

Algorithms and Data Structures

All Pairs Shortest Paths

Ulf Leser

Content of this Lecture

- All-Pairs Shortest Paths
 - Transitive closure: Warshall's algorithm
 - Shortest paths: Floyd's algorithm
- Reachability in Trees

Recall: DFS

- We put every node exactly once on the stack
 - Once visited, never visited again
- We look at every edge exactly once
 - Outgoing edges of a visited node are never considered again
- U can be implemented as bitarray of size |V|, allowing O(1) operations
 - Add, remove, getNextUnseen
- Altogether: O(n+m)

```
func void traverse (G graph,
                      v node,
                      U set) {
  t := new Stack();
  t.put(v);
  U := U \setminus \{v\};
  while not t.isEmpty() do
    n := t.pop();
    print n;
    c := n.outgoingNodes();
    foreach x in c do
      if xEU then
        U := U \setminus \{x\};
         t.push(x);
      end if:
    end for;
  end while;
```

Recall: Transitive Closure

- Definition
 Let G=(V,E) be a digraph and v_i, v_j∈V. The transitive closure of G is a graph G'=(V, E') where (v_i, v_j)∈E' iff G contains a path from v_i to v_j.
- TC usually is dense and represented as adjacency matrix
- Compact encoding of reachability information

and many more

Shortest Path Problems

- Dijkstra finds shortest path between a given start node and all other nodes assuming that all edge weights are positive
- All-pairs shortest paths: Given a digraph G with positive or negative edge weights, find the (cycle-free) distance between all pairs of nodes
 - We will interpret "find" as "compute the distance matrix"

\rightarrow	A	В	С	D	E	F	G	X	Υ
A	-	-	-	-	-	-	-	-	-
В	-3	-	-2	-	-	-	-	-	-
С	-	-	-	-	-	-	-	-	-
D	-2	1	-1	-	3	4	6	7	3
E									
F									
G									
X									
Υ									

Why Negative Edge Weights?

- One application: Transportation company
 - Every route incurs cost (for fuel, salary, etc.)
 - Every route creates income (for carrying the freight)
- If cost>income, edge weights become negative
 - But still important to find the best route
 - Example: Best tour from X to C

max revenue

No Dijkstra

- Dijkstra's algorithm does not work
 - Recall that Dijkstra enumerates nodes by their shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

X	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

No Dijkstra

- Dijkstra's algorithm does not work
 - Recall that Dijkstra enumerates nodes by their shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

X	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

No Dijkstra

- Dijkstra's algorithm does not work
 - Recall that Dijkstra enumerates nodes by their shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

Х	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

Negative Cycles

Shortest path between X and K5?

- X-K3-K4-K5: 5

- X-K3-K4-K5-X-K3-K4-K5: 4

– X-K3-K4-K5-X-K3-K4-K5: 3

– ...

SP-Problem undefined if G contains a negative cycle

All-Pairs: First Approach

- We start with a simpler problem: Computing the transitive closure of a digraph G without edge weights
- First idea
 - Reachability is transitive: $x \xrightarrow{p_1} y \wedge y \xrightarrow{p_2} z \implies x \xrightarrow{p_1} y \xrightarrow{p_2} z = x \rightarrow z$
 - We may use this idea to iteratively build longer and longer paths
 - First extend edges with edges path of length 2
 - Extend paths of length 2 with edges paths of length 3
 - **—** ...
 - No necessary path can be longer then |V|
 - Or it would contain a cycle
- In each step, we store "reachable by a path of length ≤k" in a matrix

Example – After z=1, 2, 3, 4

	Α	В	С	D	Е
Α		1	1		
В				1	
С				1	
D					1
Е	1				

	Α	В	С	D	Ε
Α		1	1	1	
В				1	1
С				1	1
D	1				1
Е	1	1	1		

	Α	В	С	D	Е
Α		1	1	1	1
В	1			1	1
С	1			1	1
D	1	1	1		1
Е	1	1	1	1	

	Α	В	С	D	Е
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
Е	1	1	1	1	1

	_				
	Α	В	С	D	Е
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
Е	1	1	1	1	1

Path length:

≤2

≤3

≤4

≤5

Naïve Algorithm

```
G = (V, E);
M := adjacency matrix(G);
M'' := M;
n := |V|
for z \stackrel{\not}{:}= 1..n-1 do
  M' := M'';
  for i = 1..n do
    for j = 1..n do
      if M'[i,j]=1 then
         for k=1 to n do
           if M[j,k]=1 then
             M''[i,k] := 1; < 
           end if:
         end for;
      end if:
    end for:
 end for;
end for;
```

z appears nowhere; it is there to ensure that we stop when the longest possible shortest paths has been found

- M is the adjacency matrix of G, M" eventually the TC of G
- M': Represents paths ≤z
- M": Represents paths ≤z+1
- Reachability is transitive:

$$\underbrace{i \xrightarrow{p_1} j}_{i \xrightarrow{j}} A j \xrightarrow{p_2} K \Longrightarrow i \xrightarrow{p_1} j \xrightarrow{p_2} K$$

- Loops i and j look at all pairs reachable by a path of length ≤z+1
- Loop k extends path of length
 ≤z by all outgoing edges
- Obviously O(n⁴)

Observation

	Α	В	С	D	Е			Α	В	С	D	Е		Α	В	С	D	E
A		1	1				Α		1	1			Α		1	1	1	
В				1		V	В				1		В				1	1
С				1		X	С				1		С				1	1
D					1		D					1	D	1				1
Е	1						Е	1					Е	1	1	1		

- In the first step, we actually compute MxM, and then replace each value ≥1 with 1
 - We only state that there is a path; not how many and not how long
- Computing TC can be described as matrix operations

Paths in the Naïve Algorithm

	Α	В	С	D	E		Α	В	С	D	Е		Α	В	С	D	Е		Α	В	С	D	Е		Α	В	С	D	Е
Α		1	1			Α		1	1	1		Α		1	1	1	1	A	1	1	1	1	1	Α	1	1	1	1	1
В				1		В				1	1	В	1			1	1	В	1	1	1	1	1	В	1	1	1	1	1
С				1		C				1	1	С	1			1	1	C	1	1	1	1	1	С	1	1	1	1	1
D					1	D	1				1	D	1	1	1		1	D	1	1	1	1	1	D	1	1	1	1	1
E	1					E	1	1	1			Е	1	1	1	1		E	1	1	1	1	1	Е	1	1	1	1	1

- The naive algorithm always extends paths by one edge
 - Computes MxM, M²xM, M³xM, ... Mⁿ⁻¹xM

Idea for Improvement

- Why not extend paths by all paths found so-far?
 - We compute $M^{2'}$ =MxM: Path of length ≤2 $M^{3'}$ = $M^{2'}$ xM \cup M $^{2'}$ xM $^{2'}$: Path of length ≤2+1 and ≤2+2 $M^{4'}$ = $M^{3'}$ xM \cup M $^{3'}$ xM $^{2'}$ \cup M $^{3'}$ xM $^{3'}$, lengths ≤4+1, ≤4+2, ≤4+3/4 ... $M^{n'}$ =... \cup M $^{n-1'}$ xM $^{n-1'}$
 - [We will implement it differently]
- Trick: We can stop much earlier
 - The longest shortest path can have length at most n
 - Thus, it suffices to compute $M^{\log(n)'} = ... \cup M^{\log(n)'} \times x M^{\log(n)'}$

Algorithm Improved

```
G = (V, E);
M := adjacency matrix(G);
n := |V|;
for z := 0...ceil(log(n)) do
  for i = 1..n do
    for j = 1..n do
      if M[i,j]=1 then
        for k=1 to n do
          if M[j,k]=1 then
            M[i,k] := 1;
          end if;
        end for:
      end if:
    end for:
 end for;
end for;
```

- We use only one matrix M
- We "add" to M matrices M²′, M³′ ...
- In the extension, we see if a path of length ≤2^z (stored in M) can be extended by a path of length ≤2^z (stored in M)
 - Computes all paths $\leq 2^z + 2^z = 2^{z+1}$
- Analysis: O(n^{3*}log(n))
- But ... we can be even faster

Example – After z=1, 2, 3

	Α	В	С	D	Е
Α		1	1		
В				1	
С				1	
D					1
Е	1				

	Α	В	С	D	Е
Α		1	1	1	
В				1	1
С				1	1
D	1				1
Е	1	1	1		

	Α	В	С	D	Е
Α	1	1	1	1	1
В	1	1	1	1	1
С	1	1	1	1	1
D	1	1	1	1	1
Е	1	1	1	1	1

Path length:

≤2

≤4

Done

Further Improvement

	Α	В	С	D	Е
Α		1	1		
В				1	
С				1	
D					1
Е	1				

	Α	В	С	D	Е
Α		1	1	1	
В				1	1
С				1	1
D	1				1
Е	1	1	1		

- Note: Connection A→D is found twice: A→B→D / A→C→D
- Can we stop "searching" A→D once we found A→B→D?
- Can we enumerate paths such that redundant connections are discovered less often?
 - I.e., less connections are tested

Warshall's Algorithm

Preparations

- Fix an arbitrary order on nodes and assign each node its rank as ID
- Let P_t be the set of all paths that contain only nodes with ID<t+1
 - Applies to inner nodes of a path, not start and end
- t gives the highest allowed node ID inside a path
- Idea: Compute P_t inductively
 - We start with P₁
 - Suppose we know P_{t-1}
 - If we increase t by one, we admit one additional node, i.e., ID t
 - Now, every additional path must have the form $i \xrightarrow{p_1 \in P_{t-1}} t \xrightarrow{p_2 \in P_{t-1}} k$
 - All paths with all IDs <t are already known
 - Node t is the only new player, must be in all new paths
 - We are done once t=n
 - This guarantees correctness all connections found

Warshall's Algorithm

- Enumerate paths by the IDs of the nodes they are allowed to contain
- t gives the highest allowed node ID inside a path

Algorithm

- Enumerate paths by the IDs of the nodes they are allowed to contain
- t gives the highest allowed node ID inside a path
- Thus, node t must be on any new path
- We find all pairs i,k with i→t and t→k
- For every such pair, we set the path i→k to 1

```
1. G = (V, E);
2. M := adjacency matrix(G);
3. n := |V|;
4. for t := 1..n do
     for i = 1..n do
6. if M[i,t]=1 then
7.
         for k=1 to n do
        if M[t,k]=1 then
8.
9.
             M[i,k] := 1;
           end if:
10.
11.
         end for:
12.
      end if:
13.
     end for:
14. end for;
```

Example – Warshall's Algorithm

	A	В	С	D	Е
A		1	1		
В				1	
С				1	
D					1
Е	1	1	1		

A allowed Connect E-A with A-B, A-C

t=,,A"

t=,,B"

t=,,C"

	A	В	С	D	E
A		1	1		
В				1	
С				1	
D					1
F	1	1	1		

	A	В	С	D	Ε
A		1	1	1	
В				1	
С				1	
D					1
Е	1	1	1	1	

	A	В	C	D	Е
A		1	1	1	
В				1	
C				1	
D					1
Е	1	1	1	1	

	A	В	C	D	E
A		1	1	1	1
В				1	1
C				1	1
D					1
E	1	1	1	1	1

		A	В	C	D	Ε
	A	1	1	1	1	1
	В	1	1	1	1	1
	C	1	1	1	1	1
	D	1	1	1	1	1
	Ш	1	1	1	1	1
7						

B allowed Connect A-B/E-B with B-D C allowed
Connect
A-C/E-C
with C-D
No news

D allowed Connect A-D, B-D, C-D,E-D with D-E

Connect everything with everything

E allowed

Little change – Notable Consequences

```
G = (V, E);
M := adjacency matrix(G);
n := |V|;
for z := 1..n do
  for i = 1..n do
    for j = 1..n do
      if M[i,j]=1 then
        for k=1 to n do
          if M[j,k]=1 then
            M[i,k] := 1;
          end if:
        end for:
      end if;
    end for:
  end for;
end for;
```


Drop z-Loop Swap i and j loop Rename j into t

```
1. G = (V, E);
2. M := adjacency matrix(G);
3. n := |V|;
4. for t := 1..n do
5. for i = 1...n do
      if M[i,t]=1 then
        for k=1 to n do
           if M[t,k]=1 then
9.
            M[i,k] := 1;
10.
          end if;
11. end for;
12. end if;
13. end for;
14. end for;
```

O(n⁴)

O(n³)

Content of this Lecture

- All-Pairs Shortest Paths
 - Transitive closure: Warshall's algorithm
 - Shortest paths: Floyd's algorithm
- Reachability in Trees

- Shortest paths: We need to compute the distance between all pairs of reachable nodes
- We use the same idea as Warshall: Enumerate paths using only nodes with IDs smaller than t inside a path
 - Invariant: Before step t, M[i,j] contains the length of the shortest path that uses no node with ID higher than t
 - When increasing t, we find new paths i→t→k and look at their lengths
 - Thus: M[i,k]:=min(M[i,k] \cup { M[i,t]+M[t,k] | i \rightarrow t \land t \rightarrow k})

Example 1/3

	A	В	С	D	E	F	G
A				1	3		
В	-2			-1	1		
С							
D	1	3	2	2	4		
E						4	1
F	0	2	5	1	3		
G			6			-1	

	A	В	С	D	E	F	G
A				1	3		
В	-2						
С							
D		3	2				
E						4	1
F	1	2	5				
G			6			-1	

Example 2/3

	A	В	С	D	E	F	G
A				1	3		
В	-2			-1	1		
С							
D	1	3	2	2	4		
Е						4	1
F	0	2	5	1	3		
G			6			-1	

	A	В	C	D	E	F	G
A				1	3		
В	-2			-1	1		
C							
D	1	3	2	2	4		
E						4	1
F	0	2	5	1	3		
G			6			-1	
	-	-	-		-		-

	A	В	С	D	Е	F	G
A	2	4	3	1	3	7	4
В	-2	2	1	-1	1	5	2
С							
D	1	3	2	2	4	8	5
Ε						4	1
F	0	2	3	1	3	7	4
G			6			-1	

	A	В	C	D	Е	F	G
A	2	4	3	1	<u>ന</u>		
В	<u>-2</u>	2	1	-1	<u>1</u>		
С							
D	1	3	2	2	4		
E						4	1
F	<u>0</u>	<u>2</u>	3	1	<u>3</u>		
G			6			-1	

Example 3/3

	A	В	C	D	Е	F	G	L
A	<u>2</u>	<u>4</u>	<u>3</u>	<u>1</u>	<u>3</u>	7	<u>4</u>	
В	<u>-2</u>	<u>2</u>	<u>1</u>	<u>-1</u>	<u>1</u>	5	<u>2</u>	
C								
D	<u>1</u>	<u>ന</u>	<u>2</u>	<u>2</u>	4	8	<u>5</u>	
Е	4	6	7	5	7	4	1	
F	0	2	3	1	3	7	4	
G	-1	1	2	0	2	-1	3	

	A	В	C	D	ш	F	G
A	2	4	3	1	3	7	4
В	-2	2	1	-1	1	5	2
С							
D	1	3	2	2	4	8	5
Ε						4	1
F	0	2	3	1	3	7	4
G			6			-1	

	A	В	C	D	E	F	G
A	<u>2</u> <u>-2</u>	<u>4</u>	<u>3</u>	<u>1</u>	<u>3</u>	3	<u>4</u>
В	<u>-2</u>	<u>2</u>	<u>1</u>	<u>-1</u>	<u>1</u>	1	<u>2</u>
С							
D	<u>1</u>	<u>3</u>	<u>2</u>	<u>2</u>	<u>4</u>	4	<u>5</u>
E	0	2	3	1	3	0	1
F	<u>0</u>	<u>2</u>	<u>3</u>	<u>1</u>	<u>3</u>	3	<u>4</u>
G	-1	1	2	0	2	-1	3

Summary (n=|V|, m=|E|)

- Warshall's algorithm computes the transitive closure of any unweighted digraph G in O(n³)
- Floyd's algorithm computes the distances between any pair of nodes in a digraph without negative cycles in O(n³)
- Johnson's alg. solves the problem in O(n²*log(n)+n*m)
 - Which is faster for sparse graphs
- Storing both information requires O(n²)
- Problem is easier for ...
 - Undirected graphs: Connected components
 - Graphs with only positive edge weights: All-pairs Dijkstra
 - Trees: Test for reachability in O(1) after O(n) preprocessing

Content of this Lecture

- All-Pairs Shortest Paths
 - Transitive closure: Warshall's algorithm
 - Shortest paths: Floyd's algorithm
- Reachability in Trees

Gene Ontology – Describing Gene Function

Database Annotation InterPro

- Used by many databases
- Allows cross-database search
- Provides fixed meaning of terms
 - As informal textual description, not as formal definitions

A Large Ontology

- As of 7.7.2021
 - 43917 terms
 - In three subontologies
 - Biological processs
 - Cellular components
 - Molecular functions
 - 3295 obsolete terms
 - Source: http://geneontology.org/stats.html
- Depth: >30

Problem

- To see whether a term X IS_A term Y, we need to check whether Y lies on the path from root to X
- Reachability problem

Reachability in Trees

- Let T be a directed tree. A node v is reachable from a node w iff there is a path from w to v
- Testing reachability requires finding paths
 - Which is simple in trees
- Path length is bound by the length of the longest path, i.e., the depth of the tree
- This means O(n) in worst-case
- Let's see whether we can preprocess the data to do this in constant time

Pre-/Postorder Numbers

- Assume a DFS-traversal
- Build an array assigning each node two numbers
- Preorder numbers
 - Keep a counter pre
 - Whenever a node is entered the first time, assign it the current value of pre and increment pre
- Postorder numbers
 - Keep a counter post
 - Whenever a node is left the last time, assign it the current value of post and increment post

Examples from S. Trissl, 2007

Ancestry and Pre-/Postorder Numbers

Trick: A node v is reachable from a node w iff

- Explanation
 - v can only be reached from w, if w is "higher" in the tree, i.e.,

v was traversed after w and hence has a higher preorder number

- v can only be reached from w, if v is "lower" in the tree, i.e., v was left before w and hence has a lower postorder number
- Analysis: Test is O(1)

