

Information Retrieval

Models for Information Retrieval 1

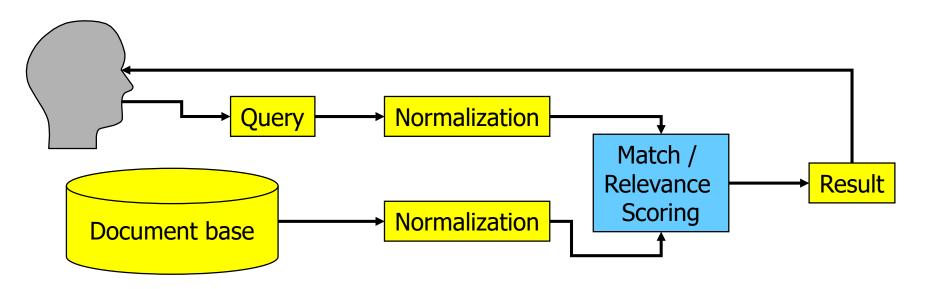
Ulf Leser

Content of this Lecture

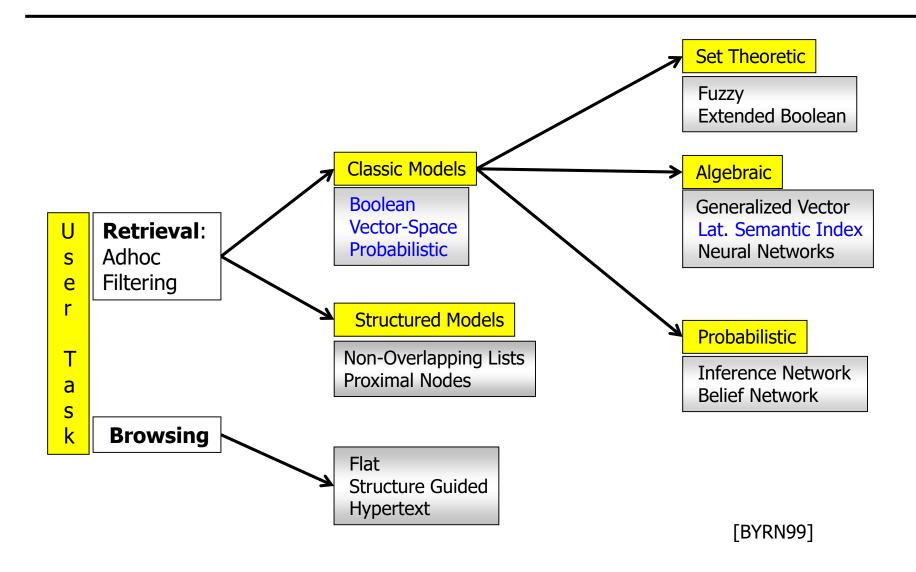
- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Outlook: Word Semantics and Word Embeddings

Information Retrieval Core

- The core question in IR:
 Which from a given set of (normalized) documents are relevant for a given query?
- Computing rankings: How relevant for a given query is each document?



Computational Relevance Models



Notation

- Most models we discuss use the "Bag of Words" view
- Definition
 - Let D be the set of all normalized documents, d∈D is a document
 - Let K be the set of all unique tokens in D, k∈K is a token
 - Can as well be terms, if recognizable
 - Let w be the function that maps a given d to its bag of tokens from K (its bag-of-words)
 - Let v_d by a vector of size |K| with
 - $V_d[i]=0$ iff $k_i \notin w(d)$
 - $V_d[i]=1$ iff $k_i \in W(d)$
- Note: Later, we will use weights instead of a Boolean membership function

Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models

Boolean Model

- Simple relevance model based on set theory
- Queries are Boolean expressions over sets of tokens
 - Tokens are atoms
 - Atoms are connected by AND, OR, NOT, (XOR, ...)
 - Documents are sets of tokens
 - We will use the bag-of-words notation
- Relevance of a document
 - Let q contain the atoms $\{k_1, k_2, ...\}$
 - An atom k_i evaluates to true for a document d iff $v_d[k_i]=1$
 - Compute values of all atoms for each d
 - Compute value of q for d as logical expression over atoms
 - Result is true or false

Properties

- Simple, clear semantics, widely used in (early) systems
- Disadvantages
 - No partial matching
 - Suppose query k₁∧k₂∧... ∧k₉
 - A doc d with $\mathbf{k}_1 \wedge \mathbf{k}_2 \dots \mathbf{k}_8$ is as irrelevant as one with none of the terms
 - No ranking
 - Token cannot be weighted
 - But some are more important for a doc than others
 - Lay users don't understand Boolean expressions
- Often unsatisfactory results especially for non IR-experts
 - Too many documents (too few restrictions, many OR)
 - Too few documents (too many restrictions, many AND)
 - Several extensions exist

A Note on Implementation

- In principle, we need to evaluate q for every d∈D
- Option 1 (slow): Iterate over D
- Option 2 (fast): Use a term index
 - Assume we have an index over D with a fast operation find: $K \rightarrow P^D$
 - Search each atom k_i of the query, resulting in a set D_i⊆D
 - Evaluate query in the given order using set operations on D_i's
 - $\mathbf{k_i} \wedge \mathbf{k_j}$: $\mathbf{D_i} \cap \mathbf{D_j}$ • $\mathbf{k_i} \vee \mathbf{k_j}$: $\mathbf{D_i} \cup \mathbf{D_j}$ • NOT $\mathbf{k_i}$: $\mathbf{D} \setminus \mathbf{D_i}$
- Improvements: Cost-based evaluation
 - Evaluate sub-expressions first that result in smaller intermediate results
 - Less memory requirements, faster intersections, ...

Negation in the Boolean Model

- Evaluating "NOT k_i" can be very expensive
 - If k_i is not a stop word, result is very large: $|D \setminus D_i| \approx |D|$
 - Most terms appear in almost no documents
 - Recall Zipf's Law the tail of the distribution
- Solution 1: Disallow negation
- Solution 2: Allow only in the form "k_i ^ NOT k_j"
 - Should not use implementation scheme as given before
 - D_{not-ki} would be very large
 - Better: $D := D_i \setminus D_i$
- Solution 3: Focus on top-K results and ignore long tail
 - This is what web search engines do

Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models

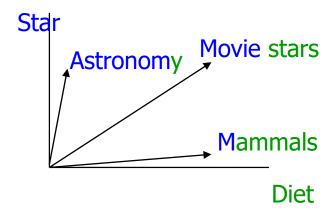
Vector Space Model

- Salton, G., Wong, A. and Yang, C. S. (1975). "A Vector Space Model for Automatic Indexing." CACM
 - A breakthrough in IR
 - Still very popular model
 - But increasingly replaced by language models other lectures

General idea

- Fix a vocabulary K
- View each doc and query as a point in a |K|-dimensional space
 - This is our BoW model
- Rank docs according to distance from the query in that space
- Main advantages
 - Natural ranking of docs (according to distance)
 - Naturally supports partial matching (increases distance)

Vector Space



- Each term is one dimension
 - Different suggestions for determining co-ordinates, i.e., term weights
- The closest docs are the most relevant ones
 - Rationale: Vectors correspond to themes which are loosely related to sets/bags of terms
 - Distance between vectors ~
 distance between themes
 - Different suggestions for defining distance

The Angle between Two Vectors

 Recall: The scalar product between two vectors v and w of equal dimension is defined as

$$v^{\circ}w = |v| * |w| * \cos(v, w)$$

This gives us the angle

$$\cos(v, w) = \frac{v^{\circ}w}{|v| * |w|}$$

with

$$|v| = \sqrt{\sum v_i^2}$$
 and $v^\circ w = \sum v_i * w_i$

Distance as Angle

Distance = cosine of the angle φ between doc d and query q

$$sim(d,q) = cos(\varphi) = \frac{v_d^{\circ} v_q}{|v_d| * |v_q|} = \frac{\sum (v_d[i] * v_q[i])}{\sqrt{\sum v_d[i]^2} * \sqrt{\sum v_q[i]^2}}$$

$$\varphi = \arccos(\sin(d, q))$$

Larger sim(d,q) → smaller angle → more similar d and q

Distance as Angle

Distance = cosine of the angle φ between doc d and query q

$$sim(d,q) = \cos(\varphi) = \frac{v_d \circ v_q}{|v_d| * |v_q|} = \frac{\sum \left(v_d[i] * v_q[i]\right)}{\sqrt{\sum v_d[i]^2} * \left(\sum v_q[i]^2\right)}$$
 Can be dropped for ranking

Example

Assume stop word removal, stemming, and binary weights

	Text	verkauf	haus	italien	gart	miet	blüh	woll
1	Wir verkaufen Häuser in Italien	1	1	1				
2	Häuser mit Gärten zu vermieten		1		1	1		
3	Häuser: In Italien, um Italien, um Italien herum		1	1				
4	Die italienschen Gärtner sind im Garten			1	1			
5	Der Garten in unserem italienschen Haus blüht		1	1	1		1	
Q	Wir wollen ein Haus mit Garten in Italien mieten		1	1	1	1		1

Ranking

$$sim(d,q) = \frac{\sum (v_q[i] * v_d[i])}{\sqrt{\sum v_d[i]^2}}$$

1	1	1	1					
2		1		1	1			
3		1	1					
4			1	1				
5		1	1	1		1		
Q		1	1	1	1		1	

•
$$sim(d_1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / \sqrt{3}$$

$$\sim 1.15$$

•
$$sim(d_2,q) = (1+1+1) / \sqrt{3}$$

•
$$sim(d_3,q) = (1+1) / \sqrt{2}$$

•
$$sim(d_4,q) = (1+1) / \sqrt{2}$$

•
$$sim(d_5,q) = (1+1+1) / \sqrt{4}$$

Rg	Q: Wir wollen ein Haus mit Garten in Italien mieten
1	d ₂ : Häuser mit Gärten zu vermieten
2	d ₅ : Der Garten in unserem italienschen Haus blüht
	d ₄ : Die italienschen Gärtner sind im Garten
3	d ₃ : Häuser : In Italien , um Italien , um Italien herum
5	d ₁ : Wir verkaufen Häuser in Italien

Introducing Term Weights

- Definition
 Let D be a document collection, K be the set of all terms in D,
 d∈D and k∈K
 - The term frequency tf_{dk} is the frequency of k in d
 - The document frequency df_k is the frequency of docs in D containing k
 - This should rather be called "corpus frequency"
 - Sometimes defined as the frequency of occurrences of k in D
 - Both definitions are valid and both are used
 - The inverse document frequency idf_k is $idf_k = |D| / df_k$
 - In practice, one usually uses $idf_k = log(|D| / df_k)$

Ranking with TF scoring

$$sim(d,q) = \frac{\sum (v_q[i] * v_d[i])}{\sqrt{\sum v_d[i]^2}}$$

1	1	1	1				
2		1		1	1		
3		1	3				
4			1	2			
5		1	1	1		1	
Q		1	1	1	1		1

•
$$sim(d_1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / \sqrt{3}$$

•
$$sim(d_2,q) = (1+1+1) / \sqrt{3}$$

•
$$sim(d_3,q) = (1+3) / \sqrt{10}$$

•
$$sim(d_4,q) = (1+2) / \sqrt{5}$$

•
$$sim(d_5,q) = (1+1+1) / \sqrt{4}$$

$$\sim 1.5$$

Rg	Q: Wir wollen ein Haus mit Garten in Italien mieten
1	d ₂ : Häuser mit Gärten zu vermieten
2	d ₅ : Der Garten in unserem italienschen Haus blüht
3	d ₄ : Die italienschen Gärtner sind im Garten
4	d ₃ : Häuser : In Italien , um Italien , um Italien herum
5	d ₁ : Wir verkaufen Häuser in Italien

Alternative Scoring: TF*IDF

- 1st problem: The longer a doc, the higher the probability of finding query terms by pure chance
 - Solution: Normalize TF values on document length (yields 0≤w_{dk}≤1)

$$tf_{dk} = \frac{tf_{dk}}{|d|} = \frac{tf_{dk}}{\sum_{j=1\dots k} tf_{dj}}$$

- Note: Longer docs also get down-ranked by normalization on doclength in similarity function. Use only one measure!
- 2nd problem: Terms frequent in D don't help to discriminate and should be scored less

$$v_d[k] = tf_{dk} * idf_k$$

Example TF*IDF

IDF	5	5/4	5/4	5/3	5	5	
1 (tf)	1/3	1/3	1/3				
2 (tf)		1/3		1/3	1/3		
3 (tf)		1/4	3/4				
4 (tf)			1/3	2/3			
5 (tf)		1/4	1/4	1/4		1/4	
Q		1	1	1	1		1

•
$$sim(d_1,q)=(5/4*1/3 + 5/4*1/3) / \sqrt{3}.13$$
 ~ 1.51
• $sim(d_2,q)=(5/4*1/3 + 5/3*1/3 + 5*1/3) / \sqrt{3}.26$ ~ 4,80
• $sim(d_3,q)=(5/4*1/4 + 5/4*3/4) / \sqrt{0}.98$ ~ 1,57

- $sim(d_4,q)=(5/4*1/3+5/3*2/3) / \sqrt{1.41}$ $\sim 2,08$

wollen ein Haus mit Garten in Italien mieten	wollen ein Hau	s mit Gart
• $sim(d_5,q)=(5/4*1/4+5/4*1/4+5/3*1/4*1/4*1/4*1/4*1/4*1/4*1/4*1/4*1/4*1/4$	/4) / √1.93	~ 2,08

ten in Italien mieten d₂: Häuser mit Gärten zu vermieten Häuser mit Gärten zu vermieten

d₅: Der **Garten** in unserem **italienschen Haus** blüht

d₁: Wir verkaufen **Häuser** in **Italien**

herum

d₄: Die **italienschen Gärtner** sind im **Garten**

d₃: Häuser: In Italien, um Italien, um Italien

Der Garten in unserem italienschen Haus blüht Die italienschen Gärtner sind im Garten

Häuser: In Italien, um Italien, um Italien herum

Wir verkaufen Häuser in Italien

Intuition behind TF*IDF

- Give query terms in a doc d high weights that are
 - frequent in d and
 - infrequent in D
- IDF deals with the consequences of Zipf's law
 - The few very frequent (and unspecific) terms get lower scores
 - The many infrequent (and specific) terms get higher scores
- Interferes with stop word removal
 - If stop words are removed, IDF might not be necessary any more
 - If IDF is used, stop word removal might not be necessary any more
- Many variations

A Concrete (and Popular) VSM-Model

Okapi BM25

- Okapi: First system which used it (80ties)
- BM25: Best-Match, version 25 (roughly)
- Good results in several TREC evaluations

$$sim(d,q) = \sum_{k \in q} IDF(k) * \frac{tf_{dk} * (k_1 + 1)}{tf_{dk} + k_1 * \left(1 - b + b * \frac{|d|}{a}\right)};$$

$$IDF(k) = \frac{|D| - tf_k + 0.5}{tf_k + 0.5}$$

- k_1 , b constants (often b=0.75, k_1 =0.2)
- a is the average document length in D

Distance Measure

- Why not use Euclidean distance?
- Length of vectors would be much more important
- Since queries usually are very short, very short documents would always win
- Cosine explicitly normalizes by the length of both vectors

Shortcomings

- We assume that all terms are independent
 - Clearly wrong: some terms are semantically closer than others
 - Their co-appearance doesn't mean more than only one appearance
 - The appearance of "red" in a doc with "wine" doesn't mean much
- No treatment of synonyms (query expansion, ...)
- No treatment of homonyms
 - Different senses = different dimensions
 - We would need to disambiguate terms into their senses (later)
- Term-order independent
 - But order carries semantic meaning (object? subject?)

Generalized Vector Space Model

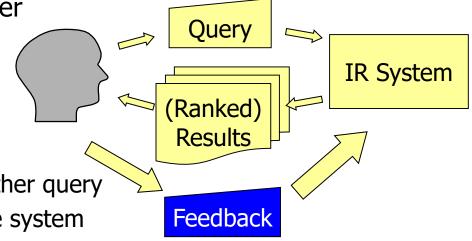
- One critique to the VSM: Terms are not independent
- Thus, term vectors cannot be assumed to be orthogonal
- Generalized Vector Space Model
 - Build a much larger vector space with $2^{|K|}$ dimensions
 - Each dimension ("minterm") stands for all docs containing a particular set of terms
 - Minterms are not orthogonal but correlated by term co-occurrences
 - Convert query and docs into minterm space
 - Finally, rel(q, d) is the cosine of the angel in minterm space
- Nice theory, considers term co-occurrence, much more complex than ordinary VSM, no proven advantage

Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Outlook: Word Semantics and Word Embeddings

Interactive IR

- Recall: IR is a process, not a single query
- Relevance feedback
 - User poses initial query
 - System computes ranked answer
 - User judges the relevance of the (top-k) results
 - System generates new (improved) ranked answers
 - User never needs to pose another query
 - New query is generated by the system
 - Loop until satisfaction



Relevance Feedback

- Basic assumptions
 - Relevant docs are similar to each other the common theme should be emphasized
 - Irrelevant docs are different from relevant docs these differences should be de-emphasized
- "Emphasize", "de-emphasize" Modify query terms and term weights
 - Query expansion: Add new terms to the query
 - From the relevant documents
 - Term re-weighting: Assign new weights to terms
 - Up-weight terms from the relevant docs
 - Down-weight terms from the irrelevant docs

Rocchio Algorithm

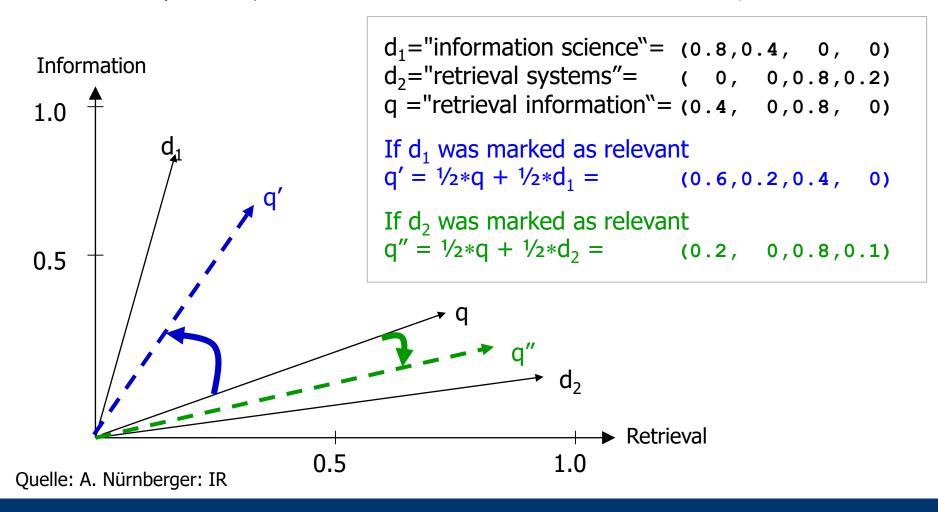
- Let R (N) be the set of docs marked as relevant (irrelevant)
- Rocchio: Adapt query vector after each feedback
 - Rocchio, J., Relevance Feedback in Information Retrieval,. In J. Rocchio and G. Salton (ed):
 "The SMART Retrieval System", Prentice Hall, 1971

$$v_{q_{new}} = \alpha * v_q + \beta * \frac{1}{|R|} \sum_{d \in R} v_d - \gamma * \frac{1}{|N|} \sum_{d \in N} v_d$$

- α: Do not forget the original query
- Implicitly performs query expansion and term re-weighting
- How to choose α , β , γ ?
 - Tuning with gold standard sets difficult
 - Educated guess followed by user studies

Example

Let α =0.5, β =0.5, γ =0, K={information, science, retrieval, system}



Choices for N

- How can we determine set N of irrelevant docs?
 - Ask the user for explicit negative feedback
 - More work for the user
 - Use only relevant docs and set $N = D\R$
 - Infeasible: N too large and with low confidence
 - Implicit: Docs presented for assessment and not marked relevant
 - User hopefully looked at all suggestions (first page)
 - But most users look at only a few low confidence
- Generally: Large N make things very slow
 - Query vector after first round has ~|K| non-null values
- Problem: R has one theme, N has many themes
 - High likelihood that terms get weights reflecting only the corpus, not the "not in R" property

Variations

- Alternative treatment for N
 - Intuition: Non-relevant docs are heterogeneous and tear in every direction – better to only take the worst instead of all of them

$$v_{q_{new}} = \alpha * v_q + \beta * \frac{1}{|R|} \sum_{d \in R} v_d - \gamma * \{v_d \mid d = \arg\min(sim(v_q, v_d))\}$$

- But: Probably many documents with similarity 0 which to take?
- Engines are tuned to find most relevant docs inefficient
- Most popular choice: Ignore N

Effects of Relevance Feedback

Advantages

- Improves results (many studies) compared to single queries
- Comfortable? Users need not generate new queries themselves
- Especially helpful for increasing recall
 - Due to query expansion kind-of synonym expansion

Disadvantages

- Still requires some work by the user
 - Excite: Only 4% used relevance feedback ("more of this" button)
- Writing a new query based on returned results might be faster (and easier and more successful) than rating results
- Assumes that relevant docs are similar
 - But may describe different aspects of the "query theme"

Collaborative Filtering

- More inputs for improving IR performance
- Collaborative filtering: Return to the user what other yet similar users liked
 - "Customers who bought this book also bought ..."
 - In IR: Find users posing similar queries and look at what they did with the answers
 - In e-Commerce: Which produces did they buy? (very reliable)
 - In IR, we need to approximate
 - Documents a user clicked on (if known)
 - Did the user look at the second page? (Low credit for first results)
 - Did the user pose a "refinement query" next? Which one
 - **–** ...
 - All these measures are not very reliable; we need many users

Thesaurus-based Query Expansion

- Expand query with synonyms and hyponyms of each term
 - feline → feline cat
 - One may weight added terms less than original query terms
- Often used in scientific IR systems (Medline)
- Requires high quality thesaurus
- General observation
 - Increases recall
 - May significantly decrease precision
 - "interest rate" → "interest rate fascinate evaluate"
 - Do synonyms really exist?

Self Assessment

- Explain the vector space model
- How is the size of K (vocabulary) influenced by preprocessing?
- Describe some variations of deducing term weights
- How could we extend the VSM to also consider the order of terms (to a certain degree)?
- How does the Rocchio algorithm determine the next query after feedback?
- How can we determine a useful set of negative documents in relevance feedback?
- How does relevance feedback work in current search engines?