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Content of this Lecture

• Optimal Search Trees
– Definition
– Construction
– Analysis

• Searching Strings: Tries
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Static Key Sets, Varying Access Frequencies

• Sometimes, the set of keys is “fixed”
– Streets of a city, cities in a country, keywords of a prog. lang., …

• Often, searches are much more frequent than updates
– We may spent more effort for reorganizing the tree after updates

• Example: Large-scale web search engines
– Recall: A search engine creates a dictionary; every word has a link 

to the set of documents containing it
– The dictionary must be accessed very fast, changes are rare
– Often, engines build complex structures to optimally support 

searching over the current set of documents considered as static
• Defer updates: Changes are buffered and bulk-inserted periodically
• Search either searches two data structures, or misses are accepted
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Scenario

• Assume a set K of keys and a bag R of requests (workload)
– Every request searches a k∈K; k’s may appear multiple times in R
– In contrast to SOL, we now don’t care about the order of requests 
– Like SOL with fixed access frequencies – but now we consider trees

• Naïve approach
– Build an AVL tree over K
– Every r∈R costs O(log(|K|)), i.e., we need O(|R|*log(|K|))
– This is optimal, if every k∈K appears with the same frequency in R

• What if R is highly skewed?
– Skewed: k’s are not equally distributed in R
– Rather the norm than the exception in real life (Zipf, …)
– In contrast to SOL, finding an optimal search tree for R is not trivial
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Example

• K={1,2,3,5,7,8,9,12,14}
• We build an AVL tree

• R1={2,5,8,7,3,12,1,8,8} 
– 2+1+3+4+3+2+3+3+3=31 comparisons

• R2={9,9,1,9,2,9,5,3,9,1}
– 4+4+3+4+2+4+1+3+4+3=32 comparisons
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Example

• Let’s optimize the tree for R2
– Not a AVL tree any more

• R2={9,9,1,9,2,9,5,3,9,1}
={9,9,9,9,9,1,1,2,5,3}

– 9 and 1 should be high in the tree
– 1+1+1+1+1+2+2+4+3+5=21

• Versus 32

• Not good for R1
– R1={2,5,8,7,3,12,1,8,8} 
– 4+3+5+4+5+2+2+5+5=35

• Versus 31

• Is this truly the optimal search tree for R2?
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Request Model

• Assume an (ordered) set K of keys, K={k1, k2, …, kn}
• Every k is searched with frequency a1, a2, …, an
• No-key intervals ]-∞,k1[ , ]k1,k2[, …, ]kn-1,kn[, ]kn,+∞[ 

are searched with frequencies b0, b1, …, bn
– We need to consider costs of searches that fail 

• Together: R={a1, a2, …, an, b0, b1, …, bn}
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Request Model

a4

a5

a2

a7

a6

a1 a3

b0 b1 b2 b3 b4 b5 b7b6

• Assume an (ordered) set K of keys, K={k1, k2, …, kn}
• Every k is searched with frequency a1, a2, …, an
• No-key intervals ]-∞,k1[ , ]k1,k2[, …, ]kn-1,kn[, ]kn,+∞[ 

are searched with frequencies b0, b1, …, bn
– We need to consider costs of searches that fail 

• Together: R={a1, a2, …, an, b0, b1, …, bn}
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Optimal Search Trees

• Definition
Let T be a search tree for K and R a workload. The cost 
P(T) of T for R is defined as

• Definition
Let K be a set of keys and R a workload. A search tree T 
over K is optimal for R iff

( ) ( )∑∑
=

+
=

+++=
n

j
jjj

n

i
ii bkkdepthakdepthTP

0
1

1
*1)[,](*1)()(

{ }KfortreesearchisTTPTP '|)'(min)( =



Ulf Leser: Algorithms and Data Structures 10

One More Definition

• Definition
Let T be a search tree over K and R a workload. The 
weight W(T) of T for R is:

• Thus, the weight of T is simply |R|
• We will need this definition for subtrees 
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Content of this Lecture

• Optimal Search Trees
– Definition
– Construction
– Analysis

• Searching Strings: Tries
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Finding the Optimal Search Tree

• Bad news: There are exponentially many search trees
– We cannot enumerate all search trees, compute their cost, and 

then choose the cheapest
– Proof omitted

• Good news: We don’t need to look at all possible search 
trees
– We can use a divide & conquer approach
– Dynamic programming: Build large solutions from smaller ones

• Recall max_subarray etc.
• Here: Build larger optimal search trees from smaller optimal STs
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General Idea

• Observation: We can define P(T) recursively
– Let kr be root of T and Tlr=leftChild( kr), Trr=rightChild( kr)

• “lr: Left-of-r”; “rr: Right-of-r”
– Clearly: P(T) = P(Tlr) + P(Trr) + ar + W(Tl) + W(Trr)

= P(Tlr) + P(Trr) + W(T) 
– Since W(T) is the same for every possible search tree, the cost of a 

tree only depends on the cost of its subtrees
• Problem: We do not know kr, but we need to find it

– kr divides T into a left part (Tlr) and a right part (Trr)
– Both Tlr and Trr are smaller than T
– Assume we knew P(Tlr) and P(Trr) for every possible kr

• Both are smaller, so we can compute Tl/Tr values bottom-up
– We can test all n different kr’s and find the one maximizing the 

term P(Tlr) + P(Trr) + W(T) 
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Example

a3a2a1b0 b1 b2 b3 a4 b4

• We want to compute the optimal search tree T for the keys 
a1-a4 and no-key ranges b0-b5

• One of the keys a1, a2, a3, a4, must be the root
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Example Continued

a1

b0 b1 b2 b3 b4

Optimal substructure 
irrelevant here, but known by 

construction

• If a1 would be the “optimal root”, the cost of P(T) would 
be P(b0)+P(b1…b4)+W(T)

a2, a3, a4
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Example Continued

a2

a1

b0 b1 b2 b3 b4

a3, a4

• If a2 would be the “optimal root”, the cost of P(T) would 
be P(b0..b1)+P(b2..b4)+W(T)
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Formal: A Divide & Conquer Approach

• Consider a range R(i,j) of keys and intervals
– R(i,j) = { ]ki,ki+1[, ki+1, ]ki+1,ki+2[, ki+2, … kj, ]kj,kj+1[ }

• Assume that R(i,j) is represented as subtree T(i,j) of T(1,n)
– That’s not the case in all topologies for T; the “left” part of R could 

lie in a different subtree than the “right” part
• One of the kr∈R(i,j) must be the root of this subtree
• Thus, kr divides R(i,j) in two halves R(i,r-1), R(r,j)
• Assume we know the optimal trees for all sub-ranges 

R(i,i+1), R(i,i+2), …, R(i,j-1), R(i+1,j), …, R(j-1, j)
• Then, we find the r creating the optimal tree T(i,j) using
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Bottom-Up Computation

• We systematically enumerate smaller R(i,j) and puzzle 
them together to larger ones

• Let P(i,j) be the cost of the optimal search tree for R(i,j)
• To compute P(i,j), we (1) need the P and W-values of all 

possible enclosed subtrees and we (2) need to find the 
optimal value of r

• We perform induction over the breadth b of intervals: All 
intervals of breadth 0, 2 … n (and we are done)
– Breadth of an interval: Number of keys contained
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Illustration

a3a2a1b0 b1 b2 b3 a4 b4

b=1

b=2

b=3

b=4=n
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Induction Start

• b=0; all subintervals (i,i)
– This is a leaf (an interval without keys), no root selection required
– ∀0≤i<n+1: W(i,i) = bi

P(i,i) = W(i,i)
• b=1; all subintervals (i,i+1)

– The root is always ki+1
• The only key in this interval; l=i+1

– ∀0≤i<n: W(i,i+1) = bi + ai+1 + bi+1
P(i,i+1) = P(i,i) + W(i,i+1) + P(i+1,i+1)
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Induction 

• General case: b>1, subintervals (i,j) with j-i=b>1
– Induction hypothesis: We know W, P for all intervals of breadth<b
– Find the index r for the optimal root of the subtrees
– Then compute: W(i,j) = W(i,r-1) + al + W(r,j)

P(i,j) = P(i,r-1) + W(i,j) + P(r,j)

kr

P(r,j)P(i,r-1)

W(i,j)
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Content of this Lecture

• Optimal Search Trees
– Definition
– Construction
– Analysis

• Searching Strings: Tries
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Implementation

• There are only (n+1)*(n+1) different pairs i,j
• We essentially fill a quadratic matrix of size (n+1)*(n+1) 

for W and one for P
– Since j≥i, we actually only need half of each matrix

• Both matrixes are iteratively filled from the main diagonal 
to the upper-right corner

…

b=0
b=1
…
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Analysis

• Space
– We need 2 arrays of size O(n*n)
– Space complexity: O(n2)

• Time
– Cases b=0 and b=1 are O(n)
– We enumerate breadths from 2 to n
– For each b, we consider all possible 

start positions: O(n-b) many
– In each range, we need to find the 

optimal l – this is O(b)
– A range has max size n-1
– Together: O(n3)

1. initialize W(i,i); 
2. initialize P(i,i);
3. initialize W(i,i+1); 
4. initialize P(i,i+1);
5. for b = 2 to n do
6. for i = 0 to (n-b) do
7. j := i+b;
8. find optimal l in [i,j];
9. W(i,j) := …
10. P(i,j) := …
11. end for;
12.end for;
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Constructing the tree

• We only showed how to compute the cost of the optimal 
tree, but not how to build the tree itself

• But this is simple since we never revise decisions
• We can “grow” the tree whenever we have computed a 

new optimal root l
• For instance, we can define a r(i,j):=l in every step; the 

sequence of computed l-values fully determine the tree
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Relevance

• Nice and instructive
• Runtime can actually be reduced to O(n2)
• But: O(n2) is still quite expensive for large n
• Fortunately, one can compute „almost“ optimal search 

trees in linear time
– Not this lecture
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Content of this Lecture

• Optimal Search Trees
• Searching Strings: Tries
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Keys that are Strings

• Assume K is a set of strings of maximal length m
• We can build an AVL tree over K
• Searching requires O(log(n)) key comparisons
• But: Each string-comp requires m char-comps in WC

– Very pessimistic, but we do WC analysis
• Together: We need O(|k|*log(n)) character comparisons 

for searching a key k
• Observation 

– “Similar” strings will be close neighbors in the tree
– These will share prefixes (the longer, the more similar)
– These prefixes are compared again and again
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Example

verlaufen

verdauen

verbauen …

k=„verhalten“

verkaufen
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Tries

• Tries are edge-labeled trees of order |∑|
– Developed for Information Retrieval

• Edges are labeled with chars from ∑ 
• Idea: Common prefixes of keys are 

represented only once
• Problem: If “verl” is a key?

– Trick: Add a “$” (not in ∑) to every string
– Then every and only leaves represent keys
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Analysis

• Construction of a trie over K?
– Let len(K) be the sum of all key lengths in K
– We start with an empty tree and iteratively add all k∈K
– To add a key k, we char-match k in the tree as long as possible
– As soon as no continuation is found, we build a new branch
– This requires O(|k|) operations (char-comps or node creations)
– It follows: Construction is in O(len(K))

• Searching a key k (which maybe in K or not in K)
– We match k from root down the tree
– When k is exhausted and we are in a leaf: k∈K
– If no continuation is found or we end in an inner node: k∉K
– It follows: Searching is in O(|k|)
– But …
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Space Complexity

• We have at most len(K) edges and len(K)+1 nodes
– Shared prefixes make the actual number smaller

• But we also need pointer to children
• To achieve our search complexity, choosing the right 

pointer must be in O(1)
• This adds O(len(K)*|∑|) pointers
• Too much for any non-trivial alphabet

– Digital tries are a popular data structure in coding theory
– There, |∑|=2, so the pointers don’t matter much
– But beware – the  trees get very deep

• Furthermore, most of the pointers will be null
– Depending on |∑|, |K|, and lengths of shared prefixes
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Alternatives

b d k l

Any list data structure

• Full array for children ptr
• Advantage: O(|k|) search
• Disadvantage: Excessive 

space consumption

• Dense array for children ptr
• Advantage: O(len(K)) space
• Disadvantage: Search is 

O(|k|*log(|∑|))
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Compressed Tries = Patricia Trees

• We can save further space
• A patricia tree (or radix tree) is a trie

where edges are labeled with (sub-
)strings, not with characters

• All sequences S=<node, edge> 
which do not branch are compressed 
into a single edge labeled with the 
concatenation of the labels in S

• More compact, less pointer
• Slightly more complicated 

implementation
– E.g. insert requires splitting of labels
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Exemplary Questions

• Recall the definition of a trie. Give in implementation (in 
pseudo code) for (a) searching a key k and (b) building a 
trie for a string set K. You may presuppose a data 
structure „list“ with operations add(c, p) for adding a pair 
of character and pointer and retrieve(c), which returns the 
pointer associated to c or nil.

• Build an optimal search tree for K={5,12,15,20} and 
R={6,2,3,8,11,5,2,1,4}. Show the complete tables for W 
and P

• Prove that all tries for any permutation of a set of strings 
are identical
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