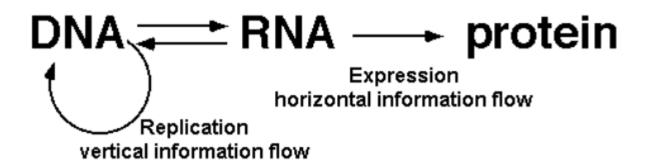
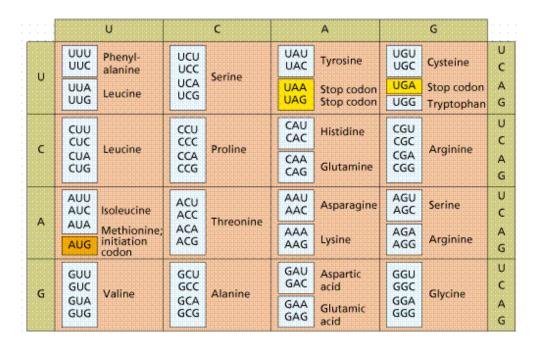
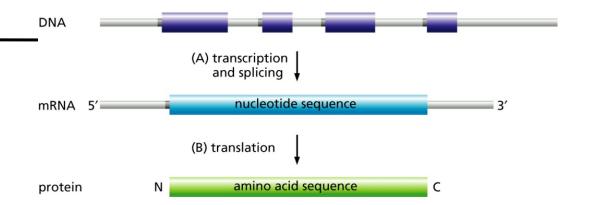


Proteins: Structure & Function

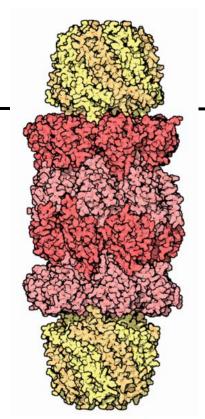

Ulf Leser

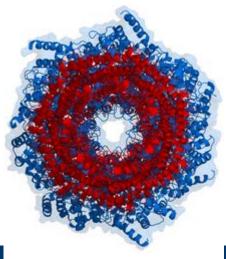

This Lecture

- Proteins
 - Structure
 - Function
 - Databases
- Predicting Protein Secondary Structure


- Many figures from Zvelebil, M. and Baum, J. O. (2008). "Understanding Bioinformatics", Garland Science, Taylor & Francis Group.
- Examples often from O. Kohlbacher, Vorlesung Strukturvorhersage, WS 2004/2005, Universität Tübingen

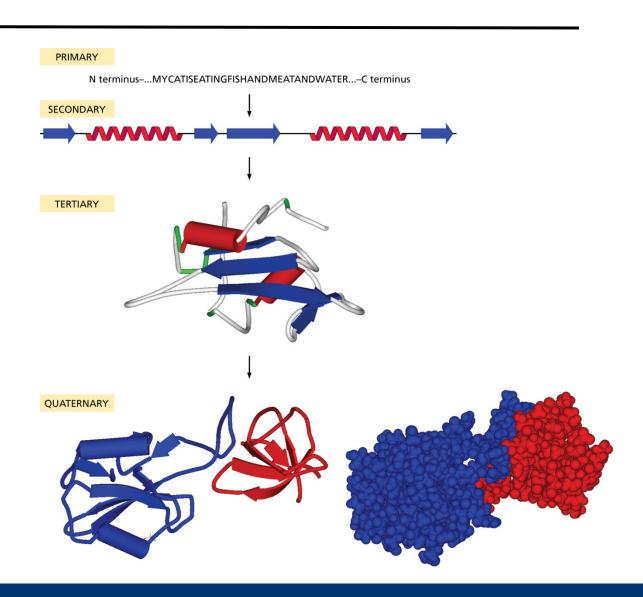
Central Dogma of Molecular Biology


Details



- Alternative Splicing
 - "One gene one protein" is wrong
 - Exons may be spliced out from the mRNA
 - Human: at least 6 times more unique proteins than genes
- Post-translational modifications
 - (De-)Phosporylation, glycolysation, cleavage of signal peptides, ...
 - Human: At least 5 times more protein forms than proteins
- Complexes: Proteins physically group together to perform specific function

Example: Proteasome


- Function: Breaks (mis-folded, broken, superfluous, ...) proteins into small peptides for reuse
- Very large complexes present in all eukaryotes (and more species)
 - >2000 kDa, consists of dozens of single proteins
 - Formation of the complex is a complex process only partly understood yet

Protein Structure

- Primary
 - 1D-Seq. of AA
- Secondary
 - 1D-Seq. of "subfolds"
- Tertiary
 - 3D-Structure
- Quaternary
 - Assembled complexes

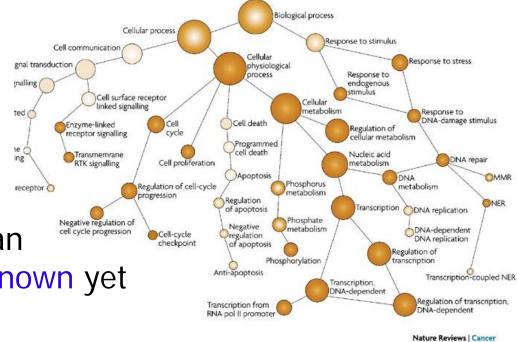
Protein Function

Proteins perform essentially everything that makes an

organism alive

Metabolism

Signal processing

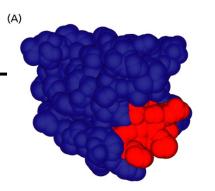

- Gene regulation
- Cell cycle

– ...

 For ~20% of all human gene, no function is known yet

Describing function

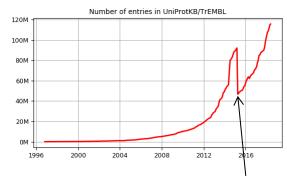
- Gene Ontology: 3 branches, >30.000 concepts
- Used world-wide to describe gene/protein function




"Known" Protein Functions

http://geneontology.org/page/current-go-statistics, June 2016

Function and Motifs



- Proteins usually have multiple functions
 - Avg. n# of GO terms assigned to a human protein: 6-10
- Functions are associated to motifs or domains
- There probably exist only 4000-5000 motifs
 - Proteins as assemblies of functional motifs
- Performing a function often requires binding to another protein or molecule
 - The binding requires a certain constellation of the protein structure
 - Major target of pharmacological research

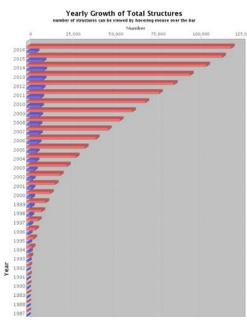
UniProt



- "Standard" database for protein sequences and annotation
 - Original name: SwissProt
 - Started at the Swiss Institute of Bioinformatics, now mostly EBI
 - Other: PIR, HPRD
- Continuous growth and curation
 - >30 "Scientific Database Curators"
 - Quarterly releases
 - Very rich set of annotations
- Actually two databases
 - SwissProt: Curated, high quality, versioned
 - TrEMBL: Automatic generation from (putative) coding genomic sequences, low quality, redundant, much larger

Def. and removal of "redundant" sequences

UniProt: Species [http://www.expasy.org/sprot/relnotes/relstat.html, June 2016]


20258	Homo sapiens (Human)
16327	Mus musculus (Mouse)
9842	Arabidopsis thaliana (Mouse-ear cress)
7560	Rattus norvegicus (Rat)
6582	Saccharomyces cerevisiae (Baker's yeast)
5803	Bos taurus (Bovine)

. . .

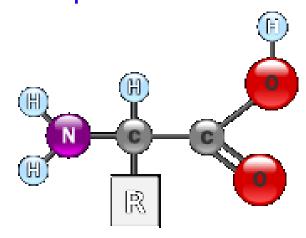
PDB - Protein Structure Database

- Oldest protein database, evolved from a book
- Contains experimentally obtained protein 3D-structures
 - Plus some DNA, protein-ligand, complexes, ...
 - X-Ray (~75%), NMR (nuclear magnetic resonance, ~23%)
- Costly and rather slow techniques
 - Growth much smaller than that of sequence-related DBs
- Many problems with legacy data and data formats

http://www.rcsb.org/pdb/statistics/contentGrowthChart.do?content=total, June 2016

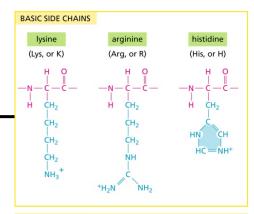
InterPro

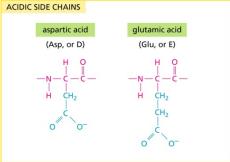
- Integrated database of protein signatures, classifications, and motifs
 - Currently ~21.000 signatures
- Associates signatures with function (GO term)
- InterProScan quick identification of signatures in a protein sequence
 - For a fast, first functional annotation

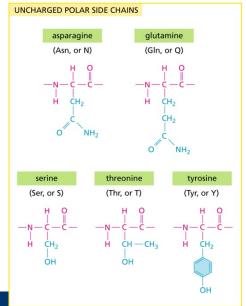


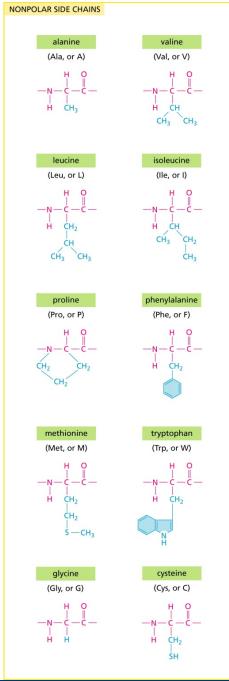
This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - GOR IV
 - Other methods

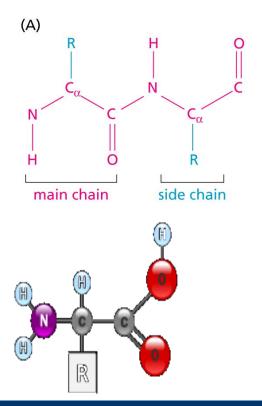

Amino Acids (AA)


- AA consist of a common core and a specific residue
 - Amino group NH₂
 - Central C_{α} Carbon CH
 - Carboxyl group COOH



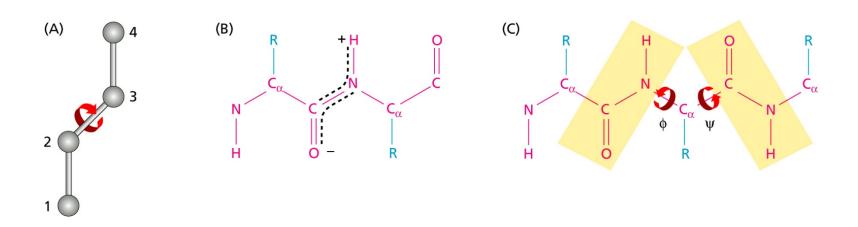

- Residues (side chains) vary greatly between AA
- Residues determine the specific properties of a AA

Side Chains



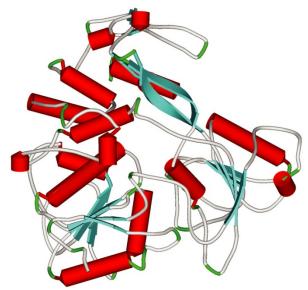
Structure of a Protein

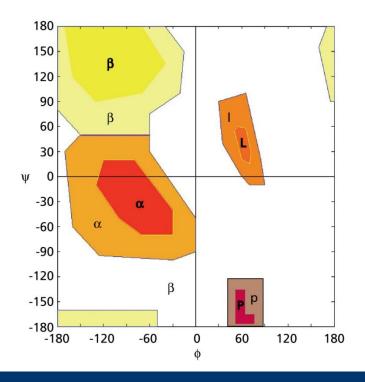
- Concatenation of cores: Backbone of AA chain (a protein)
- Covalent peptide bonds between carboxyl and amino group (with loss of H₂O)


Peptide Bond Formation

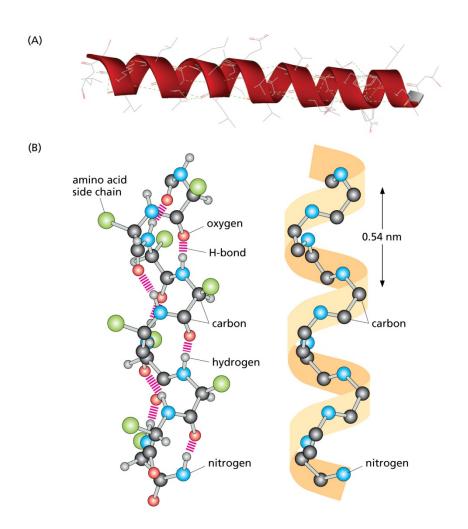
$$H_2N$$
 C C OH $+$ H_2N C C OH $+$ HOH

Peptide Bond

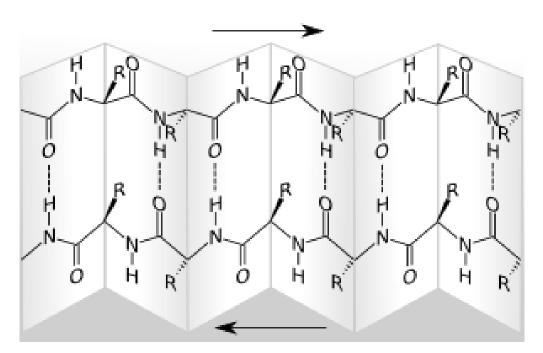

Flexibility


- In principle, every chemical bond can rotate freely
 - Would allow arbitrary backbone structures
- In real proteins, things are more restricted
 - Peptide bound (B) is "flat" almost no torsion possible
 - Flexibility only in the C_{α} -flanking bonds ϕ and ψ

Ramachandran Plots

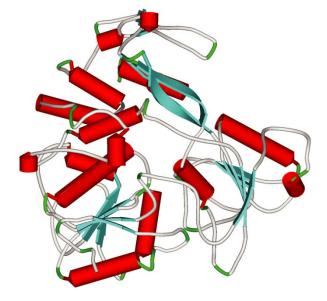

- Combinations of φ and ψ are highly constrained
 - Due to chemical properties of the backbone / side chains
- Two combinations are favored: α -helixes and β -sheets
 - More detailed classifications exist
 - Angels lead to specific structures
 - Secondary structure

Ulf Leser: F


α -Helix

- Sequence of angles forming a regularly structured helix
- Additional bonds between amino and carboxyl groups
 - Very stable structure
- May have two orientations
 - Most are right-handed
- 3.4 AA per twist
- Often short, sometimes very long

β-Sheet


- Two linear and parallel stretches (β-strands)
- Strands are bound together by hydrogen bounds
- Can be parallel or anti-parallel (wrt. N/C terminus)

Quelle: Wikipedia

Other Substructures

- α -helixes and β -sheets cover 50-80% of most proteins
- Other parts are called loops or coils
 - Usually not very important for the structure of the protein
 - But very important for its function
 - Often exposed on the surface; important for binding to other molecules

Importance of Secondary Structure Prediction (SSP)

- Secondary structure elements (SSE) are vital for the overall structure of a protein
- Often evolutionary well conserved
- SSE can be used to classify proteins
 - Such classes are highly correlated with function
- SSE gives important clues to protein structure
- SSP much simpler than 3D structure prediction
 - And 3D structure prediction can benefit a lot from a good SSP

Predicting Secondary Structure

 SSP: Given a protein sequence, assign each AA in the sequence to one of the three classes Helix (H), Strand (E), or Coil (-)

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL

Classification

- Classification: Classify each AA into one of three classes
- Classification is a fundamental problem
 - Classify the readout of a microarray as diseased / healthy
 - Classify a subsequence of a genome as coding / non-coding
 - Classify an email as spam / no spam
- Many different techniques: Naïve Bayes, Regression, Decision Trees, SVMs, Neural Networks, ...
 - Classification function learned from properties of known objects
 - Often use same representation (feature vectors) of objects methods exchangeable
- The following is a rather unsystematic approach
 - But simple to explain and classical for this application

This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

Chou-Fasmann Algorithm

Chou & Fasman (1974). Prediction of protein conformation. Biochemistry 13

- Observation: Different AA favor different folds
 - Different AA are more or less often in H, E, C
 - Different AA are more or less often within, starting, or ending a stretch of H, E, C
- Chou-Fasman algorithm (rough idea)
 - Classifies each AA into E or H; unclassified AA are assigned C
 - Compute a score for the probability of any AA to be E (H)
 - Basis: Relative frequencies in a set of sequences with known SSE
 - In principle, assigns each AA its most frequent class
 - Add several heuristic constraints like minimal length of stretches or tendency to build ungapped sequences
 - Rather CCEEEEECC, not CCECEECCECE

Details [sketch, some heuristics omitted]

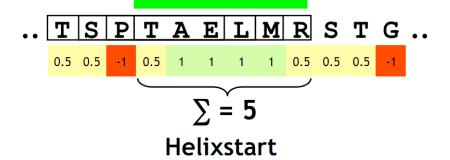
- Let f_{j,k} be the relative frequency of observing AA j in class k
- Let f_k be the average over all 20 f_{j,k} values
- Compute the propensity P_{j,k} of AA j to be part of class k as

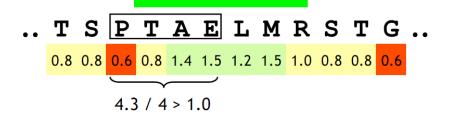
$$P_{j,k} = f_{j,k}/f_k$$

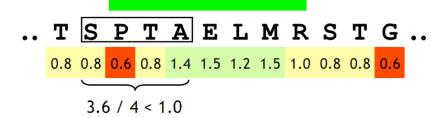
- Using P_{j,k}, classify each AA j for every class k into
 - Strong, normal, weak builder $(H_{\alpha}, h_{\alpha}, I_{\alpha}, H_{\beta}, h_{\beta}, I_{\beta})$
 - Tendency to build a SS-element
 - Strong, weak breaker (B_{α} , b_{α} , B_{β} , b_{β})
 - Tendency to stop a SS-element
 - Indifferent (i_{α}, i_{β})

Concrete Values

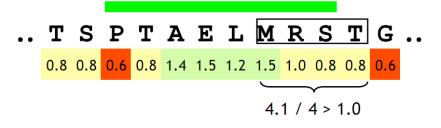
Originally computed on only 15 proteins (1974)


ΛC	Pα	Klasse	۸ς	P _β	Klasse	AS	Pα	Klasse	AS	P _β	Klasse
Glu	1.53	H_{α}	Met	1.67		lle	1.00	I_{α}	Ala	0.93	I_{β}
Ala	1.45		Val	1.65	Н _β	Asp	0.98	\mathbf{i}_{lpha}	Arg	0.90	i _β
Leu	1.34		lle	1.60		Thr	0.82		Gly	0.81	
His	1.24	h_{lpha}	Cys	1.30		Ser	0.79		Asp	0.80	
Met	1.20		Tyr	1.29		Arg	0.79		Lys	0.74	b _β
Gin	1.17		Phe	1.28		Cys	0.77		Ser	0.72	
Trp	1.14		Gln	1.23	h_{β}	Asn	0.73	7	His	0.71	
Val	1.14		Leu	1.22		Tyr	0.61	b_{α}	Asn	0.65	
Phe	1.12		Thr	1.20		Pro	0.59	· Β _α	Dro	0.62	
Lys	1.07		Trp	1.19		Gly	0.53		Glu	0.26	B_{β}


Algorithm for Helices


- Go through the protein sequence
- Score each AA with 1 (H_{α} , h_{α}), 0.5 (I_{α} , I_{α}), or -1 (I_{α} , I_{α})
- Find helix cores: subsequences of length 6 with an aggregated AA score ≥ 4
- Starting from the middle of each core, shift a window of length 4 to the left (then to the right)
 - Compute aggregated score A using values P_{j,k} inside the window
 - Not the coarse-grained H/I/B/I values
 - If $A \ge 4$, continue; otherwise stop
- Similar method for strands
- Conflicts (regions assigned both H and E) are resolved based on aggregated scores

Example [Source: O. Kohlbacher, "Strukturvorhersage"]



3.2 / 4 < 1.0

Performance

- Accuracy app. 50-60%
 - Measured on per-AA correctness
- Prediction is more accurate in helices than in strands
 - Because helices build local bridges (hydrogen bounds between the turns; each AA binds to the +4 AA)
- General problem
 - Secondary structure is not only a local problem
 - Looking only at single AAs is not enough
 - Note: Scores are based on individual AA; aggregation by summation assumes statistical independence of pairs, triples ... in a class
- One needs to include the context of an AA

This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

Classes of Methods

- First generation: Properties of single AA only
 - Accuracy: 50-60%, e.g. Chou-Fasman (1974)
- Second generation: Include info. about neighborhood
 - Accuracy: ~65%, e.g. GOR (1974 1987)
- Third generation: Include info. from homologous seq's
 - Accuracy: ~70-75%, w.g. PHD (1994)
- Forth generation: Build ensembles of good methods
 - Accuracy: ~80%, e.g. Jpred (1998)
- Current performance
 - Jpred 4 (2015): 82% overall, ~90% for certain other properties
 - Spine-X (2012): 84% overall

Further Reading

- Gerhard Steger (2003). "Bioinformatik Methoden zur Vorhersage von RNA- und Proteinstrukturen", Birkhäuser, chapter 8,10,11,13
- Zvelebil, M. and Baum, J. O. (2008). "Understanding Bioinformatics", Garland Science, Taylor & Francis Group, chapter 2, 11, 12 (partly)