{\frac{2}{\pi}} \frac{m_{\text{max}} - m_{\text{min}}}{\sigma_i} \times \sum_{j=1}^{g_i} \exp \left[ -\frac{(m_i - m_{ij0})^2}{2\sigma_i^2} \right] \right\} F_{\text{pattern}}$$


- p(k|D,I) = prob. that protein k was observed by spectrum D given the background information I
- p(k|I): A-priori probability of k in the given species / cell / tissue
- N: Predicted number of peptides of database protein k
- r: Number of hits between D and k (results from initial assignment)
- m<sub>max</sub>, m<sub>min</sub> range of observed masses for current peak (background)
- $\sigma_i$  standard deviation of current peak (background)
- g<sub>i</sub>: How often is the i'th peptide contained in k?
- m<sub>i</sub>: Mean mass of the DB peak (background)
- m<sub>ii0</sub>: Measured mass of j'th occurrence of this peptide
- F<sub>pattern</sub>: Heuristic factor dealing with "overlapping peaks"

### **ProFound Explanation**



- How many of the expected peptides of k did we observe?
- Multiply probabilities of all hits
- "Freedom" of measurements of hits for this peptide
- Many predicted peaks may create only one measured peak
- Probability of the difference between the expected mass and the measured mass (assuming normal distribution)

#### **ProFound Intuition**



- Many hits (r ~ N) score goes down (outweighs influence of more factors in the red product)
- Hits with a small stddev or a broad range score goes up
- Many observed peaks match the predicted peaks score goes up
- Observed peaks close to canonical peaks score goes up
- Theoretical peak as high stddev scores go down (also green)

# Critique

- Score assumes that protein is in the database
  - Better: formulate "null" hypothesis, compute prob. of the spectrum given the null hypothesis, and report the log-odds ratio as score
  - But this is not as simple done as said
- Assumes that every peak comes from "the" protein
  - But measurements might be contaminated with peptides from other proteins
- Assumes that observed peaks can be assigned clearly to predicted peaks
  - This problem is tried to be covered by F<sub>pattern</sub>

# **Further Reading**

- Basics on proteomics: Every Bioinformatics book
- Zhang, W. and Chait, B. T. (2000). "ProFound: an expert system for protein identification using mass spectrometric peptide mapping information." *Anal Chem 72(11): 2482-9.*
- Pappin, D. J. C., Hojrup, P. and Bleasby, A. J. (1993).
  "Rapid identification of proteins by peptide-mass fingerprinting." *Current Biology* 3(327-332).
- Survey: Colinge J, Bennett KL (2007) Introduction to Computational Proteomics. PLoS Comput Biol 3(7): e114