
Algorithms and Data Structures

Ulf Leser

Strongly Connected Components

Ulf Leser: Algorithms and Data Structures 2

Content of this Lecture

• Graph Traversals
• Strongly Connected Components

Ulf Leser: Algorithms and Data Structures 3

Reachability in Graphs

• Fundamental problem: Given a graph G=(V,E) and a pair
of nodes v,w∈V: Is w reachable from v?

• Solutions so far (n=|V|)
– Warshall’s algorithm solves the problem for all pairs, but O(n3)
– Dijkstra solves the problem for a given pair, but O(n2*log(n))

• Can we do better?
– Yes: By pre-processing the graph (graph indexing)

Ulf Leser: Algorithms and Data Structures 4

Recall: Reachability in Trees

• Assume a DFS-traversal
• Build an array assigning each

node two numbers
• Preorder numbers

– Keep a counter pre
– Whenever a node is entered the

first time, assign it the current
value of pre and increment pre

• Postorder numbers
– Keep a counter post
– Whenever a node is left the last

time, assign it the current value
of post and increment post

A

B D

HE F G

R[1

C

[2

[3

[4 [5,1] ,2]

,3] [6,4]
[7 ,7]

[8 ,5] [9 ,6]

,8]

,9]

Examples from S. Trissl, 2007

Ulf Leser: Algorithms and Data Structures 5

Ancestry and Pre-/Postorder Numbers

• Trick: A node v is reachable from a node w iff
pre(v)>pre(w) ∧ post(v)<post(w)

• Explanation
– v can only be reached from w, if w is “higher” in the tree, i.e.,

v was traversed after w and hence
has a higher preorder number

– v can only be reached from w,
if v is “lower” in the tree, i.e.,
v was left before w and hence
has a lower postorder number

• Analysis: Test is O(1)
– But preprocessing is O(n)
– Pays off is pre-processed once,

followed by many queries

A

B D

HE F G

R[1

C

[2

[3

[4 [5,1] ,2]

,3] [6,4]
[7 ,7]

[8 ,5] [9 ,6]

,8]

,9]

Ulf Leser: Algorithms and Data Structures 6

Pre-/Post-order Labeling for Graphs

• Method
Let G=(V, E). We assign each v∈V a pre-order and a post-
order as follows. Set pre=post=1. Perform a depth-first
traversal of G, starting at arbitrary nodes. When a node v
is reached the first time, assign it the value of pre as pre-
order value and increase pre. Whenever a node v is left
the last time, assign it the value of post as post-order
value and increase post.

• Notes
– Traversals are cycle-free by definition – avoid multiple visits
– Complexity: O(|V|+|E|)
– Labeling not unique; depends on chosen start nodes and order in

which children are visited

Ulf Leser: Algorithms and Data Structures 7

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures 8

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8

K6

1,

2,

3,

4

Last visit:
All children already visited

Ulf Leser: Algorithms and Data Structures 9

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

1,

2,

3,

4,1 5,

6,

7,2 8,3

X

K1

K2

K3

K4

K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures 10

Example

X: 1,9

K1: 4, 1

K2: 3,6

K3: 2,8

K4: 9,7

K5: 8,3

K7: 6,4

K8: 7,2

K6: 5,5

X

K1

K2

K3

K4

K5

K7

K8

K6

1,9

2,8

3,6

4,1 5,5

6,4

7,2 8,3

9,7

• Does our trick work?
– Example: K1-K4
– Reachable in G
– But pre(K1)<pre(K4)

• Reachability trick does not work

Ulf Leser: Algorithms and Data Structures 11

Ideas to Speed-Up Reachability in Graphs

• Much research over the
last decade
– PPO: Pre-/Post-Order Pair

• Trivial idea: Brute-Force
– Assign to each node as many PP-Pairs as paths that reach it

• Choosing a set of roots is tricky
– Reachability: Compare all pairs of PPOs of v and w (not O(1))
– Requires exponential space in WC, depending on “tree-likeliness”
– Efficient only if the graph is very “tree-like”

• Single root, almost acyclic

X: 1,9

K1: 4, 1

K2: 3,6

K3: 2,8

K4: 9,7

K5: 8,3

K7: 6,4

K8: 7,2

K6: 5,5

Ulf Leser: Algorithms and Data Structures 12

Ideas to Speed-Up Reachability in Graphs: GRIPP

• GRIPP
– If the graph is acyclic (wait)
– Modified DFS: When a node is visited for the none-first time, assign

another PP-Pair but to not continue traversal further
– During search, expand nodes in the PP-range of start nodes which

have multiple PP-Pairs
• Expand: “Jump” to the all PPOs and branch another search

– “Almost constant” runtime in many graphs
Trissl, S. and Leser, U. (2007). "Fast
and Practical Indexing and Querying
of Very Large Graphs". SIGMOD.

A

D

E F

R[0

B[1

[3 [4,0] ,1]

[2,2]
[6,4]

,3]

,6]
R

D

A

E

F

B

[5,5]

Ulf Leser: Algorithms and Data Structures 13

Example

• Is E reachable from B?
– First test: pre(E)<pre(B) – NO
– But D is reachable from B (with second PPP)
– Expand D – test its further PPPs
– Second test (E reachable from D): YES

[5,5] – [3,0] = NO
[5,5] – [6,4]

[2,2] – [3,0] = YES

A

D

E F

R[0

B[1

[3 [4,0] ,1]

[2,2]
[6,4]

,3]

,6]
R

D

A

E

F

B

[5,5]

Ulf Leser: Algorithms and Data Structures 14

Tricks to Speed-Up Reachability: GRAIL

• Observation: If v is reachable
from w, then there exists a
DFS of G in which pre(w)<pre(v)
and post(w)>post(v)
– Example K1-K4: Start DFS in K1

• Idea
– Perform a fixed number (k) of DFSs and use these as filter
– If v is reachable from w in any of the DFS: Done.
– Otherwise use another method (hopefully not often!)
– Very effective in dense graphs where most pairs are “reachable”
– Parameter k controls runtime and space (trade-off)
– Towards a probabilistic algorithm:

Be very fast with high probability

X: 1,9

K1: 4, 1

K2: 3,6

K3: 2,8

K4: 9,7

K5: 8,3

K7: 6,4

K8: 7,2

K6: 5,5

Yildirim, H., Chaoji, V. and Zaki, M. J. (2010).
"GRAIL: Scalable Reachability Index for Large
Graphs." VLDB

Ulf Leser: Algorithms and Data Structures 15

Graph Indexing

• Many other suggestions
– Runtimes have been reduced since 2005 by at least a factor of 100

• And graph sizes have grown by a factor of at least 1000
– Current research: Timed graphs

• Edges exist only in some windows in time (e.g.: ÖPNV)
• Find a path and a start time when w is reachable from v

• All require a preprocessing phase (e.g. single or multiple
PPP indexing) and a search phase
– Complexities of both phases depend fundamentally on |G|
– If we could shrink G (without losing reachability-relevant

information), all algorithms would be much faster
• Many methods only work with acyclic graphs

– We need a way to transform a cyclic graph G into an acyclic graph
G’ which encoded the same reachability information

Ulf Leser: Algorithms and Data Structures 16

Content of this Lecture

• Graph Traversals
• Strongly Connected Components (SCC)

– Motivation: Graph Contraction
– Kosaraju’s algorithm

Ulf Leser: Algorithms and Data Structures 17

Recall: (Strongly) Connected Components

• Definition
Let G=(V, E) be a directed graph.
– An induced subgraph G’=(V’, E’) of G is called connected if G’

contains a path between any pair v,v’∈V’
– Any maximal connected subgraph of G is called a strongly

connected component of G

X

K1

K2

K3

K4 K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures 18

Recall

• Definition
Let G=(V, E) be a directed graph.
– An induced subgraph G’=(V’, E’) of G is called connected if G’

contains a path between any pair v,v’∈V’
– Any maximal connected subgraph of G is called a strongly

connected component of G

X

K1

K2

K3

K4 K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures 19

Motivation: Contracting a Graph

• Consider finding the transitive closure (TC) of a digraph G
– If we know all SCCs, parts of the TC can be computed immediately
– Next, each SCC can be replaced by a single node, producing G’
– G’ must be acyclic – and is (much) smaller than G

X

K1

K2

K3

K4 K5

K7

K8

K6

SCC1

SCC3

SCC4

SCC2

Ulf Leser: Algorithms and Data Structures 20

Reachability and Graph Contraction

• Intuitively: TC(G) = TC(G’)+SCC(G)
• Reachability v→w: If ssc(v)=ssc(w): yes; else: Look at G’
• First test can be implemented in O(1) with hashing
• Second test operates on much smaller graph

• Computing SCC solves some problems in reachability
– “If we could shrink G (without losing reachability-relevant

information), all algorithms would be much faster”
• Yes we can

– “We need a way to transform a cyclic graph G into an acyclic graph
G’ which encoded the same reachability information”

• Yes we can

• Question – how do we compute SCC(G)?

Ulf Leser: Algorithms and Data Structures 21

Content of this Lecture

• Graph Traversals
• Strongly Connected Components (SCC)

– Motivation
– Kosaraju’s algorithm

Ulf Leser: Algorithms and Data Structures 22

Kosaraju‘s Algorithm

• Definition
Let G=(V,E). The graph GT=(V, E‘) with (v,w)∈E‘ iff
(w,v)∈E is called the transposed graph of G.

• Kosaraju’s algorithm is very short (but not simple)
– Compute post-order labels for all nodes from G using a first DFS

• Break cycles; start as often until all nodes have a post-order
• We don’t need pre-order values

– Compute GT

– Perform a second DFS on GT always choosing as next root / node
the one with the highest post-order according to the first DFS that
was not yet visited

– All trees that emerge from the second DFS are SCC of G (and GT)
• Kosaraju, 1978 (unpublished)

Ulf Leser: Algorithms and Data Structures 23

Example

X: 9

K1: 1

K2: 6

K3: 8

K4: 7

K5: 3

K7: 4

K8: 2

K6: 5

X

K1

K2

K3

K4

K5

K7

K8

K6

9

8

6

1 5

4

2 3

7

• Note: Usually, we need more than one root

Ulf Leser: Algorithms and Data Structures 24

Example

X

K1

K2

K3

K4
K5

K7

K8

K6

X:9
K3:8
K4:7
K2:6
K6:5
K7:4
K5:3
K8:2
K1:1

X

K1

K2

K3

K4
K5

K7

K8

K6

X:9

K1:1

K2:6

K3:8

K4:7

K5:3

K7:4

K8:2K6:5
X

K1

K2

K3

K4
K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures 25

Correctness

• Theorem
Let G=(V,E). Any two nodes v, w are in the same tree of
the second DFS iff v and w are in the same SCC in G.

• Proof
– ⇐: Suppose v→w and w→v in G. One of the two nodes (assume it

is v) must be reached first during the second DFS. Since v can be
reached by w in G, w can be reached by v in GT. Thus, when we
reach v during the traversal of GT, we will also reach w further
down the same tree, so they are in the same tree of GT.

v

z

u
w

x

y v

z

u
w

x

y

Ulf Leser: Algorithms and Data Structures 26

Correctness

• ⇒: Suppose v and w are in the same DFS-tree of GT

– Suppose r is the root of this tree
– (1) Since r→v in GT, it must hold that v→r in G
– (2) Because of the order of the second DFS: post(r)>post(v) in G
– (3) Thus, there must be a path r→v in G: Otherwise, r had been

visited last after v in G and thus would have a smaller post-order
– (4) Since v→r (1) and r→v (3) in G, the same is true for GT

– (5) The same argument shows that w→r and r→w in G
– (6) By transitivity, it follows that v→w and w→v via r in G and in GT

r

v

In GT r

v

r:4

v:2

r

v

r

vIn G
⇒ ⇒⇒⇒(1) (2) (3) (4)(3)

Ulf Leser: Algorithms and Data Structures 27

Examples (p(X) = post-order(X))

• v→w
• Thus, w→v in GT

• Because w↛v in G,
p(v)>p(w)

• First tree in GT starts
in v; doesn’t reach w

• v, w not in same tree

r

z

v

w

x

y

r

z

v

w

x

y

• v→w and w→v in G
and in GT

• Assume w is first in
1st DFS: p(w)>p(v)

• Thus 2nd DFS starts
in w and reaches v

• v, w in same tree

r

z

v

w

x

y

• Let’s start 1st DFS in r:
p(r)>p(w)>p(v)

• 2nd DFS starts in r, but
doesn’t reach w

• Second tree in 2nd DFS
starts in w and reaches v

• v, w in same tree

Ulf Leser: Algorithms and Data Structures 28

Complexity

• Both DFS are in O(|G|), computing GT is in O(|E|)
• Instead of computing post-order values and sort them, we

can simple push nodes on a stack when we leave them the
last time in the first DFS – needs to be done O(|V|) times

• In the 2nd DFS, we pop nodes from the stack as new roots
– Needs one more array to remove selected nodes during second

DFS from stack in constant time
• Together: O(|V|+|E|)

– Optimal: Since in WC we need to look at each edge and node at
least once to find SCCs, the problem is in Ω(|V|+|E|)

• There are faster algorithms that find SCCs in one traversal
– Tarjan’s algorithm, Gabow’s algorithm

	Foliennummer 1
	Content of this Lecture
	Reachability in Graphs
	Recall: Reachability in Trees
	Ancestry and Pre-/Postorder Numbers
	Pre-/Post-order Labeling for Graphs
	Example
	Example
	Example
	Example
	Ideas to Speed-Up Reachability in Graphs
	Ideas to Speed-Up Reachability in Graphs: GRIPP
	Example
	Tricks to Speed-Up Reachability: GRAIL
	Graph Indexing
	Content of this Lecture
	Recall: (Strongly) Connected Components
	Recall
	Motivation: Contracting a Graph
	Reachability and Graph Contraction
	Content of this Lecture
	Kosaraju‘s Algorithm
	Example
	Example
	Correctness
	Correctness
	Examples (p(X) = post-order(X))
	Complexity

