

Algorithms and Data Structures

Strongly Connected Components

- Graph Traversals
- Strongly Connected Components

- Fundamental problem: Given a graph G=(V,E) and a pair of nodes v,w∈V: Is w reachable from v?
- Solutions so far (n=|V|)
 - Warshall's algorithm solves the problem for all pairs, but $O(n^3)$
 - Dijkstra solves the problem for a given pair, but $O(n^{2*}\log(n))$
- Can we do better?
 - Yes: By pre-processing the graph (graph indexing)

Recall: Reachability in Trees

- Assume a DFS-traversal
- Build an array assigning each node two numbers
- Preorder numbers
 - Keep a counter pre
 - Whenever a node is entered the first time, assign it the current value of pre and increment pre
- Postorder numbers
 - Keep a counter post
 - Whenever a node is left the last time, assign it the current value of post and increment post

Examples from S. Trissl, 2007

Ancestry and Pre-/Postorder Numbers

- Trick: A node v is reachable from a node w iff pre(v)>pre(w) ^ post(v)<post(w)
- Explanation
 - v can only be reached from w, if w is "higher" in the tree, i.e., v was traversed after w and hence has a higher preorder number
 [1,9] R
 - v can only be reached from w, if v is "lower" in the tree, i.e., v was left before w and hence has a lower postorder number
- Analysis: Test is O(1)
 - But preprocessing is O(n)
 - Pays off is pre-processed once, followed by many queries

• Method

Let G=(V, E). We assign each $v \in V$ a pre-order and a postorder as follows. Set pre=post=1. Perform a depth-first traversal of G, starting at arbitrary nodes. When a node v is reached the first time, assign it the value of pre as preorder value and increase pre. Whenever a node v is left the last time, assign it the value of post as post-order value and increase post.

- Notes
 - Traversals are cycle-free by definition avoid multiple visits
 - Complexity: O(|V|+|E|)
 - Labeling not unique; depends on chosen start nodes and order in which children are visited

Ideas to Speed-Up Reachability in Graphs

- Much research over the last decade
 - PPO: Pre-/Post-Order Pair
- Trivial idea: Brute-Force
 - Assign to each node as many PP-Pairs as paths that reach it
 - Choosing a set of roots is tricky
 - Reachability: Compare all pairs of PPOs of v and w (not O(1))
 - Requires exponential space in WC, depending on "tree-likeliness"
 - Efficient only if the graph is very "tree-like"
 - Single root, almost acyclic

Ideas to Speed-Up Reachability in Graphs: GRIPP

- GRIPP
 - If the graph is acyclic (wait)
 - Modified DFS: When a node is visited for the none-first time, assign another PP-Pair but to not continue traversal further
 - During search, expand nodes in the PP-range of start nodes which have multiple PP-Pairs
 - Expand: "Jump" to the all PPOs and branch another search
 - "Almost constant" runtime in many graphs

Trissl, S. and Leser, U. (2007). "Fast and Practical Indexing and Querying of Very Large Graphs". SIGMOD.

- Is E reachable from B?
 - First test: pre(E) < pre(B) NO</p>
 - But D is reachable from B (with second PPP)
 - Expand D test its further PPPs
 - Second test (E reachable from D): YES

Tricks to Speed-Up Reachability: GRAIL

- Observation: If v is reachable from w, then there exists a
 DFS of G in which pre(w)<pre(v) and post(w)>post(v)
 - Example K1-K4: Start DFS in K1

- Idea
 - Perform a fixed number (k) of DFSs and use these as filter
 - If v is reachable from w in any of the DFS: Done.
 - Otherwise use another method (hopefully not often!)
 - Very effective in dense graphs where most pairs are "reachable"
 - Parameter k controls runtime and space (trade-off)
 - Towards a probabilistic algorithm:
 Be very fast with high probability

Yildirim, H., Chaoji, V. and Zaki, M. J. (2010). "GRAIL: Scalable Reachability Index for Large Graphs." *VLDB*

Graph Indexing

- Many other suggestions
 - Runtimes have been reduced since 2005 by at least a factor of 100
 - And graph sizes have grown by a factor of at least 1000
 - Current research: Timed graphs
 - Edges exist only in some windows in time (e.g.: ÖPNV)
 - Find a path and a start time when w is reachable from v
- All require a preprocessing phase (e.g. single or multiple PPP indexing) and a search phase
 - Complexities of both phases depend fundamentally on |G|
 - If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster
- Many methods only work with acyclic graphs
 - We need a way to transform a cyclic graph G into an acyclic graph G' which encoded the same reachability information

- Graph Traversals
- Strongly Connected Components (SCC)
 - Motivation: Graph Contraction
 - Kosaraju's algorithm

Recall: (Strongly) Connected Components

- Definition
 Let G=(V, E) be a directed graph.
 - An induced subgraph G'=(V', E') of G is called connected if G' contains a path between any pair $v, v' \in V'$
 - Any maximal connected subgraph of G is called a strongly connected component of G

Recall

- Definition
 Let G=(V, E) be a directed graph.
 - An induced subgraph G'=(V', E') of G is called connected if G' contains a path between any pair $v, v' \in V'$
 - Any maximal connected subgraph of G is called a strongly connected component of G

Motivation: Contracting a Graph

- Consider finding the transitive closure (TC) of a digraph G
 - If we know all SCCs, parts of the TC can be computed immediately
 - Next, each SCC can be replaced by a single node, producing G'
 - G' must be acyclic and is (much) smaller than G

- Intuitively: TC(G) = TC(G')+SCC(G)
 - Reachability $v \rightarrow w$: If ssc(v) = ssc(w): yes; else: Look at G'
 - First test can be implemented in O(1) with hashing
 - Second test operates on much smaller graph
- Computing SCC solves some problems in reachability
 - "If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster"
 - Yes we can
 - "We need a way to transform a cyclic graph G into an acyclic graph G' which encoded the same reachability information"
 - Yes we can
- Question how do we compute SCC(G)?

- Graph Traversals
- Strongly Connected Components (SCC)
 - Motivation
 - Kosaraju's algorithm

- Definition
 - Let G=(V,E). The graph $G^T=(V, E')$ with $(v,w)\in E'$ iff $(w,v)\in E$ is called the transposed graph of G.
- Kosaraju's algorithm is very short (but not simple)
 - Compute post-order labels for all nodes from G using a first DFS
 - Break cycles; start as often until all nodes have a post-order
 - We don't need pre-order values
 - Compute G^T
 - Perform a second DFS on G^T always choosing as next root / node the one with the highest post-order according to the first DFS that was not yet visited
 - All trees that emerge from the second DFS are SCC of G (and G^{T})
- Kosaraju, 1978 (unpublished)

Note: Usually, we need more than one root ${}^{\bullet}$

K5

3

K8

2

Ulf Leser: Algorithms and Data Structures

Correctness

- Theorem
 - Let G=(V,E). Any two nodes v, w are in the same tree of the second DFS iff v and w are in the same SCC in G.
- Proof
 - ⇐: Suppose v→w and w→v in G. One of the two nodes (assume it is v) must be reached first during the second DFS. Since v can be reached by w in G, w can be reached by v in G^T. Thus, when we reach v during the traversal of G^T, we will also reach w further down the same tree, so they are in the same tree of G^T.

Correctness

- \Rightarrow : Suppose v and w are in the same DFS-tree of G^T
 - Suppose r is the root of this tree
 - (1) Since $r \rightarrow v$ in G^T , it must hold that $v \rightarrow r$ in G
 - (2) Because of the order of the second DFS: post(r)>post(v) in G
 - (3) Thus, there must be a path $r \rightarrow v$ in G: Otherwise, r had been visited last after v in G and thus would have a smaller post-order
 - (4) Since $v \rightarrow r$ (1) and $r \rightarrow v$ (3) in G, the same is true for G^T
 - (5) The same argument shows that $w \rightarrow r$ and $r \rightarrow w$ in G
 - (6) By transitivity, it follows that $v \rightarrow w$ and $w \rightarrow v$ via r in G and in G^T

Examples (p(X) = post-order(X))

- V→W
- Thus, $w \rightarrow v$ in G^T
- Because w → v in G, p(v)>p(w)
- First tree in G^T starts in v; doesn't reach w
- v, w not in same tree

- v→w and w→v in G and in G^T
- Assume w is first in 1st DFS: p(w)>p(v)
- Thus 2nd DFS starts in w and reaches v
 - v, w in same tree

- Let's start 1st DFS in r: p(r)>p(w)>p(v)
- 2nd DFS starts in r, but doesn't reach w
- Second tree in 2nd DFS starts in w and reaches v
- v, w in same tree

Complexity

- Both DFS are in O(|G|), computing G^T is in O(|E|)
- Instead of computing post-order values and sort them, we can simple push nodes on a stack when we leave them the last time in the first DFS – needs to be done O(|V|) times
- In the 2nd DFS, we pop nodes from the stack as new roots
 - Needs one more array to remove selected nodes during second DFS from stack in constant time
- Together: O(|V|+|E|)
 - Optimal: Since in WC we need to look at each edge and node at least once to find SCCs, the problem is in $\Omega(|V|+|E|)$
- There are faster algorithms that find SCCs in one traversal
 - Tarjan's algorithm, Gabow's algorithm