
Information Retrieval Exercises

Mario Sänger (saengema@informatik.hu-berlin.de)

Assignment 2:
Boolean Information Retrieval

mailto:saengema@informatik.hu-berlin.de

Mario Sänger: Information Retrieval Exercises – Assignment 2 2

Boolean IR on full text

• Last assignment: hard-coded queries on small data
• This time: arbitrary queries on large(r) data
• I will provide an movie corpus plot.list

– Only for use in the exercise, do not redistribute!
– Plain text are roughly 400 MB
– Link: https://box.hu-berlin.de/f/93546ea9bdef4fac811b/?dl=1

• Task: Write a program which can find
– arbitrary terms
– arbitrary phrases
– arbitrary conjunctions of them

https://box.hu-berlin.de/f/93546ea9bdef4fac811b/?dl=1

Mario Sänger: Information Retrieval Exercises – Assignment 2 3

Corpus structure (excerpt)

MV: Moonraker (1979)

PL: James Bond is back for another mission and this time, he is blasting off
PL: into space. A spaceship traveling through space is mysteriously hi-jacked
PL: and Bond must work quickly to find out who was behind it all. He starts
PL: with the rockets creators, Drax Industries and the man behind the
PL: organisation, Hugo Drax. On his journey he ends up meeting Dr. Holly
PL: Goodhead and encounters the metal-toothed Jaws once again.

BY: simon

PL: A Boeing 747 carrying a US space shuttle on loan to the UK crashes into the
PL: Atlantic Ocean. When the British examine the wreckage they can find no
PL: trace of the spacecraft and send agent James Bond to the shuttle's
PL: manufacturers, Drax Industries, to investigate.

BY: Dave Jenkins

Mario Sänger: Information Retrieval Exercises – Assignment 2 4

Query syntax

• Searchable fields are as follows:
– title
– plot (if a document has multiple plot descriptions they can be

appended)
– type (movie, series, episode, television, video, videogame; see

next slides)
– year (optional)
– episodetitle (optional, only for episodes)

Mario Sänger: Information Retrieval Exercises – Assignment 2 5

Query syntax

• Token query syntax: <field>:<token>
– Example: plot:Love

• Phrase query syntax: <field>:"<phrase>”
– Example: title:”Robin Hood”

• Conjunction syntax: <query> AND <query>
(where <query> can be a token, phrase, or AND query)
– Example: title:”James Bond” AND plot:Russia AND plot:kill

• “ AND ” and double quotes not allowed in tokens or
phrases
– Don’t worry about queries like title:"BATMAN AND ROBIN"

Mario Sänger: Information Retrieval Exercises – Assignment 2 6

IMDB Corpus

• Supported document types and their syntax:
– movie: MV: <title> (<year>)
– series: MV: "<title>" (<year>)
– episode: MV: "<title>" (<year>) {<episodetitle>}
– television: MV: <title> (<year>) (TV)
– video: MV: <title> (<year>) (V)
– videogame: MV: <title> (<year>) (VG)

• The corpus is in ISO-8859-1 format
– BufferedReader reader = new BufferedReader(

new InputStreamReader(new FileInputStream(path),
StandardCharsets.ISO_8859_1));

Mario Sänger: Information Retrieval Exercises – Assignment 2 7

Documents

• An entry in the corpus file
– Starts with “MV: ”
– Ends with horizontal lines (“-------------”) or end-of-file

• Each entry must be treated as one document
– A document can either match a query or not
– Identified by their full title line in the corpus: e.g., MV:

Moonraker (1979)

• Again, every document has up to five searchable fields:
title, plot, type, year, episodetitle

• Other information (e.g., “BY: “) can be discarded

Mario Sänger: Information Retrieval Exercises – Assignment 2 8

Peculiarities in the documents

• MV: Disparity (2013) {{SUSPENDED}}

MV: "Moments" (2011) {Dreams (#1.1)} {{SUSPENDED}}
→ {{SUSPENDED}} can be discarded

• MV: Disparity (????)
→ Not all entries have a year field

• MV: Displaced (2014/II)

MV: Displaced (2014/III)
→ Different documents may have identical name, year, and

type

• MV: Þegar það gerist (1998) (TV)
→ Make sure to parse the file using ISO-8859-1 encoding!

Mario Sänger: Information Retrieval Exercises – Assignment 2 9

Preprocessing

• The corpus text has to be split (“tokenized”) into terms
to build indices
– Use blanks, dots, commas, colons, exclamation marks, and

question marks as term delimiter => (.,:!?)
– Leave all other special characters untouched; they become parts

of tokens

• Examples
– “The Lord of the Rings: The Two Towers”

• “the”, “lord”, “of”, “the”, “rings”, “the”, “two”, “towers”
– “Marvel’s The Avengers”

• “marvel’s”, “the”, “avengers”

Mario Sänger: Information Retrieval Exercises – Assignment 2 10

Preprocessing

• Convert terms (for indices, term queries, and phrase
queries) to lower case
– Case-insensitive search!

• In phrase searches: the query is a consecutive sequence
of terms
– Document: “The Lord of the Rings: The Two Towers”

• “the”, “lord”, “of”, “the”, “rings”, “the”, “two”, “towers”
– “the lord” matches the document
– “he lord” doesn’t match the document!
– “lord the” doesn’t match the document!

Mario Sänger: Information Retrieval Exercises – Assignment 2 11

Program

• Implement the functions for building indices and running
queries in BooleanSeach.java:
– public void buildIndices(Path plotFile)
– public Set<String> booleanQuery(String queryString)

• Keep attention to:
– Only add classes and code, do not change or remove any code
– Do not alter the functions‘ signatures (types of parameters,

return values)
– Do not change the class or package name
– Only use the default constructor and don‘t change its parameters

Mario Sänger: Information Retrieval Exercises – Assignment 2 12

Challenges

• Parse “indexable” documents from an unstructured text
file
– Handle special characters
– Handle unexpected syntax variants

• Conceptualize and implement indices
– Separate indices different fields (title, plot, year, type)?
– Index size will not be evaluated

• Efficient computation of document lists per term
– Might be large (e.g., searching for “the”)

Mario Sänger: Information Retrieval Exercises – Assignment 2 13

Challenges

• Efficient implementation of AND operator
– Fast intersection of document lists

• Implementation of phrase search
– How to efficiently index the terms for phrase searches?
– Build separate indices for phrase searches?

• Efficient implementation of evaluating entire query
– Choose an efficient evaluation order of the separate query

parts

Mario Sänger: Information Retrieval Exercises – Assignment 2 14

Test your program!

• We provide you with:
– queries.txt: file containing exemplary queries
– results.txt: file containing the expected results of running these

queries
– A main method for testing your code (which expects as

parameters the corpus file, the queries file and the results file)

• Additionally, you can write your own test queries
– check the plausibility of your results using GREP:

grep " <search-token> " <corpus-file>
– use -G or -P parameter for regular expressions

Mario Sänger: Information Retrieval Exercises – Assignment 2 15

Submission

• Group 1: Wednesday, 30.05., 23:59 (midnight)
• Group 2: Friday, 01.06., 23:59 (midnight)

• Submit a ZIP archive named ass2_<group-name>.zip
– Java source files of your solution
– Compiled and executable BooleanQuery.jar

• Upload archive to the HU-BOX:
https://hu.berlin/ire18_assignment2

https://hu.berlin/ire18_assignment2

Mario Sänger: Information Retrieval Exercises – Assignment 2 16

Test your solution!

• Test your jar before submitting by running the examples
queries on gruenau2
– java -jar BooleanQuery.jar <plot list file> <queries file>

<results file>
– You might have to increase the JVM‘s heap size (e.g., -Xmx8g)
– Your jar must run and answer all test queries correctly!

• Your program has to correctly answer all example
queries correctly to pass the assignment!

Mario Sänger: Information Retrieval Exercises – Assignment 2 17

Submission checklist

• Before submitting your results, make sure that you ...
1. ... did not change or remove any code from BooleanQuery.java

2. ... did not alter the functions‘ signatures (types of parameters,
return values)

3. ... only use the default constructor and don‘t change its
parameters

4. ... did not change the class or package name

5. ... named your jar BooleanQuery.jar

6. .. tested your jar on a gruenau host by running
java -jar BooleanQuery.jar plot.list queries.txt results.txt
(you might have to increase Java heap space, e.g. -Xmx6g)

7. ... ascertained that the 15 queries in queries.txt were answered
correctly

Mario Sänger: Information Retrieval Exercises – Assignment 2 18

Solution presentation

• The presentation of the solutions will be given on 04.06.
resp. 06.06

• You are be able to pick when and what you‘d like to
present (first-come-first-served):
– Group 1 (Mo): https://dudle.inf.tu-dresden.de/ire_ass2_mo/
– Group 2 (We): https://dudle.inf.tu-dresden.de/ire_ass2_we/

• Presentation of the following aspects:
– Corpus parser
– Term search and indexing
– Phrase search
– AND search

https://dudle.inf.tu-dresden.de/ire_ass2_mo/
https://dudle.inf.tu-dresden.de/ire_ass2_we/

Mario Sänger: Information Retrieval Exercises – Assignment 2 19

Competition

• Search as fast as possible
• Build as many indices as you deem necessary

– But: stay under 50 GB memory usage!

• I will call the program using a eval tool
– I will use 9 different queries and -Xmx50g parameter

• The time for building the index counts as much as a
single query
– i.e., one tenth of the total achievable competition points

Mario Sänger: Information Retrieval Exercises – Assignment 2 20

Possible solution: Inverted files

• Simple and effective index structure for searching terms
in a collection of documents
– Considers documents as “bag of words”

• “Inverted” view of documents:
– Instead of “docs contain terms”, we use “terms appear in docs”

term1 term2 term3
Doc1 1 0 1
Doc2 1 0 0
Doc3 0 1 1
Doc4 1 0 0
Doc5 1 1 1
Doc6 1 1 0
Doc7 0 1 0
Doc8 0 1 0

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Doc7 Doc8
term1 1 1 0 1 1 1 0 0
term2 0 0 1 0 1 1 1 1
term3 1 0 1 0 1 0 0 0

Mario Sänger: Information Retrieval Exercises – Assignment 2 21

Doc1:
Now is the time
for all good men
to come to the aid
of their country

Doc2:
It was a dark and
stormy night in
the country
manor. The time
was past midnight

Merge

term Doc
now 1
is 1
the 1
time 1
for 1
all 1
good 1
men 1
to 1
come 1
to 1
the 1
aid 1
of 1
their 1
country 1

term Doc
it 2
was 2
a 2
dark 2
and 2
stormy 2
night 2
in 2
the 2
country 2
manor 2
the 2
time 2
was 2
past 2
midnight 2

term Doc
a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 1,2
was 1,2

Mario Sänger: Information Retrieval Exercises – Assignment 2 22

Boolean retrieval

• We can now efficiently implement Boolean
queries

• For each query term termi, look up document
list Doci containing termi

• Evaluate query in the usual order:
– termi Ù termj : Doci Ç Docj

• Example:
– plot:time AND plot:past AND plot:the

= Docplot:time Ç Docplot:past Ç Docplot:the

= {1,2} Ç {2} Ç {1,2}
= {2}

term Doc
a 2
aid 1
all 1
and 2
come 1
country 1,2
dark 2
for 1
good 1
in 2
is 1
it 2
manor 2
men 1
midnight 2
night 2
now 1
of 1
past 2
stormy 2
the 1,2
their 1
time 1,2
to 1,2
was 1,2

