

Algorithms and Data Structures

Graphs: Single-Source Shortest Paths

Ulf Leser

Content of this Lecture

- Shortest Paths
- Single-Source-Shortest-Paths: Dijkstra's Algorithm
- Shortest Path between two given nodes
- Other

Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
- Classical problem: Single-Source-Shortest-Paths
- Famous solution: Dijkstra's algorithm

- E. Dijsktra: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1 (1959), S. 269-271

Computer Science is no more about computers than astronomy is about telescopes.

Attributed to Edsger Dijkstra, 1970.

Distance in Graphs

- Definition

Let $G=(V, E)$ be a graph. The distance $d(u, v)$ between any two nodes $u, v \in V$ for $u \neq V$ is defined as

- G unweighted: The length of the shortest path from u to v, or ∞ if no path from u to v exists
- G weighted: The minimal aggregated edge weight of all non-cyclic paths from u to v, or ∞ if no path from u to v exists
- If $u=v, d(u, v)=0$
- Remark
- Distance in unweighted graphs is the same as distance in weighted graphs with unit cost
- Beware of negative cycles in directed graphs

Single-Source Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
- Only positive edge weights allowed
- Bellman-Ford algorithm solves the general case
- Floyd-Warshall finds distances between any pair of nodes

Assumptions

- We assume that every node is reachable from X
- There might be many shortest paths to node Y , but distance is unique
- We only want the distances and need no "witness paths"
- Only positive edge weights
- Whenever we extend a path with an edge, its length increases
- Thus, no shortest path may contain a cycle

Exhaustive Solution

- First approach: Enumerate all paths ("BT": Backtrack)
- Still need to break cycles (e.g. X - K3 - K4 - X - K3 - ...)
- Using DFS: X - K3 - K4 - X [BT-K4] - K5 - K6 [BT-K5] [BT-K4] [BT-K3] - K7 - K8 [BT-K7] - K6 [BT-K7] [BT-K3] - K2 - K6 [BT-K2] - K1 [BT-K2] [BT-K3] [BT-X] K6 - ...

Redundant work

- First approach: Enumerate all paths
- Need to break cycles (e.g. X - K3 - K4 - X - K3 - ...)
- Using DFS: X - K3 - K4 - X [BT-K4] - K5 - K6 [BT-K5] [BT-K4] [BT-K3] - K7 - K8 [BT-K7] - K6 [BT-K7] [BT-K3] - K2 - K6 [BT-K2] - K1 [BT-K2] [BT-K3] [BT-X] K6 - ...

Dijkstra's Idea

- Enumerate paths from X by their length
- Neither DFS nor BFS
- Assume we reach a node Y by a path p of length I and we have already explored all paths from X with length $\mathrm{I}^{\prime}<1$ and that Y was not reached yet
- Then p must be a shortest path between X and Y
- Because any p^{\prime} between X and Y would have a prefix of length at least I and (a) a continuation with length>0 (only positive weights) or (b) would not need a continuation (then p is as short as p^{\prime})

Example for Idea

Algorithmic Idea

- Enumerate paths by iteratively extending already found shortest paths by all possible extensions
- All edges outgoing from the end node of a short path
- These extensions
- ... either lead to a node which we didn't reach before - then we found a path, but cannot yet be sure it is the shortest
- ... or lead to a node which we already reached but we are not yet sure of we found the shortest path to it - update current best distance
- ... or lead to a node which we already reached and for which we also surely found a shortest path already - these can be ignored
- Extensions are stored in a priority queue with prio=length
- We enumerate nodes by their distance

Algorithm

- Assumptions
- Nodes have IDs between 1 ... |V|
- Edges are (from, to, weight)
- We enumerate nodes by length of their shortest paths
- In the first loop, we pick x and update distances (A) to all adjacent nodes
- When we pick a node k, we already have computed its distance to x in A
- We adapt the current best distances to all neighbors of k we haven't picked yet
- Once we picked all nodes, we are done

Example for Algorithm

A Closer Look

```
1. G = (V, E);
2. x : start_node; # x\inV
3. A : array_of_distances;
4. \foralli: A[i]:= m;
5. L := V;
6. A[x] := 0;
7. while L\not=\emptyset
8. k := L.get_closest_node(x);
9. L := L \ k;
10. forall (k,f,w) \inE do
11. if f\inL then
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
14. A[f] := new_dist;
15. end if;
16. end if;
17. end for;
18.end while;
```

- Central: get_closest_node (x)
- Needs to find the node k in L for which $A[k]$ is the smallest
- A[k] may change all the time
- Searching A? Resorting A?
- Trick: Organize L as min-heap "enhanced" priority queue
- We need to be able to update the priority of nodes
- Done in $\mathrm{O}(\log (\mathrm{n}))$ by removing then re-inserting the node

Dijkstra's Algorithm - Single Operations

1. $G=(V, E)$;
2. x : start_node; \# x $\in V$
3. A : array_of_distances_from_x;
4. $\forall i: A[i]:=\infty$;
5. L := V; \# organized as $P Q$
6. $\mathrm{A}[\mathrm{x}]:=0$;
7. update (L) ;
8. while $L \neq \emptyset$
9. $k:=$ L.get_closest_node () ;
10. L : = L \k;
11. forall $(k, f, w) \in E$ do
12. if feL then
13. new_dist $:=A[k]+w$;
14. if new_dist $<A[f]$ then
15. A[f] := new_dist;
16. update (L) ;
17. end if;
18. end if;
19. end for;
20.end while;

- Assume a heap-based PQ L
- L holds at most all nodes (n)
- L4: O(n)
- L5: O(n) (build PQ)
- L9: O(1) (getMin)
- L10: O(log(n)) (deleteMin)
- L11: O(m) (with adjacency list)
- L12: O(1)
- Requires additional array LA of size |V| storing membership of nodes in L
- L16: O(log(n)) (updatePQ)
- Store in LA pointers to nodes in L; then remove/insert node

Dijkstra's Algorithm - Loops

1. $G=(V, E)$;
2. x : start_node; \# x $\in V$
3. A : array_of_distances;
4. $\forall i: A[i]:=\infty$;
5. L := V; \# organized as $P Q$
6. $\mathrm{A}[\mathrm{x}]:=0$;
7. update (L) ;
8. while Lキ \emptyset
9. $k:=$ L.get_closest_node ();
10. L : = L \k;
11. forall $(k, f, w) \in E$ do
12. if feL then
13. new dist $:=A[k]+w$;
14. if new_dist $<A[f]$ then
15. A[f] := new_dist;
16. update (L) ;
17. end if;
18. end if;
19. end for;
20. end while;

- Central costs
- L10: O(log(n)) (deleteMin)
- L16: O(log(n)) (del+ins)
- Loops
- Lines 8-19: O(n)
- Line 11-18: All edges exactly once
- Together: $O(m+n)$
- Altogether: $\mathrm{O}((\mathrm{n}+\mathrm{m}) * \log (\mathrm{n}))$
- With Fibonacci heaps: Amortized costs are $\mathrm{O}(\mathrm{n} * \log (\mathrm{n})+\mathrm{m})$)
- Also possible in $O\left(n^{2}\right)$; this is better in dense graphs ($m \sim n^{2}$)

Single-Source, Single-Target

- Task: Find the distance between X and only Y
- Solution: Dijkstra as well
- We can stop as soon as Y appears at the min position of the PQ
- We can visit edges in order of increasing weight (might help)
- Worst-case complexity unchanged
- Things are different in planar graphs (navigators!)

Outlook: Highway Hierarchies

- Shortest-Path Routing on maps
- Exploit Highway hierarchy
- Autobahn, Bundesstrasse, Regionalstrasse, Strasse, Pfad ...
- Iterative refinement in layered maps
- "towards O(1)" [SS07]
- Extensions

- Second best non-overlapping path
- Fleet management: Traveling salesman
- Logistics: Pick-up-and-delivery with intermediate stocks
- Budget optimization (gasoline, empty trips, slepp-restrictions, road tolls, border / customs regulations, ...)

Faster SS-ST Algorithms

- Trick 1: Pre-compute all distances
- Transitive closure with distances
- Requires $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ space: Prohibitive for large graphs
- How? See next lecture

\rightarrow	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{X}	\mathbf{Y}
\mathbf{A}	0	-	-	-	-	-	-	-	-
\mathbf{B}	3	0	2	-	-	-	-	-	-
\mathbf{C}	-	-	0	-	-	-	-	-	-
\mathbf{D}	4	1	3	0	3	4	6	7	3
\mathbf{E}	6	6	7	5	0	1	11	4	8
\mathbf{F}	-	-	6	-	-	0	-	-	-
\mathbf{G}	-	-	-	-	-	-	0	-	-
\mathbf{X}	2	2	4	1	4	5	7	0	4
\mathbf{Y}	-	-	2	-	-	-	3	-	0

Faster SS-ST Algorithms

- Trick 2: Two-hop cover with distances
- Find a (hopefully small) set S of nodes such that
- For every pair of nodes $\mathrm{v}_{1}, \mathrm{v}_{2}$, at least one shortest path from v_{1} to v_{2} goes through a node $s \in S$
- Thus, the distance between v_{1}, v_{2} is $\min \left\{d\left(v_{1}, s\right)+d\left(s, v_{2}\right) \mid s \in S\right)$
- S is called a 2-hop cover
- Problem: Finding a minimal S is NP-complete
- And S need not be small

More Distances

- Graphs with negative edge weights
- Shortest paths (in terms of weights) may be very long (edges)
- Bellman-Ford algorithm is in $\mathrm{O}\left(\mathrm{n}^{2}{ }^{*} \mathrm{~m}\right)$
- All-pairs shortest paths
- Only positive edge weights: Use Dijkstra n times
- With negative edge weights: Floyd-Warshall in $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- See next lecture
- Reachability
- Simple in undirected graphs: Compute all connected components
- In digraphs: Use graph traversal or a special graph indexing method

