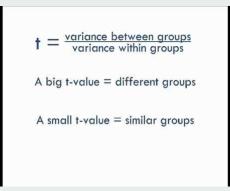


Biostatistics

Grundlagen der Bioinformatik SS2018



Agenda

- Differential expression
 - Fold Change
 - o T-test
- Clustering
- Databases

Differential Expression

Motivation

- Etiology
- Biomarker
- Personalized medicine

Experimental Design

 $N_1,...,N_m$: **control** samples

 $T_1,...,T_n$: case samples

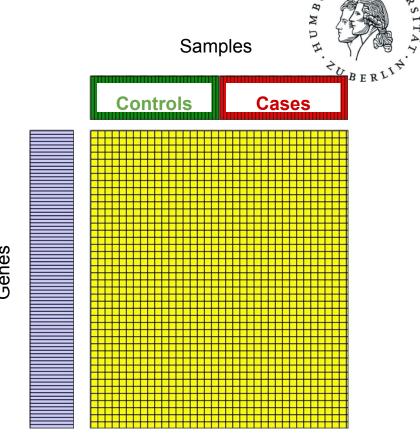
We look for:

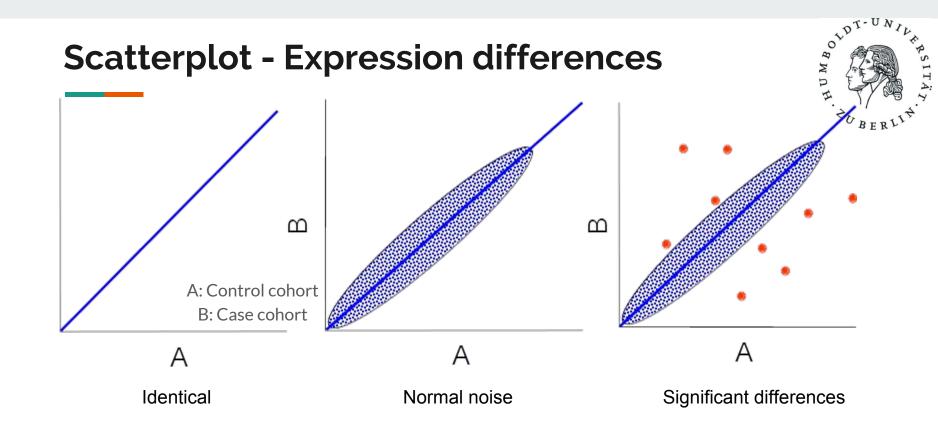
Genes with significant differences between N and T

Compare gene X from group N with gene X of group T

$$N = \{n_1,...,n_m\} T = \{t_1,...,t_n\}$$

Many methods exist, here: Fold change t-test





Fold Change

$$FC = log_2(rac{\overline{T}}{\overline{N}}) = log_2(\overline{T}) - log_2(\overline{N})$$

Thresholds (examples)

|FC| <1 not interesting |FC| >2 interesting

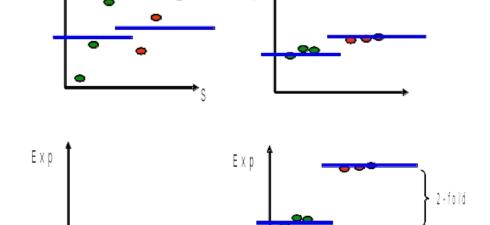
Genes	Mean Case	Mean Control	Mean Case / Control	FC
A	16	1	16	4
В	0.0625	1	0.0625	-4
С	10	10	1	0
D	200	1	200	7.65

Fold Change - Advantages / Disadvantages

2-fold **{**

✓ intuitive measure

- ✗ Independent of scatter
- Independent of absolute values
 - Score only based on mean of groups
 - Spread of data points essential

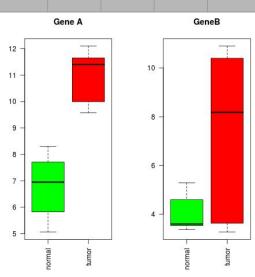


Variance essential

	N1	N2	N3	N4	N5	N6	N7	C1	C2	C3	C4	C5	C6	C7	FC
Gene A	5	5	8	8	7	6	7	10	10	12	12	11	10	12	-4
Gene B	3	4	3	3	5	5	4	4	11	10	4	11	8	3	-3

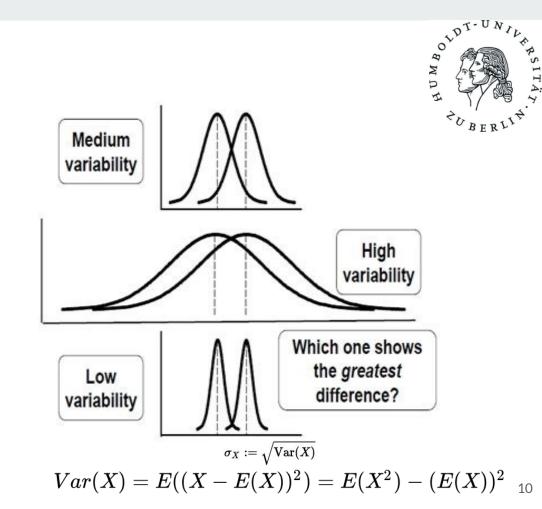
- High abs(FC) for Gene A and Gene B
- But: variance very high in the tumor samples of Gene B
- Find test for FC and variance

$$Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$



Hypothesis testing

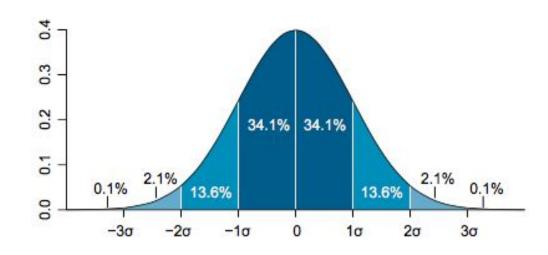
- Same Mean
 - Different variance
- Measure 'uncertainty' with standard deviation sd
- Combine both to likelihood for 'correctness'
- Assumption
 - Log-Normal distributions
 - Symmetric
 - Independent



Tschebyscheff-Inequation

$$\mathrm{P}[|X - \mu| \geq k] \leq rac{\sigma^2}{k^2}$$

- Z-transform your data
- and see how likely a single value is



Hypothesis testing

T-test (unpaired two-sample)

Compares the mean of two unpaired samples

Assumption

- Values normally distributed
- Equal variances

Hypothesis

• H₀ (Null hypothesis): $m_1 = m_2$ vs. $m_1 != m_2$ (means are not equal)

Test statistic

 Function of the sample that summarizes the data set into one value that can be used for hypothesis testing

Hypothesis Testing – T-test (Welch Test)

From T-statistic to p-value

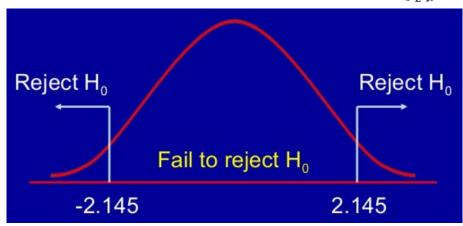
 T-value, a and number of samples determine the p-value (look-up tables)

P-value

- Probability of observing your data under the assumption that H₀ is true
- Probability that you will be in error if rejecting H₀

Significance level (a)

 Probability of a false positive outcome of the test, the error of rejecting H₀ when it is actually true



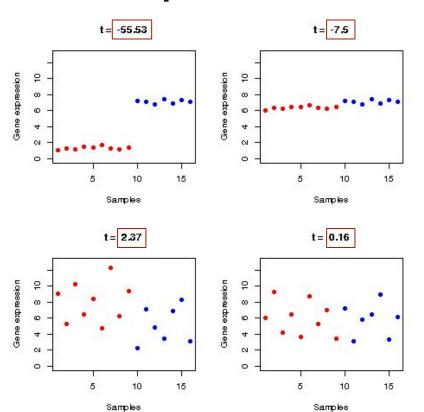
If |t| > |T| we reject H₀

→ p-value is significant (p-value < a)

Workflow Hypothesis Testing

- 1. Determine null and alternative hypothesis
- 2. Select a significance level (alpha)
- 3. Take a random sample from the population of interest
- 4. Calculate a test statistic from the sample that provides information about the null hypothesis
- 5. Decision

Examples



	q = 0.6	0.75	0.9	0.95	0.975	0.99	0.995	0.9975
n = 1	0.3249	1.0000	3.078	6.314	12.706	31.821	63.657	127.321
2	0.2887	0.8165	1.886	2.920	4.303	6.965	9.925	14.089
3	0.2767	0.7649	1.638	2.353	3.182	4.541	5.841	7.453
4	0.2707	0.7407	1.533	2.132	2.776	3.747	4.604	5.598
5	0.2672	0.7267	1.476	2.015	2.571	3.365	4.032	4.773
6	0.2648	0.7176	1.440	1.943	2.447	3.143	3.707	4.317
7	0.2632	0.7111	1.415	1.895	2.365	2.998	3.499	4.029
8	0.2619	0.7064	1.397	1.860	2.306	2.896	3.355	3.833
9	0.2610	0.7027	1.383	1.833	2.262	2.821	3.250	3.690
10	0.2602	0.6998	1.372	1.812	2.228	2.764	3.169	3.581
11	0.2596	0.6974	1.363	1.796	2.201	2.718	3.106	3.497
12	0.2590	0.6955	1.356	1.782	2.179	2.681	3.055	3.428
13	0.2586	0.6938	1.350	1.771	2.160	2.650	3.012	3.372
14	0.2582	0.6924	1.345	1.761	2.145	2.624	2.977	3.326

Degrees of freedom: |Samples| - 2, Here 16 - 2 = 14

Example

$$H_0: m_N - m_T = 0 \text{ vs } H_1: m_N - m_T! = 0$$

Significance level 0.05

N = {3.58, 4.14, 3.49, 3.37, 5.29, 5.06, 3.6}

Test statistic

 $T = \{3.7, 10.9, 10.3, 3.57, 10.5, 8.18, 3.27\}$

P-value

0.06

Data from slide 9

-> Not significant

$$t=rac{X_1-X_2}{S_p{\cdot}\sqrt{rac{1}{n_1}{\cdot}rac{1}{n_2}}}$$
 = - 2.27

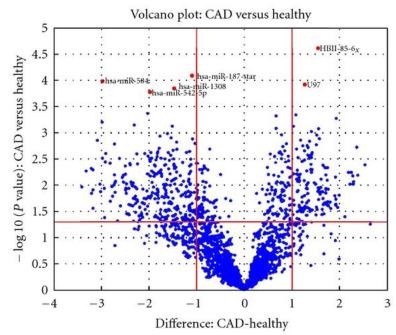
Volcano plot

Combine P-value and Log-FC

- Y-axis: Negative log10 of the p-value
- X-axis: Fold-change

Interested in

- Upper left
- Upper right corner



Multiple Testing Correction

Problem

Microarrays has 22k genes, thus an α =0.05 leads to approximately 22 000 * 0.05 ~ 1100 FPs.

Solution

Multiple testing correction, two basic approaches:

- 1. Family wise error rate (FWER), the probability of having at least one false positive in the set of results considered as significant
- 2. False discovery rate (FDR), the expected proportion of true null hypotheses rejected in the total number of rejections. (FDR measures the expected proportion of incorrectly rejected null hypotheses, i.e. type I errors)

Bonferoni correction

Let N be the number of genes tested and p the p-value of a given probe, one computes an adjusted p-value using:

$$p_{adjusted} = p^*N$$

Only if the adjusted p-value is smaller than the pre-chosen significance value, the probe is considered differentially expressed.

Very conservative (many failures to reject a false H0), rarely used

Bonferoni assumes independence between the tests (usually wrong)

Appropriate when a single false positive in a set of tests would be a problem (e.g., drug development)

Benjamini - Hochberg correction

- 1. Choose a specific α (e.g. α =0.05)
- 2. Rank all m p-values from smallest to largest
- 3. Correct all p-values: BH(pi)i=1,...,m = p_i * m/i
- 4. BH (p) = significant if BH(p) $\leq \alpha$

Genes	p-value	rank	BH(p)	Significant 0.05
Α	0.00001	1	0.00001*1000/1 = 0.01	yes
В	0.0004	2	0.0004*1000/2 = 0.20	no
С	0.01	3	0.01*1000/3 = 3.3 -> 1.0	no

Clustering - Motivation

Subgroups detection

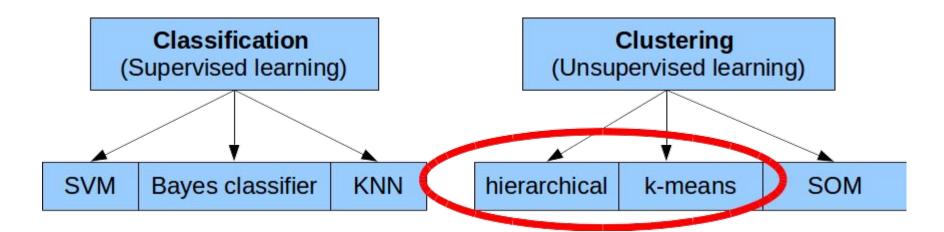
Quality control

Similarity-detection in spatial and temporal behavior

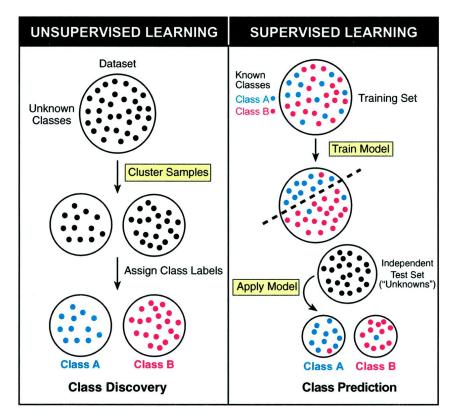
- o Co-regulated / expressed genes
 - E.g. genes controlled by the same transcription-factor

Discovery of new disease subtypes

Overview unsupervised clustering

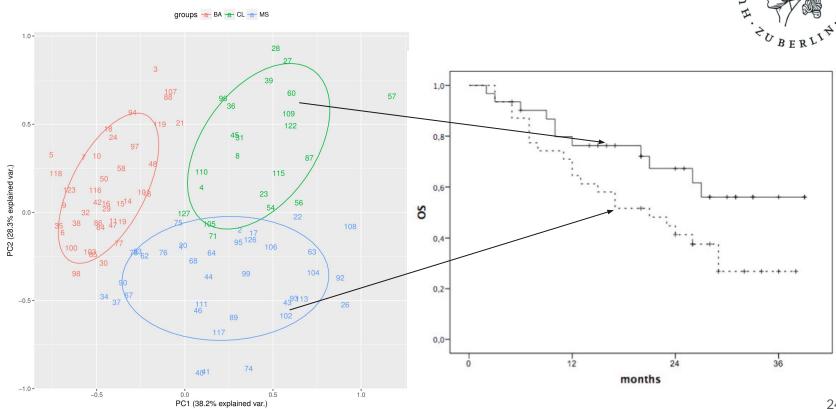


Clustering



Ramaswamy & Golub 2002

Example



Clustering

Goal

 Partitioning Biological interpretation of subtypes (clusters)

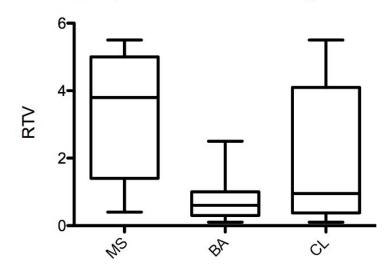
Requires

o (Useful) similarity measure

Advantages

o Intuitive Simple (you would think)

cetuximab response in different subtypes of HNSCC



Hierarchical Clustering - algorithm

ORW DE SITAY.

- 1. Distance measure
 - a. Euclidean
 - b. Pearson, etc.
- 2. Compute similarity matrix S
- 3. While |S|>1:
 - a. Determine pair (X,Y) with minimal distance
 - b. Compute new value Z = avg(X,Y), (single, average, or complete linkage)
 - c. Delete X and Y in S, insert Z in S
 - d. Compute new distances of Z to all elements in S
 - e. Visualize X and Y as pair

Hierarchical Clustering

- o Binary tree
- Cutting the dendrogram at a particular height partitions the data into disjoint clusters
- For an easier determination of clusters
 - Length of branch is set in relation to the difference of the leafs.

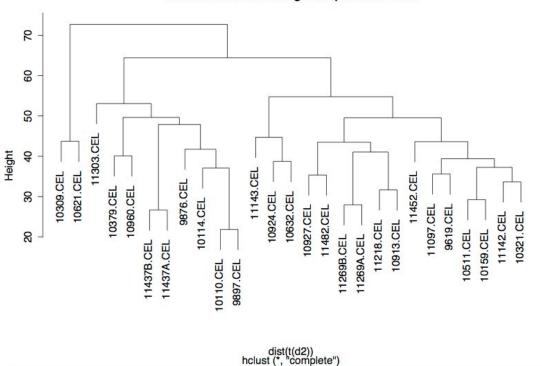
Linkage Rule essential

Hierarchical Clustering - Linkage

- Methods produce similar results for data with strong clustering tendency
 - (each cluster is compact and separated)
- Single Linkage
 - Single smallest distance $D(X,Y) = \min_{x \in X, y \in Y} d_{xy}$
 - Violates the compactness property (i.e., observations inside the same cluster should tend to be similar)
- Complete Linkage
 - Most distant elements $D(X,Y) = \max_{x \in X, y \in Y} d_{xy}$
- Average Linkage
 - Compromise $D(X_sY) = \frac{1}{N_x N_Y} \sum_{x \in X} \sum_{y \in Y} d_{xy}$

Hierarchical Clustering

Hierarchical clustering of expression data



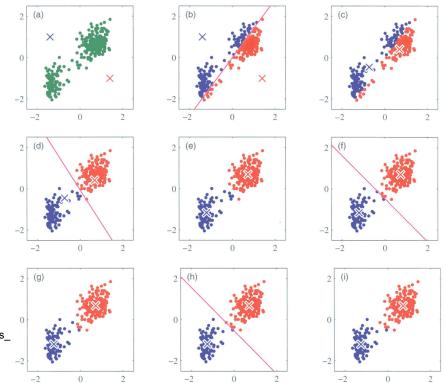
K-means

K-means partitions the n observations into k clusters

Minimize the distance of the n data points from their respective cluster centres.

- 1. Choose k random cluster centers μ1,...μk
- 2. Assign for each point x in dataset S the closest cluster center
- 3. Compute a new center µi for every cluster Ci
- 4. Repeat 2-3. until cluster centers do not change

K-means



http://www.itee.uq.edu.au/~comp4702/lectures/k-means_bis_1.jpg

K-means

- Convergence not assured
- Cluster quality can be computed by determining the mean distance of a gene to its cluster-center
- Number of clusters has to be chosen in advance
- The initialization of the cluster centers has a great impact on the clustering quality, compute more than one initial constellation.

Databases - GEO - Gene Expression Omnibus

ORWORK SITAY

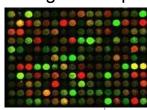
- NCBI public repository http://www.ncbi.nlm.nih.gov/geo/
- archives microarray, NGS, and other high-throughput
- genomics data submitted by the research community

GPL (GEO platform) platform description

submitted by manufacturer

GSM

(GEO sample) raw-processed intensities from a single or chip



GSE

(GEO series) grouping of chip data, a single experiment

submitted by experimentalist

GEO dataset) grouping of experiments

curated by NCBI

GEO

Sign in to NCBI

GEO Home Documentation ▼ Query & Browse ▼ Email GEO

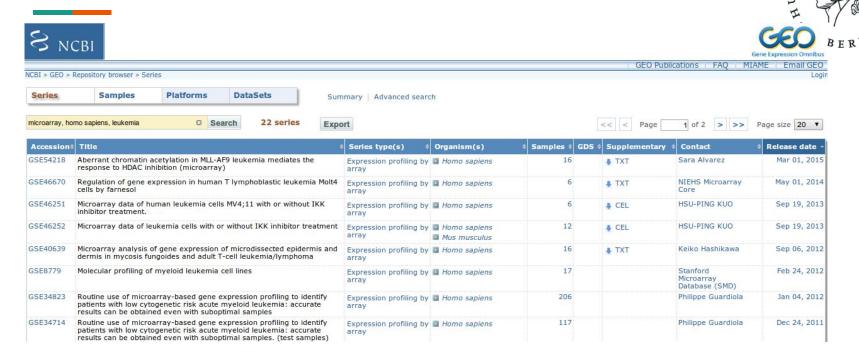
Gene Expression Omnibus

GEO is a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data are accepted. Tools are provided to help users query and download experiments and curated gene expression profiles.

Keyword or GEO Accession Search

Getting Started	Tools	Tools Browse Content		
Overview	Search for Studies at GEO DataSets	Repository Browser		
FAQ	Search for Gene Expression at GEO Profiles	DataSets: 3848		
About GEO DataSets	Search GEO Documentation	Series:	58176	
About GEO Profiles	Analyze a Study with GEO2R	Platforms:	14392	
About GEO2R Analysis	GEO BLAST	Samples:	1424131	
How to Construct a Query	Programmatic Access			
How to Download Data	FTP Site			
Information for Submitters				
Login to Submit	Submission Guidelines	MIAME Standards		
	Update Guidelines	Citing and Linking	to GEO	
		Guidelines for Rev	viewers	
		GEO Publications		

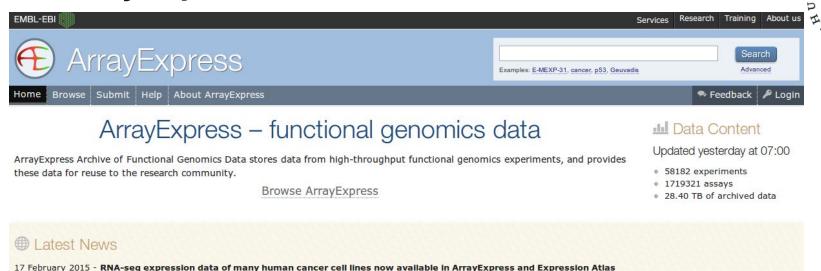
GEO



(Minimum Information about a Microarray Experiment)

- 1. Raw data (e.g. .CEL, .txt)
- 2. Final **processed** (normalized) **data**
- 3. **Sample annotation** (incl. Experimental factors and their values, scan protocol,e.g. drug, dosage)
- 4. **Experimental design** including sample data relationships (e.g., overall design; technical or biological replicates)
- 5. Annotation of the array (e.g., gene identifiers, genomic coordinates, probe oligonucleotide sequences)
- 6. **Laboratory** and **data processing protocols** (e.g., what normalisation method)

ArrayExpress (EMBL-EBI)



All ArrayExpress submissions follow the MIAME checklist

Have you ever wondered if a commonly used cancer cell line (e.g. MCF-7) shows similar gene expression patterns when profiled in different labs? Or how about the gene expression patterns across a series of cell line models for the same cancer (e.g. B-cell lymphoma)? Two new RNA-seq data sets in ArrayExpress will shed some light on these

GEO vs. ArrayExpress

Both encompass MIAME compliance

• Both provide a good possibility for making data publicly available as often requested by journals

ArrayExpress provides analysis tools

Summary

- Combine T-test and fold change for optimal detection of differential expression (Volcano plot)
- More explorative analyses like clustering can detect patterns inherent in the expression data like co-regulated genes or new disease subtypes.
- Public repositories like GEO and ArrayExpress offer a rich fundus of data.