

Algorithms and Data Structures

All Pairs Shortest Paths

Ulf Leser

Content of this Lecture

- All-Pairs Shortest Paths
- Transitive closure: Warshall's algorithm
- Shortest paths: Floyd's algorithm
- Reachability in Trees

Recall: DFS

- We put every node exactly once on the stack
- Once visited, never visited again
- We look at every edge exactly once
- Outgoing edges of a visited node are never considered again
- U can be implemented as bitarray of size |V|, allowing O(1) operations
- Add, remove, getNextUnseen
- Altogether: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

```
func void traverse (G graph,
                                    v node,
                                    U set) {
    t := new Stack();
    t.put( v);
    U := U \ {v};
    while not t.isEmpty() do
        n := t.pop();
        print n;
        c := n.outgoingNodes();
        foreach x in c do
            if x\inU then
                U := U \ {x};
                t.push( x);
            end if;
        end for;
    end while;
}
```


Recall: Transitive Closure

- Definition

Let $G=(V, E)$ be a digraph and $v_{j} v_{j} \in V$. The transitive closure of G is a graph $G^{\prime}=\left(V, E^{\prime}\right)$ where $\left(v_{j} v_{j}\right) \in E^{\prime}$ iff G contains a path from v_{i} to v_{j}.

- TC usually is dense and represented as adjacency matrix
- Compact encoding of reachability information

and many more

Shortest Path Problems

- Dijkstra finds shortest path between a given start node and all other nodes assuming that all edge weights are positive
- All-pairs shortest paths: Given a digraph G with positive or negative edge weights, find the (cycle-free) distance between all pairs of nodes
- We will interpret "find" as "compute the distance matrix"

\rightarrow	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{X}	\mathbf{Y}
\mathbf{A}	-	-	-	-	-	-	-	-	-
\mathbf{B}	-3	-	-2	-	-	-	-	-	-
\mathbf{C}	-	-	-	-	-	-	-	-	-
\mathbf{D}	-2	1	-1	-	3	4	6	7	3
\mathbf{E}	\ldots	\ldots	\ldots						
\mathbf{F}									
\mathbf{G}									
\mathbf{X}									
\mathbf{Y}									

Why Negative Edge Weights?

- One application: Transportation company
- Every route incurs cost (for fuel, salary, etc.)
- Every route creates income (for carrying the freight)
- If cost>income, edge weights become negative
- But still important to find the best route
- Example: Best tour from X to C

Cost

Incoming

Shortest path = max revenue

No Dijkstra

- Dijkstra's algorithm does not work
- Recall that Dijkstra enumerates nodes by their shortest paths
- Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

X	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

No Dijkstra

- Dijkstra's algorithm does not work
- Recall that Dijkstra enumerates nodes by their shortest paths
- Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

X	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

No Dijkstra

- Dijkstra's algorithm does not work
- Recall that Dijkstra enumerates nodes by their shortest paths
- Now: Adding a subpath to a so-far shortest path may make it "shorter" (by negative edge weights)

X	0
K1	2
K2	2
K3	1
K4	4
K5	
K6	5
K7	4
K8	

Negative Cycles

- Shortest path between X and K 5 ?

$$
\begin{aligned}
& - \text { X-K3-K4-K5: } 5 \\
& - \text { X-K3-K4-K5-X-K3-K4-K5: } 4 \\
& -\quad \text { X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: } 3 \\
& -\quad . .
\end{aligned}
$$

- SP-Problem undefined if G contains a negative cycle

All-Pairs: First Approach

- We start with a simpler problem: Computing the transitive closure of a digraph G without edge weights
- First idea
- Reachability is transitive: $x \xrightarrow{p_{1}} y \wedge \mathrm{y} \xrightarrow{p_{2}} \mathrm{z} \Rightarrow x \xrightarrow{p_{1}} y \xrightarrow{p_{2}} \mathrm{z}=\mathrm{x} \rightarrow \mathrm{z}$
- We may use this idea to iteratively build longer and longer paths
- First extend edges with edges - path of length 2
- Extend paths of length 2 with edges - paths of length 3
- No necessary path can be longer then |V|
- Or it would contain a cycle
- In each step, we store "reachable by a path of length $\leq \mathrm{k}$ " in a matrix

Example - After z=1, 2, 3, 4

	A	B	C	D	E
A		1	1		
B				1	
C				1	
D					1
E	1				

Path length:

	A	B	C	D	E
A		1	1	1	
B				1	1
C				1	1
D	1				1
E	1	1	1		

≤ 2

	A	B	C	D	E
A		1	1	1	1
B	1			1	1
C	1			1	1
D	1	1	1		1
E	1	1	1	1	

≤ 3

	A	B	C	D	E
A	1	1	1	1	1
B	1	1	1	1	1
C	1	1	1	1	1
D	1	1	1	1	1
E	1	1	1	1	1

≤ 4

	A	B	C	D	E
A	1	1	1	1	1
B	1	1	1	1	1
C	1	1	1	1	1
D	1	1	1	1	1
E	1	1	1	1	1

≤ 5

Naïve Algorithm

z appears nowhere; it is there to ensure that we stop when the longest possible shortest paths has been found

- M is the adjacency matrix of G , $\mathrm{M}^{\prime \prime}$ eventually the TC of G
- M^{\prime} : Represents paths $\leq z$
- $\mathrm{M}^{\prime \prime}$: Represents paths $\leq z+1$
- Reachability is transitive: $i \xrightarrow{p_{1}} j \triangle j \stackrel{p_{2}}{\rightarrow} \mathrm{k} \Rightarrow i \stackrel{p_{1}}{\rightarrow} j \xrightarrow{p_{2}} \mathrm{k}$
- Loops i and j look at all pairs reachable by a path of length $\leq z+1$
- Loop k extends path of length $\leq z$ by all outgoing edges
- Obviously O(n^{4})

Observation

	A	B	C	D	E
A		1	1		
B				1	
C				1	
D	X				1
E	1				

	A	B	C	D	E
A		1	1		
B				1	
C				1	
D					1
E	1				

	A	B	C	D	E
A		1	1	1	
B				1	1
C				1	1
D	1				1
E	1	1	1		

- In the first step, we actually compute MxM , and then replace each value ≥ 1 with 1
- We only state that there is a path; not how many and not how long
- Computing TC can be described as matrix operations

Paths in the Naïve Algorithm

	A	B	C	D	E		A	B	C		D	E		A	B		C	D				A	B	C					A		D	E
A		1	1			A		1	1		1		A		1		1	1			A	1	1	1	1			A	1		1	1
B				1		B					1	1	B	1				1			B	1	1	1	1			B	1		1	1
C				1		C					1	1	C	1				1			C	1	1	1				C	1		1	1
D					1	D	1					1	D	1	1		1				D	1	1	1				D	1		1	1
E	1					E	1	1	1				E	1			1	1			E	1	1	1	1			E	1		1	1

- The naive algorithm always extends paths by one edge
- Computes $\mathrm{MxM}, \mathrm{M}^{2} \mathrm{xM}, \mathrm{M}^{3} \mathrm{xM}, \ldots \mathrm{M}^{\mathrm{n}-1} \mathrm{xM}$

Idea for Improvement

- Why not extend paths by all paths found so-far?
- We compute
$\mathrm{M}^{2^{\prime}}=\mathrm{MxM}$: Path of length ≤ 2
$M^{3^{\prime}}=M^{2} x M \cup M^{2}{ }^{\prime} x M^{2}$: Path of length $\leq 2+1$ and $\leq 2+2$
$M^{4^{\prime}}=M^{3^{\prime}} x M \cup M^{3^{\prime}} x M^{2^{\prime}} \cup M^{3^{\prime}} x M^{3^{\prime}}$, lengths $\leq 4+1, \leq 4+2, \leq 4+3 / 4$
$M^{n^{\prime}}=\ldots \cup M^{n-1} x^{\prime} M^{n-1} 1^{\prime}$
- [We will implement it differently]
- Trick: We can stop much earlier
- The longest shortest path can have length at most n
- Thus, it suffices to compute $\left.M^{\log (n)^{\prime}}=\ldots \cup M^{\log (n)}\right)^{*} x M^{\log (n)^{\prime}}$

Algorithm Improved

```
G = (V, E);
M := adjacency_matrix( G);
n := |V|;
for z := 0..ceil(log(n)) do
    for i = 1..n do
        for j = 1..n do
            if M[i,j]=1 then
            for k=1 to n do
                if M[j,k]=1 then
                    M[i,k] := 1;
                end if;
            end for;
        end if;
    end for;
    end for;
end for;
```

- We use only one matrix M
- We "add" to M matrices $\mathrm{M}^{2}, \mathrm{M}^{3^{\prime}}$...
- In the extension, we see if a path of length $\leq 2^{2}$ (stored in M) can be extended by a path of length $\leq 2^{z}$ (stored in M)
- Computes all paths $\leq 2^{2}+2^{2}=2^{2+1}$
- Analysis: O(n $\left.{ }^{3 *} \log (n)\right)$
- But ... we can be even faster

Example - After z=1, 2, 3

	A	B	C	D	E
A		1	1		
B				1	
C				1	
D					1
E	1				

Path length:

	A	B	C	D	E
A		1	1	1	
B				1	1
C				1	1
D	1				1
E	1	1	1		

	A	B	C	D	E
A	1	1	1	1	1
B	1	1	1	1	1
C	1	1	1	1	1
D	1	1	1	1	1
E	1	1	1	1	1

≤ 2
≤ 4
Done

Further Improvement

	A	B	C	D	E
A		1	1		
B				1	
C				1	
D					1
E	1				

	A	B	C	D	E
A		1	1	1	
B				1	1
C				1	1
D	1				1
E	1	1	1		

- Note: Connection $A \rightarrow D$ is found twice: $A \rightarrow B \rightarrow D / A \rightarrow C \rightarrow D$
- Can we stop "searching" $A \rightarrow D$ once we found $A \rightarrow B \rightarrow D$?
- Can we enumerate paths such that redundant connections are discovered less often?
- I.e., less connections are tested

Warshall's Algorithm

- Preparations
- Fix an arbitrary order on nodes and assign each node its rank as ID
- Let P_{t} be the set of all paths that contain only nodes with ID<t+1
- Applies to inner nodes of a path, not start and end
- t gives the highest allowed node ID inside a path
- Idea: Compute P_{t} inductively
- We start with P_{1}
- Suppose we know $\mathrm{P}_{\mathrm{t}-1}$
- If we increase t by one, we admit one additional node, i.e., ID t
- Now, every additional path must have the form $i \xrightarrow{p_{1} \in P_{t-1}} t \xrightarrow{p_{2} \in P_{t-1}} k$
- All paths with all IDs <t are already known
- Node t is the only new player, must be in all new paths
- We are done once $t=n$
- This guarantees correctness - all connections found

Warshall's Algorithm

- Enumerate paths by the IDs of the nodes they are allowed to contain
- t gives the highest allowed node ID inside a path
path p using nodes with IDs $\{1, \ldots \mathrm{t}\}$

Algorithm

- Enumerate paths by the IDs of the nodes they are allowed to contain
- t gives the highest allowed node ID inside a path
- Thus, node t muon any new path
- We find all pairs i,k with $i \rightarrow t$ and $t \rightarrow k$
- For every such pair, we set the path $i \rightarrow k$ to 1

```
1. G = (V, E);
2. M := adjacency_matrix( G);
3. n := |V|;
4. for t := 1..n do
5. for i = 1..n do
6\longrightarrow if M[i,t]=1 then
7. for k=1 to n do
8. M if M[t,k]=1 then
9. M[i,k] := 1;
10. end if;
11. end for;
12. end if;
13. end for;
14. end for;
```


Example - Warshall's Algorithm

A allowed
Connect
E-A with
A-B, A-C

Example - After t=A,B,C,D,E

	A	B	C	D	E
A		1	1		
B				1	
C			1		
D					1
E	1	1	1		

B allowed Connect A-B/E-B with $B-D$

C allowed
Connect
A-C/E-C with C-D
No news

	A	B		C	D	E		A	B		C	D		E
A		1		1	1		A		1		1	1		
B					1		B					1		
C					1		C					1		
D						1	D							1
E	1	1		1	1		E	1	1		1	1		

D allowed Connect A-D, B-D, C-D,E-D with D-E

A B C D E								A	B	C	D		E	
A		1	1	1	1		A	1	1	1	1		1	
B				1	1		B	1	1	1	1		1	
C				1		1	C	1	1	1	1		1	1
D						1	D	1	1	1	1		1	1
E	1	1	1	1			E	1	1	1	1		1	1

E allowed Connect everything with everything

Little change - Notable Consequences

```
G = (V, E);
M := adjacency_matrix( G);
n := |V|;
for z := 1..n do
    for i = 1..n do
        for j = 1..n do
            if M[i,j]=1 then
            for k=1 to n do
                if M[j,k]=1 then
                    M[i,k] := 1;
                end if;
            end for;
            end if;
        end for;
    end for;
end for;
```

```
1. \(G=(V, E)\);
2. M := adjacency_matrix( G) ;
3. \(\mathrm{n}:=|\mathrm{V}|\);
4. for \(t:=1 . . n\) do
5. for \(\mathrm{i}=1 . \mathrm{n}\) do
6. if M[i,t]=1 then
7. for \(\mathrm{k}=1\) to n do
8. if \(M[t, k]=1\) then
9. \(M[i, k]:=1\);
10. end if;
11. end for;
12. end if;
13. end for;
14. end for;
```


Content of this Lecture

- All-Pairs Shortest Paths
- Transitive closure: Warshall's algorithm
- Shortest paths: Floyd's algorithm
- Reachability in Trees

Shortest Paths

- Shortest paths: We need to compute the distance between all pairs of reachable nodes
- We use the same idea as Warshall: Enumerate paths using only nodes with IDs smaller than t inside a path
- Invariant: Before step $\mathrm{t}, \mathrm{M}[\mathrm{i}, \mathrm{j}]$ contains the length of the shortest path that uses no node with ID higher than t
- When increasing t, we find new paths $i \rightarrow t \rightarrow k$ and look at their lengths
- Thus: $M[i, k]:=\min (M[i, k] \cup\{M[i, t]+M[t, k] \mid i \rightarrow t \wedge t \rightarrow k\})$

Example 1/3

	A	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}
\mathbf{A}				1	3		
\mathbf{B}	-2						
\mathbf{C}							
\mathbf{D}		3	2				
\mathbf{E}						4	1
\mathbf{F}	1	2	5				
\mathbf{G}			6			-1	
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}
\mathbf{A}				1	3		
\mathbf{B}	-2			-1	1		
\mathbf{C}							
\mathbf{D}		3	2				
E						4	1
F	1	2	5	2	4		
\mathbf{G}			6			-1	

Example 2/3

	A	B	C	D	E	F	G		A	B	C	D	E	F	G
A				1	3			A				1	3		
B	-2			-1	1			B	-2			-1	1		
C								C							
D	1	3	2	2	4			D	1	3	2	2	4		
E						4	1	E						4	1
F	0	2	5	1	3			F	0	2	5	1	3		
G			6			-1		G			6			-1	
												-			
	A	B	C	D	E	F	G		A	B	C	D	E	F	G
A	2	4	3	1	3	7	4	A	2	4	3	1	$\underline{3}$		
B	-2	2	1	-1	1	5	2	B	-2	2	1	-1	$\underline{1}$		
C								C							
D	1	3	2	2	4	8	5	D	1	3	2	2	4		
E						4	1	E						4	1
F	0	2	3	1	3	7	4	F	$\underline{0}$	$\underline{2}$	3	1	$\underline{3}$		
G			6			-1		G			6			-1	
	Leser:	itit	and	S	es										30

Example 3/3

Summary (n=|V|, m=|E|)

- Warshall's algorithm computes the transitive closure of any unweighted digraph G in $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Floyd's algorithm computes the distances between any pair of nodes in a digraph without negative cycles in $O\left(n^{3}\right)$
- Johnson's alg. solves the problem in $\mathrm{O}\left(\mathrm{n}^{2 *} \log (\mathrm{n})+\mathrm{n}^{*} \mathrm{~m}\right)$
- Which is faster for sparse graphs
- Storing both information requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Problem is easier for ...
- Undirected graphs: Connected components
- Graphs with only positive edge weights: All-pairs Dijkstra
- Trees: Test for reachability in $O(1)$ after $O(n)$ preprocessing

Content of this Lecture

- All-Pairs Shortest Paths
- Transitive closure: Warshall's algorithm
- Shortest paths: Floyd's algorithm
- Reachability in Trees

Gene Ontology - Describing Gene Function

Database Annotation InterPro

- Used by many databases
- Allows cross-database search
- Provides fixed meaning of terms
- As informal textual description, not as formal definitions

A Large Ontology

- As of 7.7.2021
- 43917 terms
- In three subontologies
- Biological processs
- Cellular components
- Molecular functions
- 3295 obsolete terms
- Source:
http://geneontology.org/stats.html
- Depth: >30

Problem

- To see whether a term X IS_A term Y, we need to check whether Y lies on the path from root to X
- Reachability problem

Reachability in Trees

- Let T be a directed tree. A node v is reachable from a node w iff there is a path from w to v
- Testing reachability requires finding paths
- Which is simple in trees
- Path length is bound by the length of the longest path, i.e., the depth of the tree
- This means $\mathrm{O}(\mathrm{n})$ in worst-case
- Let's see whether we can preprocess the data to do this in constant time

Pre-/Postorder Numbers

- Assume a DFS-traversal
- Build an array assigning each node two numbers
- Preorder numbers
- Keep a counter pre
- Whenever a node is entered the first time, assign it the current value of pre and increment pre
- Postorder numbers
- Keep a counter post
- Whenever a node is left the last time, assign it the current value of post and increment post

Examples from S. Trissl, 2007

Ancestry and Pre-/Postorder Numbers

- Trick: A node v is reachable from a node w iff

$$
\operatorname{pre}(\mathrm{v})>\operatorname{pre}(\mathrm{w}) \wedge \operatorname{post}(\mathrm{v})<\operatorname{post}(\mathrm{w})
$$

- Explanation
- v can only be reached from w, if w is "higher" in the tree, i.e., v was traversed after w and hence has a higher preorder number
- v can only be reached from w, if v is "lower" in the tree, i.e., v was left before w and hence has a lower postorder number
- Analysis: Test is $\mathrm{O}(1)$

