

Algorithms and Data Structures

Strongly Connected Components

Ulf Leser

Content of this Lecture

- Graph Traversals
- Strongly Connected Components

Reachability in Graphs

- Fundamental problem: Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a pair of nodes $\mathrm{v}, \mathrm{w} \in \mathrm{V}$: Is w reachable from v ?
- Solutions so far ($\mathrm{n}=|\mathrm{V}|$)
- Warshall's algorithm solves the problem for all pairs, but O(n^{3})
- Dijkstra solves the problem for a given pair, but $O\left(n^{2} * \log (n)\right)$
- Can we do better?
- Yes: By pre-processing the graph (graph indexing)

Recall: Reachability in Trees

- Assume a DFS-traversal
- Build an array assigning each node two numbers
- Preorder numbers
- Keep a counter pre
- Whenever a node is entered the first time, assign it the current value of pre and increment pre
- Postorder numbers
- Keep a counter post
- Whenever a node is left the last time, assign it the current value of post and increment post

Ancestry and Pre-/Postorder Numbers

- Trick: A node v is reachable from a node w iff
pre(v)>pre(w) ^post(v)<post(w)
- Explanation
- v can only be reached from w, if w is "higher" in the tree, i.e., v was traversed after w and hence has a higher preorder number
- v can only be reached from w , if v is "lower" in the tree, i.e., v was left before w and hence has a lower postorder number
- Analysis: Test is $\mathrm{O}(1)$
- But preprocessing is $\mathrm{O}(\mathrm{n})$
- Pays off is pre-processed once, followed by many queries

Pre-/Post-order Labeling for Graphs

- Method

Let $G=(V, E)$. We assign each veV a pre-order and a postorder as follows. Set pre=post=1. Perform a depth-first traversal of G, starting at arbitrary nodes. When a node v is reached the first time, assign it the value of pre as preorder value and increase pre. Whenever a node v is left the last time, assign it the value of post as post-order value and increase post.

- Notes
- Traversals are cycle-free by definition - avoid multiple visits
- Complexity: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Labeling not unique; depends on chosen start nodes and order in which children are visited

Example

Example

Example

Example

Ideas to Speed-Up Reachability in Graphs

- Much research over the last decade
- PPO: Pre-/Post-Order Pair

- Trivial idea: Brute-Force
- Assign to each node as many PP-Pairs as paths that reach it
- Choosing a set of roots is tricky
- Reachability: Compare all pairs of PPOs of v and $w(n o t ~ O(1)) ~$
- Requires exponential space in WC, depending on "tree-likeliness"
- Efficient only if the graph is very "tree-like"
- Single root, almost acyclic

Ideas to Speed-Up Reachability in Graphs: GRIPP

- GRIPP

- If the graph is acyclic (wait)
- Modified DFS: When a node is visited for the none-first time, assign another PP-Pair but to not continue traversal further
- During search, expand nodes in the PP-range of start nodes which have multiple PP-Pairs
- Expand: "Jump" to the all PPOs and branch another search
- "Almost constant" runtime in many graphs

Example

- Is E reachable from B?
- First test: pre(E)<pre(B) - NO
- But D is reachable from B (with second PPP)
- Expand D - test its further PPPs
- Second test (E reachable from D): YES

Tricks to Speed-Up Reachability: GRAIL

- Observation: If v is reachable from w, then there exists a DFS of G in which pre $(w)<$ pre(v) and post(w)>post(v)
- Example K1-K4: Start DFS in K1

- Idea
- Perform a fixed number (k) of DFSs and use these as filter
- If v is reachable from w in any of the DFS: Done.
- Otherwise use another method (hopefully not often!)
- Very effective in dense graphs where most pairs are "reachable"
- Parameter k controls runtime and space (trade-off)
- Towards a probabilistic algorithm: Be very fast with high probability

Yildirim, H., Chaoji, V. and Zaki, M. J. (2010).
"GRAIL: Scalable Reachability Index for Large Graphs." VLDB

Graph Indexing

- Many other suggestions
- Runtimes have been reduced since 2005 by at least a factor of 100
- And graph sizes have grown by a factor of at least 1000
- Current research: Timed graphs
- Edges exist only in some windows in time (e.g.: ÖPNV)
- Find a path and a start time when w is reachable from v
- All require a preprocessing phase (e.g. single or multiple PPP indexing) and a search phase
- Complexities of both phases depend fundamentally on |G|
- If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster
- Many methods only work with acyclic graphs
- We need a way to transform a cyclic graph G into an acyclic graph G^{\prime} which encoded the same reachability information

Content of this Lecture

- Graph Traversals
- Strongly Connected Components (SCC)
- Motivation: Graph Contraction
- Kosaraju's algorithm

Recall: (Strongly) Connected Components

- Definition

Let $G=(V, E)$ be a directed graph.

- An induced subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G is called connected if G^{\prime} contains a path between any pair $v, v^{\prime} \in V^{\prime}$
- Any maximal connected subgraph of G is called a strongly connected component of G

Recall

- Definition

Let $G=(V, E)$ be a directed graph.

- An induced subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ of G is called connected if G^{\prime} contains a path between any pair $v, v^{\prime} \in V^{\prime}$
- Any maximal connected subgraph of G is called a strongly connected component of G

Motivation: Contracting a Graph

- Consider finding the transitive closure (TC) of a digraph G
- If we know all SCCs, parts of the TC can be computed immediately
- Next, each SCC can be replaced by a single node, producing G'
- G' must be acyclic - and is (much) smaller than G

Reachability and Graph Contraction

- Intuitively: TC(G) = TC(G')+SCC(G)
- Reachability $v \rightarrow w$: If $\operatorname{ssc}(v)=s s c(w)$: yes; else: Look at G^{\prime}
- First test can be implemented in $\mathrm{O}(1)$ with hashing
- Second test operates on much smaller graph
- Computing SCC solves some problems in reachability
- "If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster"
- Yes we can
- "We need a way to transform a cyclic graph G into an acyclic graph G^{\prime} which encoded the same reachability information"
- Yes we can
- Question - how do we compute SCC(G)?

Content of this Lecture

- Graph Traversals
- Strongly Connected Components (SCC)
- Motivation
- Kosaraju's algorithm

Kosaraju's Algorithm

- Definition

Let $G=(V, E)$. The graph $G^{T}=\left(V, E^{\prime}\right)$ with $(V, w) \in E^{\prime}$ iff
$(w, v) \in E$ is called the transposed graph of G.

- Kosaraju's algorithm is very short (but not simple)
- Compute post-order labels for all nodes from G using a first DFS
- Break cycles; start as often until all nodes have a post-order
- We don't need pre-order values
- Compute G ${ }^{\top}$
- Perform a second DFS on G^{\top} always choosing as next root / node the one with the highest post-order according to the first DFS that was not yet visited
- All trees that emerge from the second DFS are SCC of G (and GT)
- Kosaraju, 1978 (unpublished)

Example

- Note: Usually, we need more than one root

Correctness

- Theorem

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$. Any two nodes v , w are in the same tree of the second DFS iff v and w are in the same SCC in G.

- Proof
$-\Leftarrow$: Suppose $v \rightarrow \mathrm{w}$ and $\mathrm{w} \rightarrow \mathrm{v}$ in G . One of the two nodes (assume it is v) must be reached first during the second DFS. Since v can be reached by w in G, w can be reached by v in G^{\top}. Thus, when we reach v during the traversal of G^{\top}, we will also reach w further down the same tree, so they are in the same tree of G^{\top}.

Correctness

- \Rightarrow : Suppose v and w are in the same DFS-tree of G^{\top}
- Suppose r is the root of this tree
- (1) Since $r \rightarrow v$ in G^{\top}, it must hold that $v \rightarrow r$ in G
- (2) Because of the order of the second DFS: post(r)>post(v) in G
- (3) Thus, there must be a path $r \rightarrow v$ in G: Otherwise, r had been visited last after v in G and thus would have a smaller post-order
- (4) Since $v \rightarrow r$ (1) and $r \rightarrow v$ (3) in G, the same is true for G^{\top}
- (5) The same argument shows that $w \rightarrow r$ and $r \rightarrow w$ in G
- (6) By transitivity, it follows that $v \rightarrow w$ and $w \rightarrow v$ via r in G and in G^{\top}

Examples $(p(X)=\operatorname{post}-\operatorname{order}(X))$

- $\quad \mathrm{V} \rightarrow \mathrm{W}$
- Thus, $w \rightarrow v$ in G^{\top}
- Because $w \rightarrow v$ in G, $p(v)>p(w)$
- First tree in G^{\top} starts in v; doesn't reach w
- v, w not in same tree
- $v \rightarrow w$ and $w \rightarrow v$ in G and in G^{\top}
- Assume w is first in 1st DFS: $p(w)>p(v)$
- Thus $2^{\text {nd }}$ DFS starts in w and reaches v
- v , w in same tree

- Let's start $1^{\text {st }}$ DFS in r : $p(r)>p(w)>p(v)$
- $2^{\text {nd }}$ DFS starts in r, but doesn't reach w
- Second tree in $2^{\text {nd }}$ DFS starts in w and reaches v
- v, w in same tree

Complexity

- Both DFS are in $\mathrm{O}(|\mathrm{G}|)$, computing G^{\top} is in $\mathrm{O}(|\mathrm{E}|)$
- Instead of computing post-order values and sort them, we can simple push nodes on a stack when we leave them the last time in the first DFS - needs to be done $\mathrm{O}(|\mathrm{V}|)$ times
- In the 2nd DFS, we pop nodes from the stack as new roots
- Needs one more array to remove selected nodes during second DFS from stack in constant time
- Together: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Optimal: Since in WC we need to look at each edge and node at least once to find SCCs, the problem is in $\Omega(|\mathrm{V}|+|\mathrm{E}|)$
- There are faster algorithms that find SCCs in one traversal
- Tarjan's algorithm, Gabow's algorithm

