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Next lectures

• Wednesday, 23.6.2021, there is no lecture
• We continue and finish AVL trees on Monday, 28.6.21
• Please watch lecture “Optimal search trees” on video
• Questions in Moodle chat or per mail
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Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting
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History

• Adelson-Velskii, G. M. and Landis, E. M. (1962). "An 
information organization algorithm (in Russian)", Doklady
Akademia Nauk SSSR. 146: 263–266.
– Georgi Maximowitsch Adelson-Welski (russ. Георгий Максимович

Адельсон-Вельский; weitere gebräuchliche Transkription Adelson-
Velsky und Adelson-Velski; *1922 in Samara, †2014 in Israel) ist
ein russischer Mathematiker und Informatiker. Zusammen mit J.M. 
Landis entwickelte er 1962 die Datenstruktur des AVL-Baums.

– Jewgeni Michailowitsch Landis (russ. Евгений Михайлович
Ландис; *1921 in Charkiw, Ukraine; †1997 in Moskau) war ein
sowjetischer Mathematiker und Informatiker … Zusammen mit G. 
Adelson-Velsky entwickelte Landis 1962 die Datenstruktur des AVL-
Baums.

– Source: http://www.wikipedia.de/ 
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Balanced Trees

• Natural search trees: Searching / inserting / deleting is 
O(log(n)) on average, but O(n) in worst-case

• Complexity directly depends on tree height
• Balanced trees are binary search trees with certain 

constraints on tree height
– Intuitively: All leaves have “similar” depth: ~log(n)
– Accordingly, searching / deleting / inserting is in O(log(n))
– Difficulty: Keep the balance during tree updates

• First proposal of balanced trees is attributed to [AVL62]
• Many more since then: brother-, RB-, B-, B*-, BB-, … trees
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AVL Trees

• Definition
An AVL tree T=(V, E) is a binary search tree in which the 
following constraint holds: 
∀v∈V: |height(v.leftChild) - height(v.rightChild)| ≤ 1

• Remarks
– Will call this constraint height constraint (HC)
– AVL trees are height–balanced

• Caution: The height constraint does not imply that the level of all 
leaves differ by at most 1

– AVL trees are search trees, i.e., the search constraint (SC) also 
must hold: Right child is larger than parent is larger than left child
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Examples [source: S. Albers, 2010]

AVL? AVL? AVL?
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„Unbalancing“ 
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Worst-Case
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Height of an AVL Tree

• Lemma
The height h of an AVL tree T with |V|=n is in O(log(n))

• Proof by induction
– We construct AVL trees with

the minimal # of nodes (n) at a
given height h

– Let m be the number of leaves
– h=0 ⇒ m=1
– h=1 ⇒ m=1 or m=2
– h=2 ⇒ 2≤m≤4
– h=3 ⇒ 3≤m≤8
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Height of an AVL Tree

• Lemma
An AVL tree T with n nodes has height h ≤ O(log(n))

• Proof by induction
– We construct AVL trees with the 

minimal # of nodes (n) at a given 
height h

– Let m(h) be the minimal number
of leaves of an AVL tree of 
height h

– It holds: m(h) = m(h-1)+m(h-2)

– Such “maximally unbalanced” AVL trees are called Fibonacci-Trees
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Proof Continued

• Reason: m(h) are exactly the Fibonacci numbers fib 
– 0, 1, 1, 2, 3, 5, 8…

• Recall (from Fibonacci search)

• Since h “starts” at i=1

• This yields (recall: In binary trees: n≤2m-1 ⇒ (n+1)/2≤m)
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Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting
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Searching in an AVL Tree

• As in search  trees
• Searching in AVL is in O(log(n))

– Follows directly from the worst-case height
• Note: The best-case height is ceil(log(n)), so best-case and 

worst-case complexity asymptotically are the same
• But how can we ensure that the HC is always fulfilled?
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Inserting

• We start with insertions
• The trick is to insert nodes efficiently without hurting the 

height constraint (HC) nor the search constraint (SC)
• We first explain the procedure(s) and then prove that 

HC/SC always holds after insertion of a node if HC/SC held 
before this insertion

• We have to work for the HC; SC follows almost 
automatically from the procedure
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Framework

• Assume an AVL tree T=(V, E) and we want to insert k, k∉V
• We first check whether k∈V and end in a node p where we 

know that k is not in the subtree rooted at p, but must be 
placed there

• What are the possible situations?
• This is one:

k<p

p<k’’k

k’<k



Ulf Leser: Algorithms and Data Structures 17

Height Constraints

k<p

p<k’’k

k’<k
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How to Proof the HC

• We now only look at this 
particular case

• Before insertion, HC and SC held
– Note: k’’ cannot have children

• Height constraint after ins(k)
– The height of only one subtree 

changes – left child of p
– Adding k does not hurt HC in p (because k’’ exists)
– Thus, HC holds after insertion

• Search constraint (we have k’<k<p<k’’)
– Since k is larger than k’, it must be in the right subtree of k’
– Since k is smaller than p, it must be in the left subtree of p
– This subtree didn’t exit and is created now
– Thus, SC holds after insertion

k<p

p<k’’k

k’<k
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The Essential Information

• Since we do not change the height of the subtree under 
p (nor of any other subtree), the HC must hold for 
ancestors of p and all nodes of T after insertion if it held 
before insertion

k<p

p<k’’k

k’<k
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Other Cases

• Also trivial

• Problem
– The subtree of p = the left subtree of k’ 

changes its height
– We have to look at the height of the 

right subtree of k’ to decide what to do
– Actually, we only need to know if it is 

larger, smaller, or equal in height to the 
left subtree (before insertion)

p<k

k’’<p k

k<k’

p<k

k

k<k’
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Abstraction

• We assume that we found the position of k such that SC 
holds after insertion

• To check HC, we need to know the prior height differences 
in every node that is an ancestor of the new position of k

• Definition
Let T=(V, E) be a binary tree and p∈V. We define
bal(p) = height( right_child(p)) – height( left_child(p))

• Lemma
If T is an AVL tree, then ∀p: bal(p) ∈ {-1, 0, 1}
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New Presentation

k<p

p<k’’k

l’<k

p<k

k’’<p k

k<k’

p<k

k

k<k’

+1

0k

-1

0 k

0

k
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Now Systematically: 3 Cases

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• We found parent p under which we must insert k (for SC)
• Three possible cases

• Case 1: bal(p)=+1
– Then there exists a right “subtree” of p

(one node only)
– We insert k as left child
– Height of p doesn’t change

• Ancestors of p remain unaffected
– Adapt bal(p) and we are done

+1

0

0

0k
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Case 2

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• We found parent p under which we must insert k (for SC)
• Three possible cases

• Case 2: bal(p)=-1
– Then there exists a left “subtree” of p

(one node only)
– We insert k as right child
– Height of p doesn’t change

• Ancestors of p remain unaffected
– Adapt bal(p) and we are done

-1

0

0

0 k
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Case 3

• Assume AVL tree T=(V, E) and we want to insert k, k∉V
• We found parent p under which we must insert k (for SC)
• Three possible cases

• Case 3: bal(p)=0
– There is neither a left nor a 

right subtree of p (p is a leaf)
– We insert k as left or right child
– Height of p changes (HC valid?)
– Ancestors of p are affected
– Idea: Adapt bal(p) and look at parent(p)

0

+/-1

k?k?
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Up the Tree

• If bal(p)=0, we have to check HC in ancestors of p
• We call a procedure upin(p) recursively

– We look at the parent p’ of p
– We check bal(p’) to see if the height change in p breaks HC in p’
– If not, we are done
– If yes, we can either fix it locally (below p’) or have to propagate 

further up the tree
• “Fixing locally” in constant time is the main trick behind 

AVL trees
• Since we can call upin(p) only O(log(n)) times – the height 

of an AVL tree with n nodes – and do only constant work: 
Insertion is in O(log(n))
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Subcases – Somewhere in the Tree

• p can either be the left or the right child of its parent p‘
• Note that bal(p) must be +1 or -1 when upin() is called

– We call this PC, the precondition of upin()
– In the first call, bal(p)=0 before insertion, thus +1/-1 afterwards
– In later calls: We have to check

Case 3.1  Case 3.2

bal(p)∈{+1,-1}

p’

k

bal(p)∈{+1,-1}

p’

k
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Subcases of Case 3.1

bal(p)∈{+1,-1}

p’

k

bal(p)∈{+1,-1}

bal(p’)=+1

k

bal(p)∈{+1,-1}

bal(p’)=0

k

bal(p)∈{+1,-1}

bal(p’)=-1

k

Case 3.1.1 

Case 3.1.2 
Case 3.1.3 
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Subcases of Case 3.1

• Case 3.1.1 (bal(p’)=+1)
– Right subtree of p‘ was higher 

than left subtree
– Left subtree has just grown by 1
– Thus, height of p‘ doesn‘t change
– Set bal(p‘)=0 and we are done

• Case 3.1.2 (bal(p’)=0)
– Left and right subtree of p’ had 

same height
– Height of p’ changes, but HC 

holds in p’
– Set bal(p’)=-1 and call upin(p’)

• Note: PC holds

bal(p)∈{+1,-1}

bal(p’)=+1

k

bal(p)∈{+1,-1}

bal(p’)=0

k
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Subcases of Case 3.1

• Case 3.1.3 (bal(p’)=-1)
– Left subtree of p‘ was already 

higher than right subtree
– And has grown even further
– HC is hurt in p’
– Fix locally – but how?

• Case 3.1.3.1 Case 3.1.3.2

bal(p)∈{+1,-1}

bal(p’)=-1

k

-1

-1

1 2
3

+1

-1

1 2
3
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A Closer Look

• Subtree 1 contains values smaller than p (and than p’)
• Subtree 2 contains values larger than p, but smaller than p’
• Subtree 3 contains values larger than p’ (and than p)
• Can we rearrange the subtrees rooted in p’ such that SC 

and HC hold?

-1

-1

1 2
3

Case 3.1.3.1



Ulf Leser: Algorithms and Data Structures 33

Example

• Subtree 1 contains values smaller than p (and than p’)
• Subtree 2 contains values larger than p, but smaller than p’
• Subtree 3 contains values larger than p’ (and than p)
• Idea: There are not “enough” values larger than p’ 
• Thus, p’ cannot be root of this subtree – rotate

4

8

-3 5-7
9-
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Rotation

• Rotate nodes p and p’ to the right
– Tree “-3” has lost height (8 moved)

• Fine: Was too high
– Tree “9-” gained height (4 on top)

• Fine: Was too low

4

8

-3 5-7
9-

4

8

-3 5-7 9-
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Rotation

• Rotate nodes p and p’ to the right
– Tree “5-7” keeps height

• Clearly, SC holds
• Impact on HC?

4

8

-3 5-7
9-

4

8

-3 5-7 9-
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Rotation and HC

• Before rotation after insertion
– p’: HC hurt in left subtree 

(height now is h+1) versus right 
subtree (height remains h-1)

– Entire subtree at p’ before 
insertion had height h+1 

-1

-1

h h-1
h-1

0

0

h h-1 h-1

h+1 h-1
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Rotation and HC

• After rotation
– HC holds
– Height of subtree at p’ is 

h+1 and hence unchanged 
– No further upin()

-1

-1

h h-1
h-1

0

0

h h-1 h-1

• Before rotation after insertion
– p’: HC hurt in left subtree 

(height now is h+1) versus right 
subtree (height remains h-1)

– Entire subtree at p’ before 
insertion had height h+1 
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Second Sub-Sub-Subcase

• Case 3.1.3
– Left subtree of p‘ was already 

higher than right subtree
– And has even grown
– HC is hurt in p’
– Fix locally
– How?

• Case 3.1.3.1 Case 3.1.3.2

bal(p)∈{+1,-1}

bal(p’)=-1

k

-1

-1

1 2
3

+1

-1

1 2
3
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More Intricate

• HC hurt (height of left subtree of p’ is h+1, right ST is h-1)
• If we rotated to the right, p (the new root) would have a 

left subtree of height h-1 and a right subtree of height h+1
– The “deep” subtree “h” remains deep

• Forbidden by HC
• We have to break to the subtree “h”

+1

-1

h-1 h
h-1

?

-1

h-1 h h-1
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Breaking a Subtree

• height(v)=h
• Thus, height(X)/height(Y) can be 

h-1/h-1 or h-1/h-2 or h-2/h-1
• But: Since the subtree rooted at p has just grown in 

height, this growth must have happened below v (because 
bal(p)=+1), so we must have height(X)≠height(Y)

+1

-1

h-1 h
h-1

+1

-1

h-1

X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v

=
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Double Rotation: First Rotation

p

p’

h-1

X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v

p

p’

h-1 X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v
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Double Rotation: Second Rotation

p

p’

h-1 X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v

p

p’

h-1 X
h-1 or  
h-2

h-1

Y
h-1 or
h-2

v
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AVL Constraints

• Adaptation: If h(X)=-1 and 
h(Y)=-2, we now get
– bal(p) = 0
– bal(p’) = +1
– bal(v) = 0

• Both subtrees have height h

• Height constraint
– Holds in every node

• Need to call upin(v)?
– No: Subtree had height h+1 

and still has height h+1
• Search constraint?

p

p’

h-1 X
h-1

h-1
Y

h-2

v
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AVL Constraints

• Adaptation: If h(X)=-2 and 
h(Y)=-1, we now get
– bal(p) = -1
– bal(p’) = 0
– bal(v) = 0

• Both subtrees have height h

• Height constraint
– Holds in every node

• Need to call upin(v)?
– No: Subtree had height h+1 

and still has height h+1
• Search constraint?

p

p’

h-1
X

h-2

h-1Y
h-1

v
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Search Constraint

p

p’

p[

]p,v[

]p’

]v,p’[

v p

p’

p[
]p,v[

]p’

]v,p’[

v

Uff
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Are we Done?

• Case 3.2

• Similar solution
– If bal(p’)=-1, adapt and finish
– If bal(p’)=0, adapt and call upin(parent(p’)
– If bal(p’)=+1, then

• Case 3.2.3.1: Rotate left in p
• Case 3.2.3.1: Rotate right in p, then rotate left in v

bal(p)∈{+1,-1}

p’

k
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Summary

• We found the node p under which we want to insert k
• Major cases

– If k<p and rightChild(p)≠null: Insert k (new left child)
– If k>p and leftChild(p)≠null: Insert k (new right child)
– If p has no children: Insert k and call upin(p)

• Procedure upin(p)
– If p=leftChild(p’) 

• If bal(p’)=1: Set bal(p’)=0, done
• If bal(p’)=0: Set bal(p’)=-1, call upin(p’)
• If bal(p’)=-1:

– If bal(p)=-1: Rotate right in p, done
– If bal(p)=+1: Rotate left in p, right in v, done

– Else (p=rightChild(p’))
• …
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Example

• HC hurt in p
• rotate left in p

insert 9

insert 8
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Example

• p changes height
• HC hurt in root
• Rotate left in p, then right in root
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Content of this Lecture

• AVL Trees
• Searching
• Inserting
• Deleting
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Deleting a Key

• Follows the same scheme as insertions
• First find the node p which holds k (to be deleted)
• We will again find cases where we have to do nothing, 

cases where we have to rotate, and cases where we have 
to propagate changes up the tree

• We will be a bit more sloppy than for insertions – details 
can be found in [OW]
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Major Cases

• Case 1: k has no children
– Remove k, adapt bal(p)
– If bal(p) is set to 0, then height 

has shrunken by 1
• All other cases are easily 

resolved locally
– Then call upout(p) 

• Case 2: k has only one child
– Replace k with k‘

• k‘ cannot have children, or HC 
would not hold in k

– Height of k’ has changed
– Call upout(k’)

p

k

p

k

k’
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Invariant

• Case 1: k has no children
– Remove k, adapt bal(p)
– If bal(p) is set to 0, then height 

has shrunken by 1
• All other cases are easily 

resolved locally
– Then call upout(p) 

• Case 2: k has only one child
– Replace k with k‘

• k‘ cannot have children, or HC 
would not hold in k

– Height of k’ has changed
– Call upout(k’)

p

k

p

k

k’

• bal(k’)=0
• Height of k/k’ 

decreased by 
1

• bal(p)=0
• Height of p 

decreased by 
1
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Case 3

• Case 3: k has two children
– Recall natural search trees
– We search the symmetric 

predecessor q of k
– Replace k with q and call 

delete(q) (the old one)

p

k

q

1. 
Replace k 
with q

2. Remove q
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Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased 
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 1; bal(p’)=-1

p

bal(p’)=-1

h

upout(p)

h

p

bal(p’)=0

h-1
h

k
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Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased 
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 2: bal(p’)=0

done

p

bal(p’)=0

h h+1

p

bal(p’)=+1

h-1 h+1

k
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Procedure upout(p)

• Whenever we call upout(p), the height of p has decreased 
by 1 and bal(p)=0

• Let p be the left child of its parent p’
– Again, the case of p being the right child of p’ is symmetric

• Case 3: bal(p’)=+1

p

bal(p’)=+1

h
h+2

= p

bal(p’)=+1

0

q

2 3
1

height(q)=height(p)+1

k
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Subcase 1

• Case 3.1: bal(q)=0
• Rotate left in q

p

bal(p’)=+1

0

bal(q)=0

2 3
1

p

bal(p’)=0

0

bal(q)=-1

2
31

Height has not changed - done
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Subcase 2

• Case 3.2: bal(q)=+1
• Rotate left in q (again)

p

bal(p’)=+1

0

bal(q)=+1

2
3

1

p

bal(p’)=0

0

bal(q)=0

2 31

Height has changed – upout(q)
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Subcase 3

• Case 3.3: bal(q)=-1
• Rotate right in q, then left in z

p

bal(p’)=+1

0

bal(q)=-1

2

41

p

p’

0

bal(z)=0

2
3

1

Height has changed – upout(z)

z

3

q

4
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Summary AVL Trees

• With a little work, we reached our goal: Searching, 
inserting, and deleting is in O(log(n)) 

• One can also show that ins/del are in O(1) on average
– Because reorganizations are rare and usually stop very early

• AVL trees are a “work-horse” for managing a sorted list
• AVL trees are bad as disk-based DS

– Disk blocks (b) are much larger than one key, and following a 
pointer means one head seek

– Better: B-Trees: Trees of order b with constant height in all leaves
• b typically ~1000 – all children of a node should fill one IO block
• Finding a key only requires O(log1000(n)) seeks
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Exemplary Questions

• Given the following AVL tree and the following sequence of 
operations <(I,15>, <D, 25>, <I, 8>, …). Draw the tree 
after every operation. In case rotations are necessary, also 
draw the tree after every rotation.

• Give a formal proof that the height of a AVL-Tree over n 
nodes is in O(log(n)). Use the formula fib(n)~c*1.6n , for 
some constant c.

• Consider the following AVL tree. Insert as many nodes as 
possible (with arbitrary yet reasonable key values) without 
changing the height of any of its subtree.
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