Multiple Sequence Alignment
Sum-of-Pairs and Clustal-W

Ulf Leser
This Lecture

- **Multiple Sequence Alignment**
 - The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: Clustal-W
Multiple Sequence Alignment

• We now align multiple \((k>2)\) sequences
 - Note: Also BLAST aligns only two sequences

• Why?
 - Imagine \(k\) sequences of the promoter region of genes, all regulated by the same transcription factor \(f\). Which subsequence within the \(k\) sequences is recognized by \(f\)?
 - Imagine \(k\) sequences of proteins that bind to DNA. Which subsequence of the \(k\) sequences code for the part of the proteins that performs the binding?

• General
 - We want to know the common part(s) in \(k\) sequences
 - “common” does not mean identical
 - This part can be anywhere within the sequences
Definition ??? Max für l dazu

- Definition
 - A *multiple sequence alignment (MSA)* of \(k \) Strings \(s_i, 1 \leq i \leq k \), is a table of \(k \) rows and \(l \) columns \((l \geq \max(|s_i|))\), such that
 - Row \(i \) contains the sequence of \(s_i \), with an arbitrary number of blanks being inserted at arbitrary positions
 - Every symbol of every \(s_i \) stands in exactly one column
 - No column contains only blanks

AACGTGATTGAC	AACGTGATTGA
TCGAGTGCTTTACAGT	TCGAGT__GCTTTACAGT
GCCGTGCTAGTCG	GCCGTGCTAGT__C__G_
TTCAGTGACGTGGTA	TTCA_GTG_GACGTGGTA
GGTGCAGACC	G__GTGCA_GAC______C
Good MSA

- We are searching for **good (optimal) MSAs**
- Defining „optimal“ here is not as simple as in the k=2 case
- Intuition
 - All sequences had a common ancestor and evolved by evolution
 - We want to assume as **few evolutionary events** as possible
 - Thus, we want **few columns** (~ few INSDELs)
 - Thus, we want **homogeneous columns** (~ few replacements)
This Lecture

• Multiple Sequence Alignment
 - The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: Clustal-W
What Should we Count?

- For two sequences
 - We scored each column using a scoring matrix
 - Find the alignment such that the total score is maximal
- But – how do we score a column with $5*T$, $3*A$, $1*_$?
 - We would need an exponentially large scoring matrix
- Alternative: **Sum-of-Pairs Score**
 - We score an entire MSA
 - We score the alignment of each pair of sequences in the usual way
 - We aggregate *over all pairs* to score the MSA
 - We need a clever algorithm to find the MSA with the best score
Formally

- **Definition**
 - *Let* M *be a MSA for the set* S *of* k *sequences* $S = \{s_1, ..., s_k\}$
 - *The alignment of* s_i *with* s_j *induced by* M *is generated as follows*
 - Remove from M all rows except i and j
 - Remove all columns that contain only blanks
 - *The sum-of-pairs score (sop) of* M *is the sum of all pair-wise induced alignment scores*
 - *The optimal MSA for* S *wrt. to sop is the MSA with the lowest sop-score over all possible MSA for* S
Example

- Given a MSA over \(k \) sequences of length \(l \) - how complex is it to compute its sop-score?
- How do we find the best MSA?
Analogy

- Think of the \(k=2 \) case
- Every alignment is a path through the matrix
- The **three possible directions** (down, right, down-right) conform to the **three possible constellations** in a column (XX, X_, _X)
- With growing paths, we align **growing prefixes** of both sequences
Analogy

- Assume $k=3$
- Think of a 3-dimensional cube with the three sequences giving the values in each dimension
- Now, we have paths aligning growing prefixes of three sequences
- Every column has seven possible constellations (XXX, $XX__$, X_X, $_XX$, $X__$, $_X_$, $__X$)
All Possible Steps

- $d(i-1,j-1,k-1)$
- $d(i,j-1,k-1)$
- $d(i,j,k-1)$
- $d(i,j-1,k)$
- $d(i-1,j,k)$
- $d(i-1,j,k)$
- $d(i-1,j-1,k)$
- $d(i-1,j,k-1)$
Dynamic Programming in three Dimensions

- We compute the best possible alignment $d(i,j,k)$ for every triple of prefixes (lengths i,j,k) using the following formula
 - We assume the usual edit costs: $I/D/R=+1$, $M=0$

\[
d(i,j,k) = \min \begin{cases}
 d(i-1,j-1,k-1) + c_{ij} + c_{ik} + c_{jk} \\
 d(i-1,j-1,k) + c_{ij} + 2 \\
 d(i-1,j,k-1) + c_{ik} + 2 \\
 d(i,j-1,k-1) + c_{jk} + 2 \\
 d(i-1,j,k) + 2 \\
 d(i,j-1,k) + 2 \\
 d(i,j,k-1) + 2 \\
\end{cases}
\]

Three (mis)matches
One (mis)match, two ins

Let $c_{ij} = 0$, if $S_1(i) = S_2(j)$, else 1
Let $c_{ik} = 0$, if $S_1(i) = S_3(k)$, else 1
Let $c_{jk} = 0$, if $S_2(j) = S_3(k)$, else 1
Concrete Examples

- Best sop-score for \(d(i,j-1,k)\) is known
- We want to compute \(d(i,j,k)\)
- This requires to align one symbol with two blanks (blank/blank does not count)
- \(d(i,j,k) = d(i,j-1,k) + 2\)

- Best sop-score for \(d(i-1,j,k-1)\) is known
- We want to compute \(d(i,j,k)\)
- This requires aligning a blank with \(s_1[i-1]\) and with \(s_3[k-1]\) and to align \(s_1[i-1]\) and \(s_3[k-1]\)
- \(d(i,j,k) = d(i-1,j,k-1) + 2 + c_{ik}\)
Initialization

- Of course, we have $d(0,0,0)=0$
- Aligning in **one dimension**: $d(i,0,0)=2i$
 - Same for $d(0,j,0)$, $d(0,0,k)$
- Aligning in **two dimensions**: $d(i,j,0)=\ldots$
 - Let $d_{a,b}(i,j)$ be the alignment score for $S_a[1..i]$ with $S_b[1..j]$
 - $d(i, j, 0) = d_{1,2}(i, j) + (i+j)$
 - $d(i, 0, k) = d_{1,3}(i, k) + (i+k)$
 - $d(0, j, k) = d_{2,3}(j, k) + (j+k)$
Algorithm

initialize matrix d;
for i := 1 to |S₁|
 for j := 1 to |S₂|
 for k := 1 to |S₃|
 if (S₁(i) = S₂(j)) then cᵢⱼ := 0; else cᵢⱼ := 1;
 if (S₁(i) = S₃(k)) then cᵢₖ := 0; else cᵢₖ := 1;
 if (S₂(j) = S₃(k)) then cⱼₖ := 0; else cⱼₖ := 1;
 d₁ := d[i – 1, j – 1, k – 1] + cᵢⱼ + cᵢₖ + cⱼₖ;
 d₂ := d[i – 1, j – 1, k] + cᵢⱼ + 2;
 d₃ := d[i – 1, j, k – 1] + cᵢₖ + 2;
 d₄ := d[i, j – 1, k – 1] + cⱼₖ + 2;
 d₅ := d[i – 1, j, k) + 2;
 d₆ := d[i, j – 1, k) + 2;
 d₇ := d[i, j, k – 1] + 2;
 d[i,j,k] := min(d₁, d₂, d₃, d₄, d₅, d₆, d₇);
 end for;
 end for;
end for;
Bad News: Complexity

• For 3 sequences of length n
 - There are \(n^3 \) cells in the cube
 - For each cell (top-left-front corner), we need to look at 7 corners
 - Together: \(O(7*n^3) \) operations

• For \(k \) sequences of length n
 - There are \(n^k \) cell corners in the cube
 - For each corner, we need to look at \(2^k - 1 \) other corners
 - Together: \(O(2^k * n^k) \) operations
Bad News: Biological Meaningfulness

- Let’s take one step back
- What happened during evolution?

- Real number of events: 8
- sop-score: 2 + 3 + 6 + 6 + 2 + …
 - Single mutations are counted multiple times

```
GTTTCA
  GTTGCA
  GTTTTCA
  CTTGCA
  GTTGACA
  GTTGTTA
  GTATTTTCT
  GTATTTTGA
CT_TGC_A
GT_TGACA
GT_TGTTA
GTATTTTCT
GTATTTTGA
```
???
This Lecture

- Multiple Sequence Alignment
 - The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: Clustal-W
Different Scoring Function

- If we knew the **phylogenetic tree** of the k sequences
 - Align every parent node pairwise with its children
 - Aggregate all alignment scores
 - This gives the “real” number of evolutionary operations
 - But not yet the best MSA
- But: Finding the true phylogenetic tree requires a MSA
 - Not covered in this lecture
- Use a heuristic: **ClustalW**
Clustal-W

- **Main idea**
 - Compute a “good enough” phylogeny – the guide tree
 - Use the guide tree to iteratively align small MSA to larger MSA
 - “Progressive” MSA
 - Starting from single sequences
 - Add more and more sequences and smaller MSA to ever bigger MSA
 - Does not necessarily find the optimal solution
 - Needs a fast method to align two MSAs

- **Standard method** for a long time

- **Many newer (better) proposals**
 - DAlign, T-Coffee, HMMT, PRRT, MULTALIGN, …
Step 1: Compute the Guide Tree

- Compute all pair-wise alignments and store in distance matrix M
 - $M[i,j] = \text{sim}(s_i, s_j)$
- Compute the guide tree using hierarchical clustering
 - Choose the smallest $M[i,j]$
 - Let s_i and s_j form a new (next) branch of the tree
 - Compute the distance from the ancestor of s_i and s_j to all other sequences as the average of the distances to s_i and s_j
 - Set $M' = M$
 - Delete rows and columns i and j
 - Add a new column and row (ij)
 - For all $k \neq ij$: $M'[ij,k] = (M[i,k] + M[j,k]) / 2$
 - Iterate until M' has only one column / row
Example

Table 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>59</td>
<td>59</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>37</td>
<td>61</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>77</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>53</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>CD</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>31</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>
Once a gap, always a gap
Step 2: Progressive MSA

- Pair-wise alignment of MSAs in the order of the guide tree
- Aligning a MSA M_1 with a MSA M_2
 - Use the usual (global) alignment algorithm
 - To score a column, compute the average score over all pairs of symbols in these columns

- Example

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| A | ...P... | | B | ...G... | Score of this column
| C | ...P... | | D | ...A... | $(2*s(P,A)+s(P,Y)+$
| | | | | | |
| | | | | | |
| | | | | | |
| E | ...A... | | F | ...Y... | $2*s(P,A)+s(P,Y)) / 9$
Issues

• There is a lot to say about whether hierarchical clustering actually computes the “correct” tree
• Clustal-W actually uses a different, more accurate phylogenetic algorithm called “neighbor-joining”
• Clustal-W is fast: $O(k^2 n^2 + k^2 \log(k))$
 - For k sequences; plus cost for computing pairwise alignments
• Idea behind **progressive alignment**
 - Find strong signals (highly conserved blocks) first
 - Outliers are added last
 - Increases the chances that conserved blocks survive
 - Several improvements to this scheme are known
Problems with progressive MSA

Source: Cedric Notredame, 2001
Further Reading

- Merkl & Waack, chapter 13
- Böckenhauer & Bongartz, chapter 5.3