

Measuring gene expression

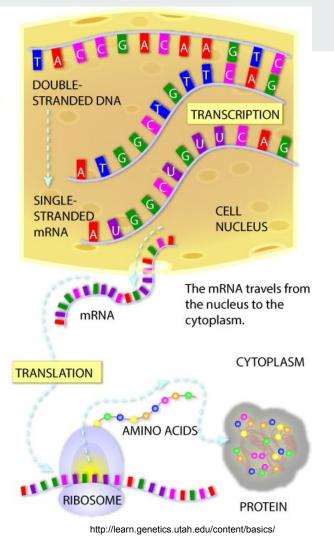
Grundlagen der Bioinformatik SS2018

https://www.youtube.com/watch?v=v8gH404a3Gg

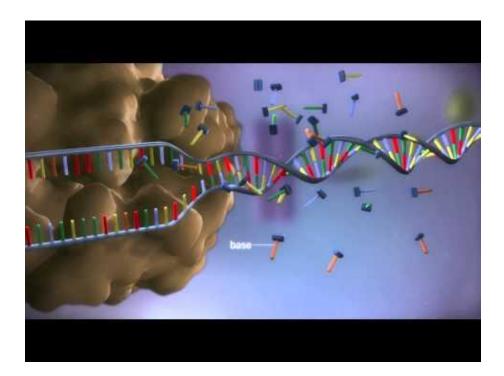
Agenda

- Organization
- Gene expression
 - Background
- Technologies
 - FISH
 - Nanostring
 - Microarrays
 - RNA-seq
- How to detect technological biases
 - Visualization
 - Quality control
 - Normalization

Shift date of next lecture & thursday's exercise


Move next Thursday's lecture and excersise to Friday the 15th

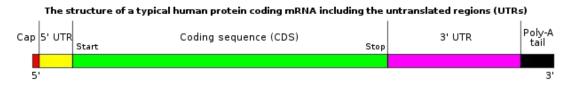
- Lecture 9 a.m.
- Exercise 1 p.m. (11 a.m. 1 p.m. = Friday's exercise)


Gene Expression - Background

Gene Expression - mRNA

- mRNA expression ∝ gene activity
- Protein ~ active *form* of genes
- mRNA = messenger RiboNucleic Acid
- DNA->mRNA-> Protein

Video time

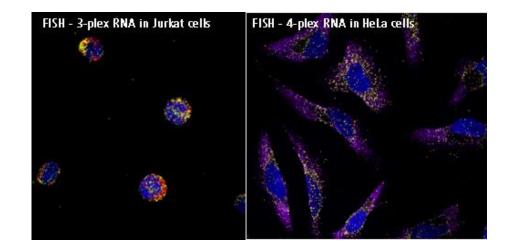

ND T-UNIL ND T-UNIL BERLIN BERLIN

https://www.youtube.com/watch?v=gG7uCskUOrA

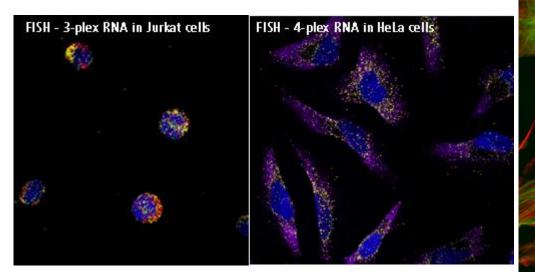
mRNA structure

- RNA copy of DNA gene
 - Modified copy -> not identical
- Has specific sequence of bases that
 - determine proteine
- Has additional cap and end
 - E.g. Poly-A tail
- Only parts are translated
- Aim: Detect mRNA expression

Simplified mRNA structure

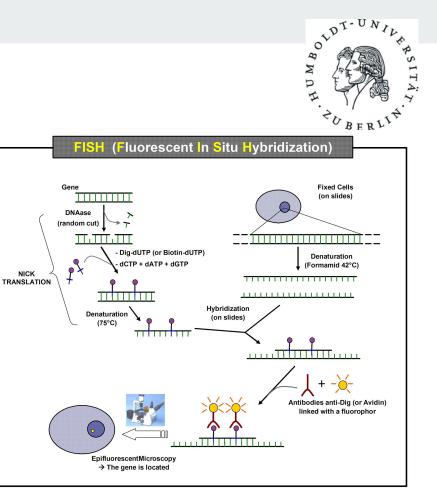

Wikicommons

Technologies


Fluorescence In Situ Hybridization

- <u>Fluorescence in situ hybridization = FISH</u>
- Illuminate mRNA
- <u>Qualitative</u> -> no count information
- Match sequence
- Low throughput

FISHy impressions

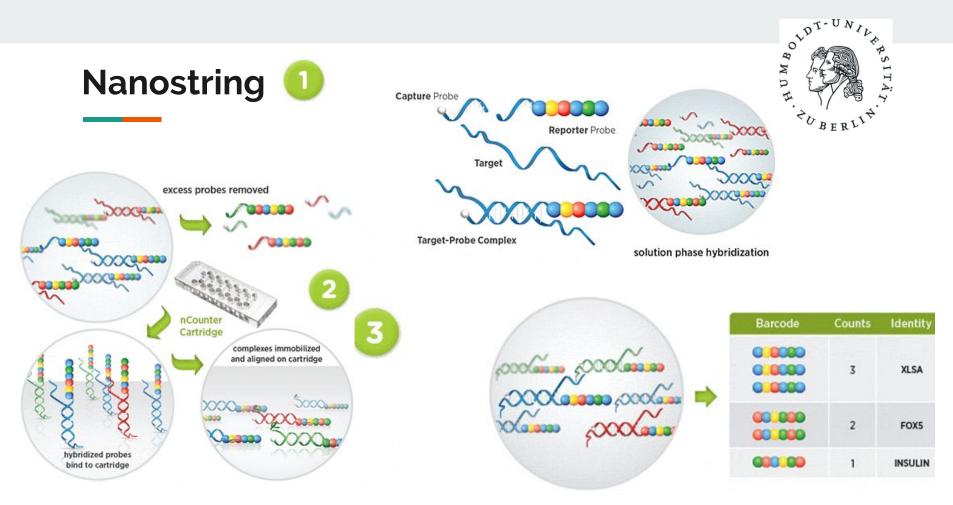


Illumination of RNA via FISH Colors specific for mRNA -> location detection

Nucleus, skeleton & Cell-membrane

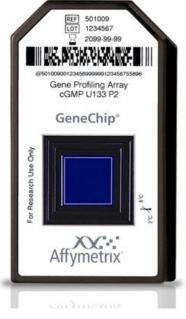
FISH method

- Here: shown for **DNA**
- 1. Cut DNA and paste anchor
- 2. Denature DNA
- 3. Hybridize
- 4. Attach antibody and shine



FISH / NanoString

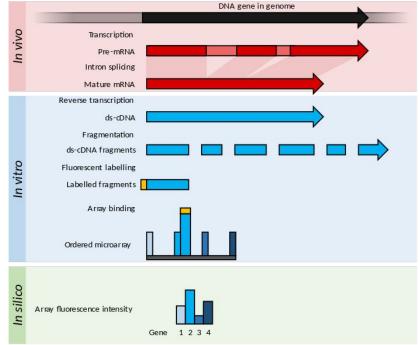
- <u>Quantitative</u> FISH-like -> counts available
- Separate capture
- Sequence matched
- Medium throughput



mRNA Micro-Arrays

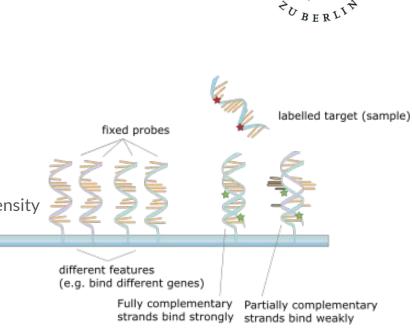
- Oligo-nucleotide arrays
- Array of pre-defined sequences
- Complementarily binding to mRNA
- mRNA illuminated
 - Expression measured as light-intensity

www.affymetrics.com


A FT. P S

D

Workflow mRNA array


- 1. Isolation and purification
- 2. **Reverse transcription**
 - cDNA == complementary DNA a.
- 3. Labelling fluorescent dye cDNA labeling
- Hybridization 4.
 - Washing a.
- 5. Scanning
 - Laser excitation а.
 - detection of light intensities b.
 - image segmentation C.

Normalization 6.

Hybridization

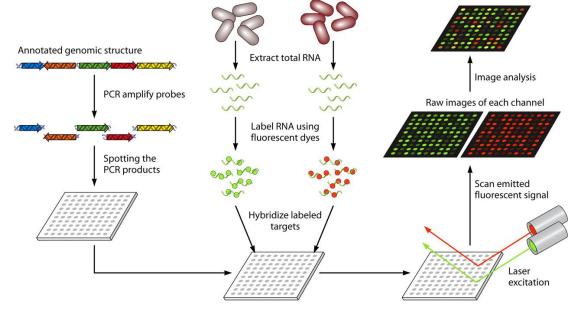
- Binding of free mRNA by pre-defined probe sequences
- Targets mRNA sequences labeled
- Amount matches / mismatches determines illumination intensity

ot DT-UN,

5

Probe sequence selection

Trade-off Sensitivity versus Specificity


- Sensitive sequence may not be specific
 - E.g. cap or poly-A tail sequences
- Sensitivity := TP / (TP + FN)
- Specificity := TN / (TN + FP)
- Interesting optimization problem

Probe-hybridization subject to plethora of factors

- Probe length
- GC content
- Secondary structure
- Amount matches over all transcripts
- Probe self or cross hybridisation
- Position of probe in the transcript
- Probe uniqueness
 - Sensitivity vs. specificity

Two color array

- Expressed in sample 1
- Expressed in sample 2
- Expressed in samples 1 & 2
- Not expressed in samples 1 & 2 •

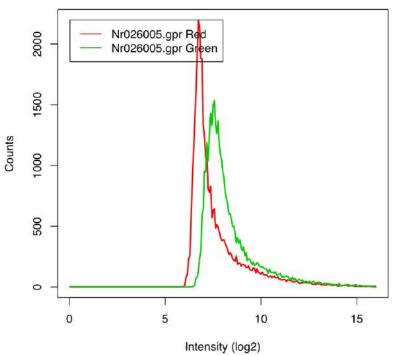
Sample 2

Sample 1

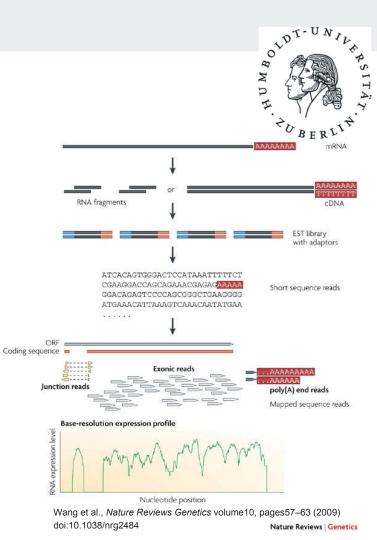
OTDT-UNIL,

BERL

D


RS

TAY


Structural dye-bias two-color array

- Distortion of expression measurement
- Green channel consistently brighter than red channel
- Intensity-dependent

RNA-seq

- 1. mRNA library preparation
 - a. Shotgun-sequencing or
 - b. cDNA-sequencing
- 2. Amplification fragments (PCR)
- 3. Map reads to genome
- 4. Count reads per gene

Comparison Arrays vs. RNA-seq

Arrays

- Cheap
- ✓ Standardized
- ✓ Well understood
- **X** Limited to know genes
- **X** Limited detection range
- X Non-specific hybridization

Expensive

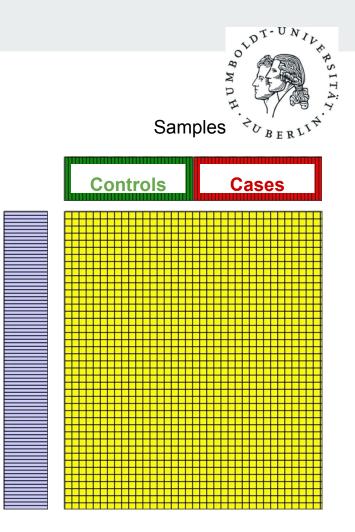
X

- X Non-standardized
- **X** Still subject to active research

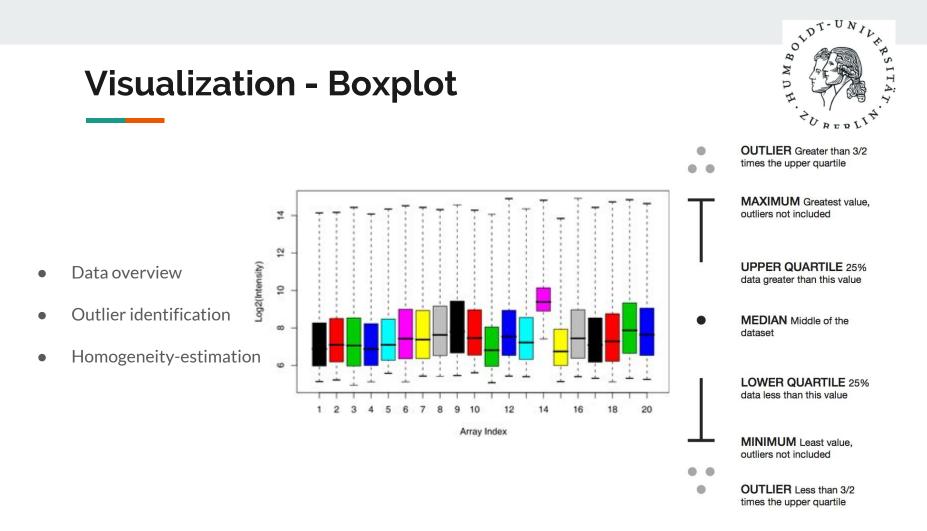
RNA-seq

- ✓ Detects all genes
- ✓ Dynamic range
- Specific detection

Summary technologies

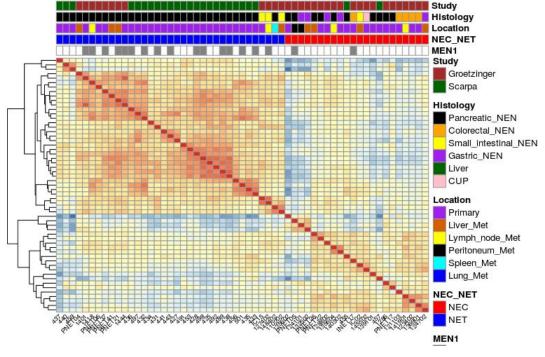

Technology	Туре	Price	Amount genes	Supervised*			
FISH	Qualitative	Low	Small	Yes			
mRNA-Array	Qualitative/ Quantitative	Low	Large	Yes			
NanoString	Quantitative	Medium	Medium	Yes			
RNA-seq	Quantitative	High	Very large	No			

*Supervised := Can only detect what we actively look for Unsupervised := Can detect novel mRNA transcripts



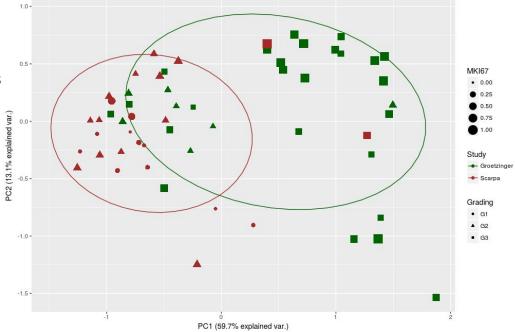
mRNA experiment design

- Two or more groups (called cohorts)
 - Control
 - Case
- Identify <u>aggregated</u> expression within cohorts
- Identify differences between aggregated expressions
- Ensure that measurements are comparable


Genes

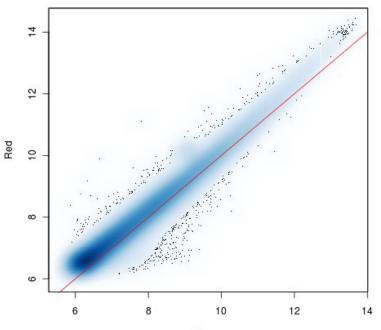
Visualization - Correlation heatmap

- Pairwise-similarity of samples
- Clustering informative
 - Bad: clustering based on study
 - Good: clustering based on cancer-type
 - NEC (Carcinoma) vs NET (Tumor)



Real-world heatmap

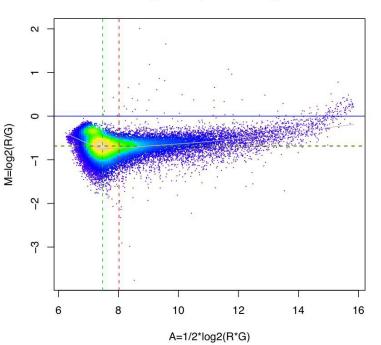
Principal component analysis (PCA)


- Two-dimensional similarity of samples
- Clustering
- Principal effects on data shown in
 - PC1 (greatest effect)
 - PC2 (second greatest effect)

Scatter plot

- Dot := one transcript in two experimental settings
- Points should appear around the horizontal line
 - only a few genes are expressed at different levels
- Higher variation with low intensities

Mean-average (MA)-plot


• Visualization relationship mRNA expression vs.

Log₂ expression difference

- Bias-correction two-color array
 - Banana-shape indicates bias
 - Shift signal to zero -> bias-correction
- Modified scatter plot
 - 45° rotated

• Scaled

Nr026005.gpr Red , Nr026005.gpr Green

M & A calculation

M := Log₂ fold change (difference)

FC(Value₁ / Value₂) := log₂ (Value₁ / Value₂)

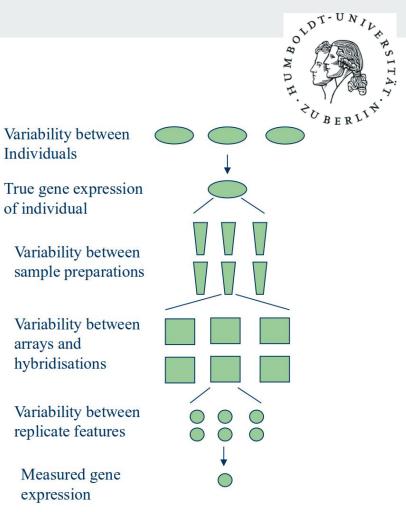
 $FC(512/1024) := \log_2(512/1024) = -1$

A := logarithm of mean expression intensity

 $A := 0.5 * (log_2Value_1) + log(Value_2))$

 $A := 0.5 * (\log_2 4) + \log_2 2) == 1.5$

 $FC(123 / 123) := \log_2(123 / 123) = 0$


 $FC(512/256) := \log_2(512/256) = 1$

Motivation normalization

• Interested in: true biological difference of

mRNA expression

- What we measure: Mixture of (unwanted) technical and biological noise
- Correct undesired noise!

Z-score normalization

- Correct for different amount of mRNA per sample
- Z-score = scaling of counts
 - 0 = average
- Examples: 2, -1, 0.1

 $Z = (X_i - mean_{est}) / sd_{est}$

 X_i = expression gene i

Mean_{est}: (estimated) expr. average over all genes

Sd : (estimated) expr. standard deviation of all genes

Quantile normalization

- Differences between the separate values
 retained
- ✓ Identical distribution for each array
- Information lost
 - Especially in the lower signals

- 1. Matrix X
 - a. Columns = samples
 - b. Row = transcripts
- 2. Sort each column of X -> X_{sort}
- 3. Calculate row-means and store in X'_{sort}
- Obtain X_n by rearranging columns of X'_{sort} to have the same ordering as the corresponding input vector

Example quantile normalization

							Sort				Replace					Reorder						
Values	V1 V2 V3 V4 V5	1 15 21 10 18	11 17 2 19 28	13 5	29 8	14 25 4	E1 21 18 15 10 7 1	E2 28 23 19 17 11 2	16 13		A CONTRACTOR OF THE OWNER OF THE		E2 28 23 19 14 8 3	28	23	28 23	V1 V2 V3 V4 V5	E1 3 19 28 14 23 8	E2 8 14 3 19 28 23	19 8 14 23 3	E4 28 8 14 23 19 3	1000
Indexes		1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6	1 2 3 4 5 6	3 5 2 4 6 1	5 6 4 2 1 3	6 4 1 3 2 5	1 4 5 3 2 6	5 1 3 2 6 4	3 5 2 4 6 1	5 6 4 2 1 3	6 4 1 3 2 5	1 4 5 3 2 6	5 1 3 2 6 4						

Example effect quantile normalization

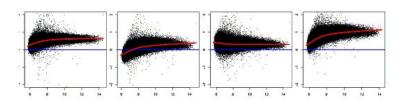
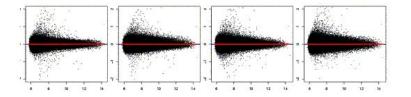
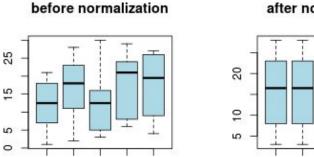
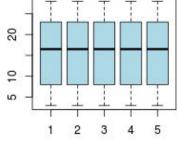


Figure 7A. Ratio Intensity Plot of all probes for four pairs of chips from GeneLogic spike-in experiment


Figure 7B. As in A, after normalization by matching quantiles. Both figures courtesy of Terry Speed

5

2

after normalization

Bolstad, Benjamin M., et al. "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias." Bioinformatics 19.2 (2003): 185-193.

Important: normalization between samples, not within one sample