

Information Retrieval

Searching Terms

Ulf Leser

Content of this Lecture

- Searching strings
- Naïve exact string matching
- Boyer-Moore
- BM-Variants and comparisons

Searching Strings in Text

- All IR models require finding occurrences of terms in documents
- Fundamental operation: find(k,D) -> P^D
- Indexing: Preprocess docs and use index for searching
 - Apply tokenization; can only find entire words
 - Classical IR technique (inverted files)
- Online searching: Consider docs and query as new
 - No preprocessing slower
 - Usually without tokenization more "searchable" substrings
 - Classical algorithmic problem: Substring search

Properties

- Advantages of substring search
 - Does not require (erroneous, ad-hoc) tokenization
 - "U.S.", "35,00=.000", "alpha-type1 AML-3' protein", ...
 - Search across tokens / sentences / paragraphs
 - ", that ", "happen. ", ...
 - Searching prefixes, infixes, suffixes, stems
 - "compar", "ver" (German), ...
- Searching substrings is "harder" than searching terms
 - Number of unique terms doesn't increase much with corpus size (from a certain point on)
 - English: ~ 1 Million terms, but 200 Million potential substrings of size 6
 - Need to index all possible substrings

Types of Substring Searching

- Exact search: Find all exact occurrences of a pattern (substring) p in D
- RegExp matching: Find all matches of a regular exp. p in D
- Approximate search: Find all substrings in D that are "similar" to a pattern p
 - Phonetically similar (Soundex)
 - Only one typo away (keyboard errors)
 - Strings that can be produced from p by at most n operations of type "insert a letter", "delete a letter", "change a letter"
 - **–** ...
- Multiple strings: Searching >1 strings at once in D

Strings

Definition

A *String S* is a sequential list of symbols from a finite alphabet Σ

- |S| is the number of symbols in S
- Positions in S are counted from 1,...,|S|
- S[i] denotes the symbol at position i in S
- S[i..j] denotes the substring of S starting at position i and ending at position j (including both)
- S[..i] is the prefix of S until position i
- S[i..] is the suffix of S starting from position i
- S[..i] (S[i..]) is called a true prefix (suffix) of S if i≠0 and i≠|S|

Exact Substring Matching

- Given: Pattern P to search for, text T to search in
 - We require $|P| \le |T|$
 - We assume |P| << |T|
- Task: Find all occurrences of P in T
 - Where is "GATATC"

How to do it?

- The straight-forward way (naïve algorithm)
 - We use two counter: t, p
 - One (outer, t) runs through T
 - One (inner, p) runs through P
 - Compare characters at position T[t+p] and P[p]

Examples

Worst case Typical case ctgagatcgcgta aaaaaaaaaaaa P gagatc aaaaat gagatc aaaaat gagatc gagatc aaaaat gagatc aaaaat gatatc gatatc

- How many comparisons do we need in worst case?
 - Always: t runs through T

gatatc

- Worst-case: p runs through the entire P for every value of t
- Thus: |P|*|T| comparisons
- Indeed: The algorithm has worst-case complexity O(|P|*|T|)

Other Algorithms

- Exact substring search has been researched for decades
 - Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, ...
 - All have WC complexity O(|P| + |T|)
 - For some, WC=AC, but empirical performance differs much
 - Real performance depends much on size of alphabet and composition of strings (algs have their strength in certain settings)
 - Better performance possible if T is indexed (up to O(|P|))
- In practice, our naïve algorithm is quite competitive for non-trivial alphabets and biased letter frequencies
 - E.g., English text
- But we can do better: Boyer-Moore
 - We present a simplified form
 - BM is among the fastest algorithms in practice

Content of this Lecture

- Searching strings
- Naïve exact string matching
- Boyer-Moore
- BM-Variants and comparisons

Boyer-Moore Algorithm

R.S. Boyer /J.S. Moore. "A Fast String Searching Algorithm", CACM, 1977

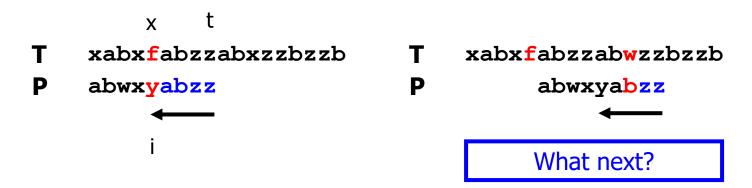
Main idea

- As for the naïve alg, we use two counters (inner loop, outer loop)
- Outer loop runs from left-to-right
- Inner loop runs from right-to-left
 - T xabxfabzzabxzzbzzb
 P abwxyabzz
- If we reach a mismatch, we know
 - The mismatch: Character in T we just haven't seen
 - This is captured by the bad character rule
 - Match so-far: The suffix in P we just have seen
 - This is captured by the good suffix rule
- Use this knowledge to make longer shifts in T

Bad Character Rule

Setting 1

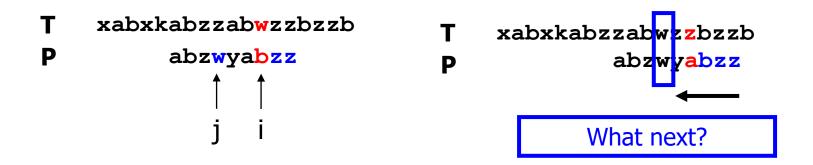
- We are at position t in T and compare right-to-left
- Let i be the position of the first mismatch in P
 - We saw n-i+1 matches before
- Let x be the character at the corresponding pos (t-n+i) in T
- Candidates for matching x in P
 - Case 1: x does not appear in P at all we can move t such that t-n+i
 is not covered by P anymore



Bad Character Rule 2

Setting 2

- We are at position t in T and compare right-to-left
- Let i be the position of the first mismatch in P
- Let x be the character at the corresponding pos (t-n+i) in T
- Candidates for matching x in P
 - Case 1: x does not appear in P at all
 - Case 2: Let j be the right-most appearance of x in P and let j<i we
 can move t such that j and i align



Bad Character Rule 3

Setting 3

- We are at position t in T and compare right-to-left
- Let i be the position of the first mismatch in P
- Let x be the character at the corresponding pos (t-n+i) in T
- Candidates for matching x in P
 - Case 1: x does not appear in P at all
 - Case 2: Let j be the right-most appearance of x in P and let j<i
 - Case 3: As case 2, but j>i we need some more knowledge

```
T xabxkabzzabwz zbzzb
p abzwyabzz
```

Preprocessing 1

- In case 3, there are some "x" right from position i
 - For small alphabets (DNA), this will almost always be the case
 - In human languages, this is often the case (e.g. for vowels)
 - Thus, case 3 is a usual one
- These "X" are irrelevant we need the right-most x left of i
- This can (and should!) be pre-computed
 - Build a two-dimensional array $A[|\Sigma|,|P|]$
 - Run through P from left-to-right (pointer i)
 - If character c appears at position i, set all A[c,j]:=i for all j>=i
 - Requested time (complexity?) negligible
 - Because |P|<<|T| and complexity independent from T
- Array: Constant lookup, needs some space (lists ...)

(Extended) Bad Character Rule

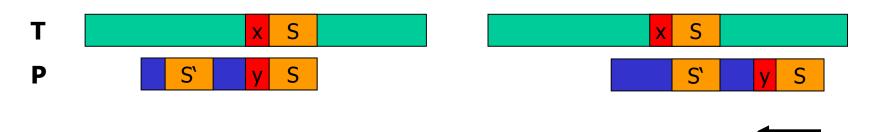
- EBCR: Shift t by i-A[x,i] positions
- Simple and effective for larger alphabets
- For random strings over Σ , average shift-length is $|\Sigma|/2$
 - Thus, n# of comparisons down to $|T|*2/|\Sigma|$
- Worst-Case complexity does not change
 - Why?

(Extended) Bad Character Rule

- EBCR: Shift t by i-A[x,i] positions
- Simple and effective for larger alphabets
- For random strings over Σ , average shift-length is $|\Sigma|/2$
 - Thus, n# of comparisons down to $|P|*|T|*2/|\Sigma|$
- Worst-Case complexity does not change
 - Why?

Good-Suffix Rule

- Recall: If we reach a mismatch, we know
 - The character in T we just haven't seen
 - The suffix in P we just have seen
- Good suffix rule
 - We have just seen a suffix S from P in T
 - Where else does S appear in P?
 - If we know the right-most appearance S' of S in P with S'≠S, we can immediately align S' with the current match in T
 - If S' does not exist, we can shift t by |P|



Good-Suffix Rule – One Improvement

- Actually, we can do a little better
- Not all S' are of interest to us

Good-Suffix Rule – One Improvement

- Actually, we can do a little better
- Not all S' are of interest to us

- We only need S' whose next character to the left is not y
- Why don't we directly require that this character is x?
 - Of course, this could be used for further optimization

Concluding Remarks

- Preprocessing 2
 - For the GSR, we need to find all occurrences of all suffixes of P in P
 - This can be solved using our naïve algorithm for each suffix
 - Or, more complicated, in linear time (not this lecture)
- WC complexity of Boyer-Moore is still O(|P|*|T|)
 - But average case is sub-linear
 - WC complexity can be reduced to linear (not this lecture), but this usually doesn't pay-off on real data

Example

Content of this Lecture

- Searching strings
- Naïve exact string matching
- Boyer-Moore
- BM-Variants and comparisons

Two Faster Variants

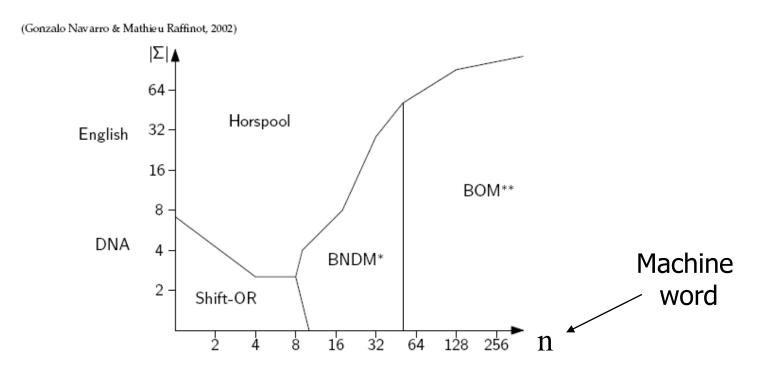
BM-Horspool

- Drop good suffix rule often makes algorithm slower in practice
 - Rarely generates shifts longer than EBCR
 - Always needs time to compute the shift
- Instead of looking at the mismatch character x, always look at the symbol in T aligned to the last position of P
 - Generates longer shifts on average (i is maximal)

BM-Sunday

- Instead of looking at the mismatch character x, always look at the symbol in T after the symbol aligned to the last position of P
 - Generates even longer shifts on average
- Alternative: Always look at the least frequent (in the language of T) symbol of P first

Empirical Comparison



- Shift-OR: Using parallelization in CPU (only small alphabets)
- BNDM: Backward nondeterministic Dawg Matching (automata-based)
- BOM: Backward Oracle Matching (automata-based)

Self Assessment

- Explain the Boyer-Moore algorithm
- Which rule is better GSR or EBCR?
- How can we efficiently implement EBCR?
- How does the Sunday algorithm deviate from BM?
- How can we use character frequencies to speed up BM? If we do so - which part of the algorithm is sped up?