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Content of this Lecture

• Graph Traversals
• Strongly Connected Components
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Reachability in Graphs

• Fundamental problem: Given a graph G=(V,E) and a pair 
of nodes v,w∈V: Is w reachable from v?

• Solutions so far (n=|V|)
– Warshall’s algorithm solves the problem for all pairs, but O(n3)
– Dijkstra solves the problem for a given pair, but O(n2*log(n))

• Can we do better?
– Yes: By pre-processing the graph (graph indexing)
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Recall: Reachability in Trees

• Assume a DFS-traversal
• Build an array assigning each 

node two numbers
• Preorder numbers

– Keep a counter pre
– Whenever a node is entered the 

first time, assign it the current 
value of pre and increment pre

• Postorder numbers
– Keep a counter post
– Whenever a node is left the last 

time, assign it the current value 
of post and increment post
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Ancestry and Pre-/Postorder Numbers

• Trick: A node v is reachable from a node w iff
pre(v)>pre(w) ∧ post(v)<post(w)

• Explanation
– v can only be reached from w, if w is “higher” in the tree, i.e., 

v was traversed after w and hence 
has a higher preorder number

– v can only be reached from w, 
if v is “lower” in the tree, i.e., 
v was left before w and hence 
has a lower postorder number

• Analysis: Test is O(1)
– But preprocessing is O(n)
– Pays off is pre-processed once,

followed by many queries
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Pre-/Post-order Labeling for Graphs

• Method
Let G=(V, E). We assign each v∈V a pre-order and a post-
order as follows. Set pre=post=1. Perform a depth-first 
traversal of G, starting at arbitrary nodes. When a node v 
is reached the first time, assign it the value of pre as pre-
order value and increase pre. Whenever a node v is left 
the last time, assign it the value of post as post-order 
value and increase post. 

• Notes
– Traversals are cycle-free by definition – avoid multiple visits
– Complexity: O(|V|+|E|)
– Labeling not unique; depends on chosen start nodes and order in 

which children are visited
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Example
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Example
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Example
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• Does our trick work? 
– Example: K1-K4
– Reachable in G
– But pre(K1)<pre(K4)

• Reachability trick does not work
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Ideas to Speed-Up Reachability in Graphs

• Much research over the 
last decade
– PPO: Pre-/Post-Order Pair

• Trivial idea: Brute-Force
– Assign to each node as many PP-Pairs as paths that reach it

• Choosing a set of roots is tricky 
– Reachability: Compare all pairs of PPOs of v and w (not O(1))
– Requires exponential space in WC, depending on “tree-likeliness”
– Efficient only if the graph is very “tree-like” 

• Single root, almost acyclic
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Ideas to Speed-Up Reachability in Graphs: GRIPP

• GRIPP
– If the graph is acyclic (wait)
– Modified DFS: When a node is visited for the none-first time, assign 

another PP-Pair but to not continue traversal further
– During search, expand nodes in the PP-range of start nodes which 

have multiple PP-Pairs
• Expand: “Jump” to the all PPOs and branch another search

– “Almost constant” runtime in many graphs
Trissl, S. and Leser, U. (2007). "Fast 
and Practical Indexing and Querying 
of Very Large Graphs". SIGMOD.

A

D

E F

R[0

B[1

[3 [4,0] ,1]

[2,2]
[6,4]

,3]

,6]
R

D

A

E

F

B

[5,5]



Ulf Leser: Algorithms and Data Structures 13

Example

• Is E reachable from B?
– First test: pre(E)<pre(B) – NO
– But D is reachable from B (with second PPP)
– Expand D – test its further PPPs
– Second test (E reachable from D): YES

[5,5] – [3,0] = NO
[5,5] – [6,4]

[2,2] – [3,0] = YES
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Tricks to Speed-Up Reachability: GRAIL

• Observation: If v is reachable 
from w, then there exists a 
DFS of G in which pre(w)<pre(v) 
and post(w)>post(v)
– Example K1-K4: Start DFS in K1

• Idea
– Perform a fixed number (k) of DFSs and use these as filter
– If v is reachable from w in any of the DFS: Done. 
– Otherwise use another method (hopefully not often!)
– Very effective in dense graphs where most pairs are “reachable”
– Parameter k controls runtime and space (trade-off)
– Towards a probabilistic algorithm: 

Be very fast with high probability
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Yildirim, H., Chaoji, V. and Zaki, M. J. (2010). 
"GRAIL: Scalable Reachability Index for Large 
Graphs." VLDB
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Graph Indexing

• Many other suggestions
– Runtimes have been reduced since 2005 by at least a factor of 100

• And graph sizes have grown by a factor of at least 1000
– Current research: Timed graphs 

• Edges exist only in some windows in time (e.g.: ÖPNV)
• Find a path and a start time when w is reachable from v

• All require a preprocessing phase (e.g. single or multiple 
PPP indexing) and a search phase
– Complexities of both phases depend fundamentally on |G| 
– If we could shrink G (without losing reachability-relevant 

information), all algorithms would be much faster
• Many methods only work with acyclic graphs

– We need a way to transform a cyclic graph G into an acyclic graph 
G’ which encoded the same reachability information
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Content of this Lecture

• Graph Traversals
• Strongly Connected Components (SCC)

– Motivation: Graph Contraction
– Kosaraju’s algorithm
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Recall: (Strongly) Connected Components

• Definition
Let G=(V, E) be a directed graph. 
– An induced subgraph G’=(V’, E’) of G is called connected if G’ 

contains a path between any pair v,v’∈V’ 
– Any maximal connected subgraph of G is called a strongly 

connected component of G
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Recall

• Definition
Let G=(V, E) be a directed graph. 
– An induced subgraph G’=(V’, E’) of G is called connected if G’ 

contains a path between any pair v,v’∈V’ 
– Any maximal connected subgraph of G is called a strongly 

connected component of G
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Motivation: Contracting a Graph

• Consider finding the transitive closure (TC) of a digraph G
– If we know all SCCs, parts of the TC can be computed immediately
– Next, each SCC can be replaced by a single node, producing G’
– G’ must be acyclic – and is (much) smaller than G
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Reachability and Graph Contraction

• Intuitively: TC(G) = TC(G’)+SCC(G)
• Reachability v→w: If ssc(v)=ssc(w): yes; else: Look at G’
• First test can be implemented in O(1) with hashing
• Second test operates on much smaller graph

• Computing SCC solves some problems in reachability
– “If we could shrink G (without losing reachability-relevant 

information), all algorithms would be much faster”
• Yes we can

– “We need a way to transform a cyclic graph G into an acyclic graph 
G’ which encoded the same reachability information”

• Yes we can

• Question – how do we compute SCC(G)?
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Content of this Lecture

• Graph Traversals
• Strongly Connected Components (SCC)

– Motivation
– Kosaraju’s algorithm
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Kosaraju‘s Algorithm 

• Definition
Let G=(V,E). The graph GT=(V, E‘) with (v,w)∈E‘ iff
(w,v)∈E is called the transposed graph of G.

• Kosaraju’s algorithm is very short (but not simple)
– Compute post-order labels for all nodes from G using a first DFS

• Break cycles; start as often until all nodes have a post-order
• We don’t need pre-order values

– Compute GT

– Perform a second DFS on GT always choosing as next root / node 
the one with the highest post-order according to the first DFS that 
was not yet visited

– All trees that emerge from the second DFS are SCC of G (and GT)
• Kosaraju, 1978 (unpublished)
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Example
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• Note: Usually, we need more than one root 
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Example
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Correctness

• Theorem
Let G=(V,E). Any two nodes v, w are in the same tree of 
the second DFS iff v and w are in the same SCC in G.

• Proof
– ⇐: Suppose v→w and w→v in G. One of the two nodes (assume it 

is v) must be reached first during the second DFS. Since v can be 
reached by w in G, w can be reached by v in GT. Thus, when we 
reach v during the traversal of GT, we will also reach w further 
down the same tree, so they are in the same tree of GT.
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Correctness

• ⇒: Suppose v and w are in the same DFS-tree of GT

– Suppose r is the root of this tree 
– (1) Since r→v in GT, it must hold that v→r in G 
– (2) Because of the order of the second DFS: post(r)>post(v) in G
– (3) Thus, there must be a path r→v in G: Otherwise, r had been 

visited last after v in G and thus would have a smaller post-order
– (4) Since v→r (1) and r→v (3) in G, the same is true for GT

– (5) The same argument shows that w→r and r→w in G 
– (6) By transitivity, it follows that v→w and w→v via r in G and in GT
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Examples (p(X) = post-order(X))

• v→w
• Thus, w→v in GT

• Because w↛v in G, 
p(v)>p(w)

• First tree in GT starts 
in v; doesn’t reach w

• v, w not in same tree
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• v→w and w→v in G 
and in GT

• Assume w is first in 
1st DFS: p(w)>p(v)

• Thus 2nd DFS starts 
in w and reaches v

• v, w in same tree
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• Let’s start 1st DFS in r:
p(r)>p(w)>p(v)

• 2nd DFS starts in r, but 
doesn’t reach w

• Second tree in 2nd DFS 
starts in w and reaches v

• v, w in same tree
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Complexity

• Both DFS are in O(|G|), computing GT is in O(|E|)
• Instead of computing post-order values and sort them, we 

can simple push nodes on a stack when we leave them the 
last time in the first DFS – needs to be done O(|V|) times

• In the 2nd DFS, we pop nodes from the stack as new roots
– Needs one more array to remove selected nodes during second 

DFS from stack in constant time
• Together: O(|V|+|E|)

– Optimal: Since in WC we need to look at each edge and node at 
least once to find SCCs, the problem is in Ω(|V|+|E|)

• There are faster algorithms that find SCCs in one traversal
– Tarjan’s algorithm, Gabow’s algorithm
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