

Algorithms and Data Structures

Graphs: Single-Source Shortest Paths

- Shortest Paths
 - Single-Source-Shortest-Paths: Dijkstra's Algorithm
 - Shortest Path between two given nodes
 - Other

Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
 - Classical problem: Single-Source-Shortest-Paths
 - Famous solution: Dijkstra's algorithm
 - E. Dijsktra: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1 (1959), S. 269–271

Computer Science is no more about computers than astronomy is about telescopes.

Attributed to Edsger Dijkstra, 1970.

Ulf Leser: Algorithms and Data Structures

• Definition

Let G=(V, E) be a graph. The distance d(u,v) between any two nodes $u, v \in V$ for $u \neq v$ is defined as

- G unweighted: The length of the shortest path from u to v, or ∞ if no path from u to v exists
- G weighted: The minimal aggregated edge weight of all non-cyclic paths from u to v, or ∞ if no path from u to v exists
- If u = v, d(u, v) = 0
- Remark
 - Distance in unweighted graphs is the same as distance in weighted graphs with unit cost
 - Beware of negative cycles in directed graphs

Single-Source Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
- Only positive edge weights allowed
 - Bellman-Ford algorithm solves the general case
- Floyd-Warshall finds distances between any pair of nodes

Assumptions

- We assume that every node is reachable from X
- There might be many shortest paths to node Y, but distance is unique
 We only want the distances and need no "witness paths"
- Only positive edge weights
 - Whenever we extend a path with an edge, its length increases
 - Thus, no shortest path may contain a cycle

Exhaustive Solution

- First approach: Enumerate all paths ("BT": Backtrack)
 - Still need to break cycles (e.g. X K3 K4 X K3 ...)
 - Using DFS: X K3 K4 X [BT-K4] K5 K6 [BT-K5] [BT-K4]
 [BT-K3] K7 K8 [BT-K7] K6 [BT-K7] [BT-K3] K2 K6 [BT-K2]
 K1 [BT-K2] [BT-K3] [BT-X] K6 ...

Redundant work

- First approach: Enumerate all paths
 - Need to break cycles (e.g. X K3 K4 X K3 ...)
 - Using DFS: X K3 K4 X [BT-K4] K5 K6 [BT-K5] [BT-K4]
 [BT-K3] K7 K8 [BT-K7] K6 [BT-K7] [BT-K3] K2 K6 [BT-K2]
 K1 [BT-K2] [BT-K3] [BT-X] K6 ...

- Enumerate paths from X by their length
 - Neither DFS nor BFS
- Assume we reach a node Y by a path p of length I and we have already explored all paths from X with length I' < I and that Y was not reached yet
- Then p must be a shortest path between X and Y
 - Because any p' between X and Y would have a prefix of length at least I and (a) a continuation with length>0 (only positive weights) or (b) would not need a continuation (then p is as short as p')

Example for Idea

- Enumerate paths by iteratively extending already found shortest paths by all possible extensions
 - All edges outgoing from the end node of a short path
- These extensions
 - ... either lead to a node which we didn't reach before then we found a path, but cannot yet be sure it is the shortest
 - ... or lead to a node which we already reached but we are not yet sure of we found the shortest path to it – update current best distance
 - ... or lead to a node which we already reached and for which we also surely found a shortest path already – these can be ignored
- Extensions are stored in a priority queue with prio=length
- We enumerate nodes by their distance

Algorithm

```
1. G = (V, E);
2. x : start node;
                        # x∈V
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V;
6. A[x] := 0;
7. while L \neq \emptyset
8. k := L.get closest node(x);
9. L := L \setminus k;
   forall (k, f, w) \in E do
10.
       if fEL then
11.
12.
          new dist := A[k]+w;
13.
          if new dist < A[f] then
            A[f] := new dist;
14.
15.
          end if;
16.
       end if;
17.
     end for;
18. end while;
```

- Assumptions
 - Nodes have IDs between 1 ... |V|
 - Edges are (from, to, weight)
- We enumerate nodes by length of their shortest paths
 - In the first loop, we pick x and update distances (A) to all adjacent nodes
 - When we pick a node k, we already have computed its distance to x in A
 - We adapt the current best distances to all neighbors of k we haven't picked yet
- Once we picked all nodes, we are done

 ∞

K8

A Closer Look

```
1. G = (V, E);
2. x : start node;
                        # x∈V
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V;
6. A[x] := 0;
7. while L \neq \emptyset
8. k := L.get closest node(x);
9. L := L \setminus k;
10. forall (k, f, w) \in E do
11
     if fEL then
12.
         new dist := A[k]+w;
13.
         if new dist < A[f] then
14.
         A[f] := new dist;
15.
         end if:
16.
    end if:
17.
     end for;
18. end while;
```

- Central: get_closest_node(x)
 - Needs to find the node k in L for which A[k] is the smallest
 - A[k] may change all the time
- Searching A? Resorting A?
- Trick: Organize L as min-heap "enhanced" priority queue
 - We need to be able to update the priority of nodes
 - Done in O(log(n)) by removing then re-inserting the node

```
1. G = (V, E);
2. x : start node;
                     # x∈V
3. A : array of distances from x;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update(L);
8. while L \neq \emptyset
9. k := L.get closest node();
10. L := L \setminus k;
11. forall (k, f, w) \in E do
12. if f \in L then
13. new_dist := A[k]+w;
14. if new dist < A[f] then
           A[f] := new dist;
15.
16.
          update(L);
         end if;
17.
18.
   end if;
19. end for;
20. end while;
```

- Assume a heap-based PQ L
 - L holds at most all nodes (n)
 - L4: O(n)
 - L5: O(n) (build PQ)
 - L9: O(1) (getMin)
 - L10: O(log(n)) (deleteMin)
 - L11: O(m) (with adjacency list)
 - L12: O(1)
 - Requires additional array LA of size |V| storing membership of nodes in L
 - L16: O(log(n)) (updatePQ)
 - Store in LA pointers to nodes in L; then remove/insert node

```
1. G = (V, E);
2. x : start node;
                       # x∈V
3. A : array of distances;
4. \forall i: A[i] := \infty;
5. L := V; # organized as PQ
6. A[x] := 0;
7. update(L);
8. while L \neq \emptyset
9. k := L.get closest node();
10. L := L \setminus k;
11.
   forall (k, f, w) \in E do
   if fEL then
12.
13.
         new dist := A[k]+w;
   if new dist < A[f] then
14.
   A[f] := new dist;
15.
          update(L);
16.
17.
    end if;
18.
   end if;
19.
     end for;
20. end while;
```

- Central costs
 - L10: O(log(n)) (deleteMin)
 - L16: O(log(n)) (del+ins)
- Loops
 - Lines 8-19: O(n)
 - Line 11-18: All edges exactly once
 - Together: O(m+n)
- Altogether: O((n+m)*log(n))
 - With Fibonacci heaps: Amortized costs are O(n*log(n)+m))
 - Also possible in O(n²); this is better in dense graphs (m~n²)

Single-Source, Single-Target

- Task: Find the distance between X and only Y
- Solution: Dijkstra as well
 - We can stop as soon as Y appears at the min position of the PQ
 - We can visit edges in order of increasing weight (might help)
 - Worst-case complexity unchanged
- Things are different in planar graphs (navigators!)

Outlook: Highway Hierarchies

- Shortest-Path Routing on maps
- Exploit Highway hierarchy
 - Autobahn, Bundesstrasse,
 Regionalstrasse, Strasse, Pfad ...
- Iterative refinement in layered maps
- "towards O(1)" [SS07]
- Extensions
 - Second best non-overlapping path
 - Fleet management: Traveling salesman
 - Logistics: Pick-up-and-delivery with intermediate stocks
 - Budget optimization (gasoline, empty trips, slepp-restrictions, road tolls, border / customs regulations, ...)

Faster SS-ST Algorithms

- Trick 1: Pre-compute all distances
 - Transitive closure with distances
 - Requires O(|V|²) space: Prohibitive for large graphs
 - How? See next lecture

\rightarrow	Α	В	С	D	Е	F	G	Χ	Υ
Α	0	I	-	-	-	-	-	-	-
В	3	0	2	-	-	-	-	-	-
С	I	I	0	I	-	-	-	-	I
D	4	1	3	0	3	4	6	7	3
Ε	6	6	7	5	0	1	11	4	8
F	Ι	I	6	I	-	0	-	I	Ι
G	Ι	I	-	I	-	I	0	I	Ι
Χ	2	2	4	1	4	5	7	0	4
Υ	-	-	2	-	-	-	3	-	0

Faster SS-ST Algorithms

- Trick 2: Two-hop cover with distances
 - Find a (hopefully small) set S of nodes such that
 - For every pair of nodes v₁,v₂, at least one shortest path from v₁ to v₂ goes through a node s∈S
 - Thus, the distance between v_1, v_2 is min{ $d(v_1, s)+d(s, v_2) | s \in S$)
 - S is called a 2-hop cover
 - Problem: Finding a minimal S is NP-complete
 - And S need not be small

- Graphs with negative edge weights
 - Shortest paths (in terms of weights) may be very long (edges)
 - Bellman-Ford algorithm is in O(n²*m)
- All-pairs shortest paths
 - Only positive edge weights: Use Dijkstra n times
 - With negative edge weights: Floyd-Warshall in O(n³)
 - See next lecture
- Reachability
 - Simple in undirected graphs: Compute all connected components
 - In digraphs: Use graph traversal or a special graph indexing method