

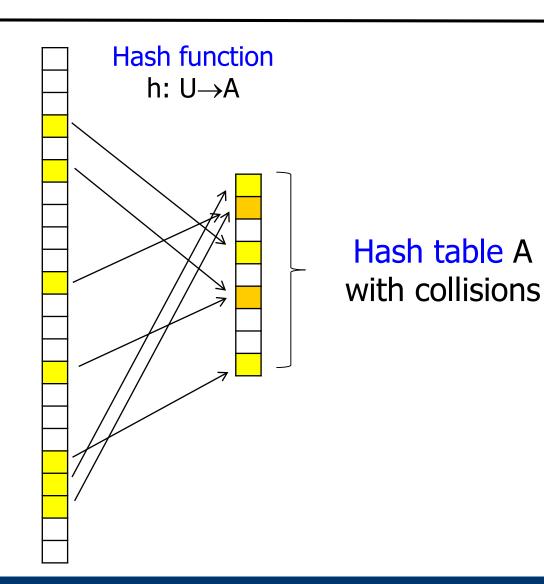
Algorithms and Data Structures

Open Hashing

Ulf Leser

Recall: Hashing

Actual values of k in S



Collision Handling

- Overflow hashing: Collisions are stored outside A
 - We need additional storage
 - Solves the problem of A having a fixed size despite that S might be growing (without changing A)
- Open hashing: Collisions are managed inside A
 - No additional storage
 - |A| is upper bound to the amount of data that can be stored
- Dynamic hashing: A may grow/shrink
 - Not covered here see Databases II

Open Hashing

- Open Hashing: Store all values inside hash table A
- Inserting values
 - No collision: As usual
 - Collision: Chose another index and "probe" again
 - And ... again ...
 - Until free slots is found; otherwise ERROR
- Many suggestions on how to chose the next index to probe
- In general, we want a strategy (probe sequence) that
 - ... ultimately visits any index in A (and none twice before)
 - is deterministic when searching, we must follow the same order of indexes (probe sequence) as for inserts

Reaching all Indexes of A

Definition

Let A be a hash table, |A|=a, over universe U and h a hash function for U into A. Let $I=\{0, ..., a-1\}$. A probe sequence is a deterministic, surjective function s: $UxI \rightarrow I$

Remarks

- We use j to denote elements of the probe sequence: Where to look next after j-1 probes
- s need not be injective a probe sequence may "cross" itself
 - But it is better if it doesn't
- We typically use $s(k, j) = (h(k) s'(k, j)) \mod a$
 - Of course, s' must be chosen carefully
 - Example: s'(k, j) = j, hence s(k, j) = (h(k)-j) mod a

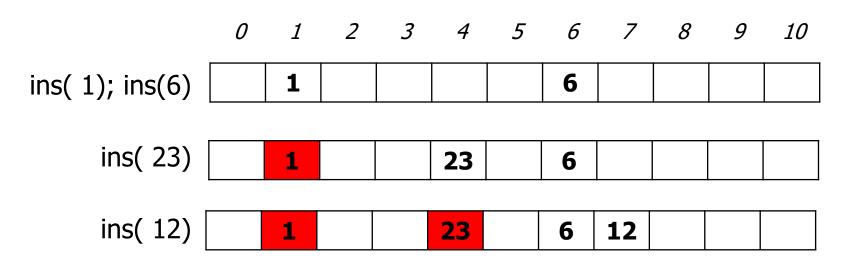
Searching

```
func int search(k int) {
     i := 0;
  first := h(k);
   repeat
     pos := (first-s'(k, j) mod a;
       j := j+1;
7.
   until (A[pos]=k) or
           (A[pos]=null) or
           (j=a);
8.
     if (A[pos]=k) then
9.
       return pos;
10.
     else
11.
    return -1;
12.
     end if:
13. }
```

- Let s'(k, 0) := 0
 - First probe as normal
- We assume that s cycles through all indexes of A
 - In whatever order
- Probe sequences longer than a-1 usually make no sense, as they necessarily look into indexes twice
 - But beware of non-injective functions

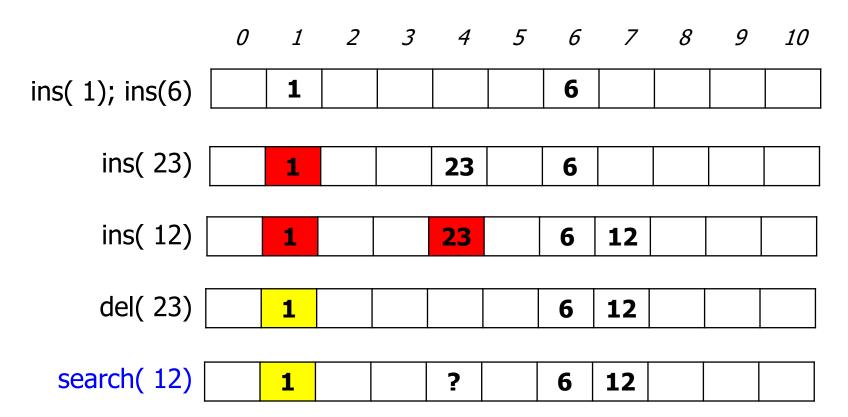
Example

- A sequence of insertions
 - Assume $h(k) = k \mod 11$ and $s(k, j) = (h(k) + 3*j) \mod a$



But: Deletions

- Deletions are a problem!
 - Assume $h(k) = k \mod 11$ and $s(k, j) = (h(k) + 3*j) \mod a$



Remedy

- We can not simply move last element of probe sequence to fill the hole
 - Because we don't know the probe sequence of the deleted element
 - Could be from a cross
- Solution: Leave a mark (tombstone)
 - During search, jump over tombstones
 - During insert, tombstones may be replaced
- Creates longer sequences
- Ultimately, α becomes useless to estimate complexity
- Practical hint: Avoid open hashing when deletions are frequent

Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Brent's Algorithm
 - Ordered Hashing

Open Hashing: Overview

- We will look into three strategies in more detail
 - Linear probing: $s(k, j) := (h(k) j) \mod a$
 - Double hashing: $s(k, j) := (h(k) j*h'(k)) \mod a$
 - Ordered hashing: Any s; values in probe sequence are kept sorted

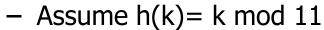
Others

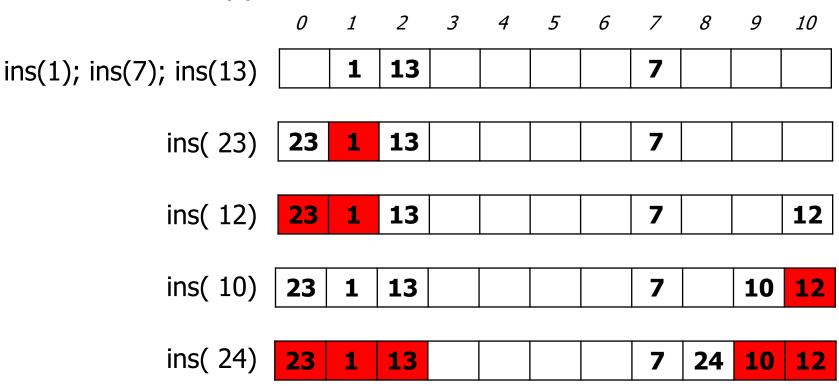
- Quadratic hashing: $s(k, j) := (h(k) floor(j/2)^{2*}(-1)^{j}) \mod a$
 - Less vulnerable to local clustering then linear hashing
- Uniform hashing: s is a random permutation of I dependent on k
 - Permutations must be created and stored for each k
 - High administration overhead, guarantees shortest possible probe sequences on average
- Coalesced hashing

— ...

Linear Probing

Probe sequence function: s(k, j) := (h(k) - j) mod a

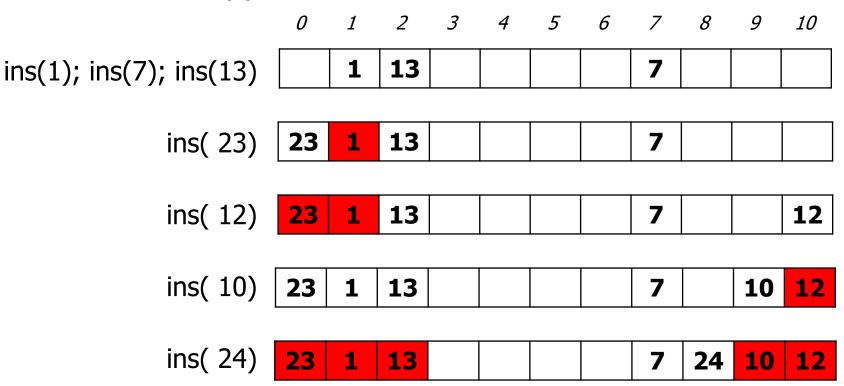




Linear Probing

Probe sequence function: s(k, j) := (h(k) - j) mod a

- Assume $h(k) = k \mod 11$



Often creates local chains: Full subarrays

Analysis

- The longer a chain ...
 - the more different values of h(k) it covers
 - the higher the chances to produce further collisions
 - the faster it grows
- The faster a chain grows, the faster it merges with other chains
- Assume an empty position p left of a chain of length n and an empty position q with an empty cell to the right
 - Also assume h is uniform
 - Chances to fill q with next insert: 1/a
 - Chances to fill p with the next insert: (n+1)/a
- Linear probing tends to quickly produce long full stretches of A with high collision probabilities

In Numbers (Derivation of Formulas Skipped)

- Scenario: Some inserts (leading to fill degree α), then many searches
 - Estimating the expected number C_n of probes per search

erfolgreiche Suche:

$$C_n \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)} \right)$$

erfolglose Suche:

$$C'_n \approx \frac{1}{2} \left(1 + \frac{1}{\left(1 - \alpha \right)^2} \right)$$

α	C _n (erfolgreich)	C'n(erfolglos)
0.50	1.5	2.5
0.90	5.5	50.5
0.95	10.5	200.5
1.00	_	_
1		

Source: S. Albers / [OW93]

Quadratic Hashing

erfolgreiche Suche:

$$C_n \approx 1 - \frac{\alpha}{2} + \ln\left(\frac{1}{(1-\alpha)}\right)$$

erfolglose Suche:

$$C'_n \approx \frac{1}{1-\alpha} - \alpha + \ln\left(\frac{1}{(1-\alpha)}\right)$$

α	C _n (erfolgreich)	C'n(erfolglos)
0.50	1.44	2.19
0.90	2.85	11.40
0.95	3.52	22.05
1.00	_	-

Source: S. Albers / [OW93]

Discussion

- Disadvantage of linear (and quadratic) hashing:
 Problems with the original hash function h are preserved
 - Probe sequence only depends on h(k) and j, not on k
 - s'(k, j) ignores k
 - All synonyms k, k' will create the same probe sequence
 - Synonym: Two keys that form a collision
 - Thus, if h tends to generate clusters (or inserted keys are non-uniformly distributed in U), also s tends to generate clusters (i.e., sequences being filled from multiple keys)

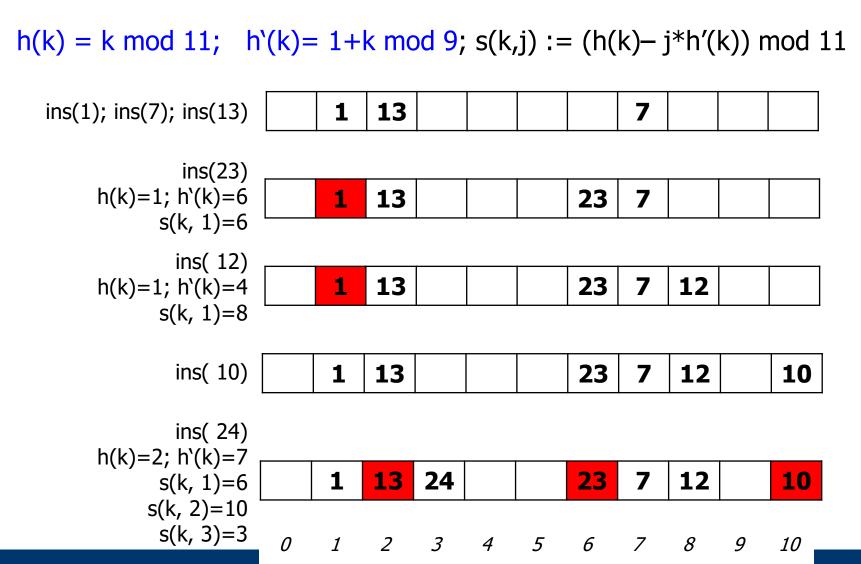
Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Brent's Algorithm
 - Ordered Hashing

Double Hashing

- Double Hashing: Use a second hash function h'
 - $s(k, j) := (h(k) j*h'(k)) \mod a \text{ (with } h'(k) \neq 0)$
 - Further, we don't want that h'(k)|a (done if a is prime)
- h' should spread h-synonyms
 - If h(k)=h(k'), then hopefully $h'(k)\neq h'(k')$
 - Otherwise, we preserve problems with h
 - Optimal case: h' statistically independent of h, i.e., $p(h(k)=h(k')\wedge h'(k)=h'(k'))=p(h(k)=h(k'))*p(h'(k)=h'(k'))$
 - If both are uniform: p(h(k)=h(k')) = p(h'(k)=h'(k')) = 1/a
- Example: If h(k)= k mod a, chose h'(k)=1+k mod (a-2)

Example (Linear Probing produced 9 collisions)



Analysis

• Please see [OW93]

$$C'_n \le \frac{1}{1-\alpha}$$

$$C_n \approx \frac{1}{\alpha} * \ln\left(\frac{1}{(1-\alpha)}\right)$$

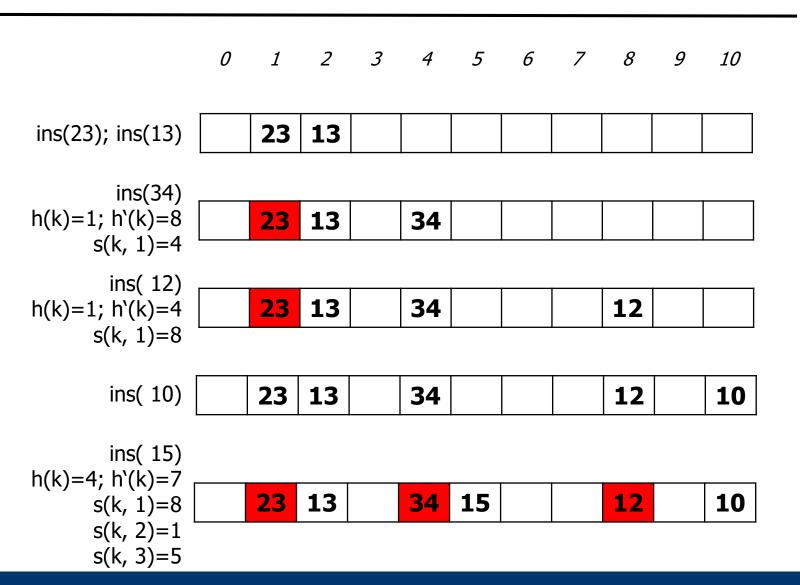
α	C_n (erfolgreich)	C'n(erfolglos)
0.50	1.39	2
0.90	2.56	10
0.95	3.15	20
1.00	-	-

Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Brent's Algorithm
 - Ordered Hashing

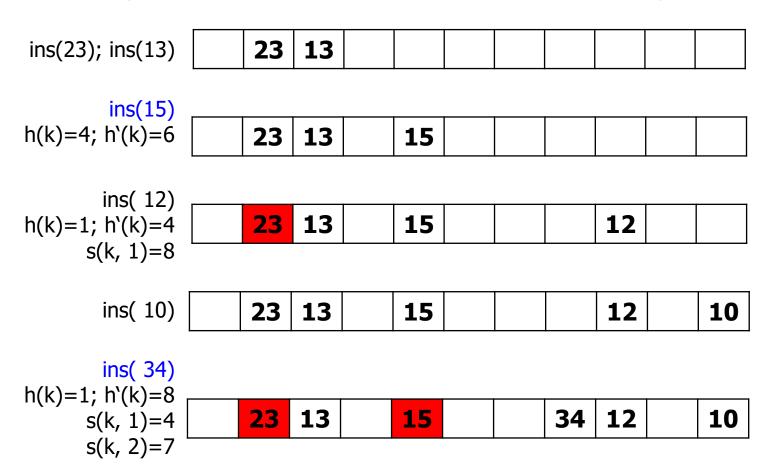
Another Example

 $h(k) = k \mod 11;$ $h'(k) = 1+k \mod 9;$ $s(k,j) := (h(k)-j*h'(k)) \mod 11$



Observation

Let's change the order of insertions (and nothing else)



Observation

- The number of collisions depends on the order of inserts
 - Because h' spreads h-synonyms differently for different values of k
- We cannot change the order of inserts, but ...
- Observe that when we insert k' and there already was a k with h(k)=h(k'), we actually have two choices
 - Until now we always looked for a new place for k' (in step j')
 - Why not: set A[h(k')]=k' and find a new place for k?
 - But for the present key k we don't know j (which step in its sequence?)
 - Use open hashing scheme where next offset is independent of j
 - E.g. linear hash. (constant offset -1), double hash. (offset -h'(k))
 - If s(k',j') is filled but s(k,?) is free, then the second choice is better

Brent's Algorithm

- Brent's algorithm:
 - Upon collision, propagate key for which the next index in probe sequence is free; if both are occupied, propagate k'
 - Brent, R. P. (1973). "Reducing the Retrieval Time of Scatter Storage Techniques.".
 Communications of the ACM
- Insert is faster, searches will be faster on average
 - Improves only successful searches otherwise we have to follow the chain to its end anyway
 - Average-case probe length for successful searches becomes almost constant (~2.5 accesses) even for high fill degrees

Content of this Lecture

- Open Hashing
 - Linear Probing
 - Double Hashing
 - Brent's Algorithm
 - Ordered Hashing

Idea

- Can we also improve unsuccessful searches?
 - Recall overflow hashing: If we keep the overflow chain sorted, we can stop searching after $\alpha/2$ comparisons on average
- Transferring this idea: Keep keys sorted in probe sequence
 - We have seen with Brent's algorithm that we have a choice which key to propagate whenever we have a collision
 - Thus, we can also choose to always propagate the larger of both keys – which generates a sorted probe sequence
- Result: Unsuccessful searchers become as fast as successful searches $\alpha/2$ on average

Details

- In Brent's algorithm, we replace a key if we can insert the replaced key directly into A
- Now, we must replace keys even if the next slot in the probe sequence is occupied
 - We run through probe sequence until we meet a key that is smaller
 - We insert the new key here
 - All subsequent keys must be replaced (moved in probe sequence)
- Note that this doesn't make inserts slower than before
 - Without replacement, we would have to search the first free slot
 - Now we replace until the first free slot
- Careful with tombstones see [OW93]

Open versus External collision handling

Pro Open Hashing

- We do not need more space than reserved more predictable
- A typically is filled more less wasted space
- With double hashing and "nice" hash functions and "nice" insert sequences – very low expected work for search / insert
- Less memory fragmentation, no pointer chasing
- Many "local" memory accesses (same block) fast

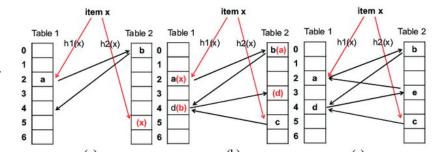
Contra

- More complicated
- Deletions are a problem
- A can get full; we cannot go beyond $\alpha=1$
 - That's the ERROR in the insert

Outlook: Cuckoo Hashing

Pagh & Rodler (2004). "Cuckoo hashing." Journal of Algorithms 51.2

- Use two tables A₁, A₂ with different hash functions h₁, h₂
- When inserting k
 - if A₁[h₁[k]] free: Insert k into A₁
 - Else if A₂[h₂[k]] free:
 Insert k into A₂
 - Else get k'=A₁[h₁[k]],
 set A₁[h₁[k]]=k, and try to insert k' into A₂



Li et al. (2019). Multi-copy cuckoo hashing. ICDE

- Repeat until free slot found or a cycle is detected
- If cycle: Rebuilt A₁ and A₂ with new has functions
 - Expensive but very rare
- Properties (assuming certain properties of h₁, h₂)
 - Search and deletion in O(1) guaranteed
 - Insertion in O(1) on average (amortized analysis)

Exemplary Questions

- Create a hash table step-by-step using open hashing with double probing and hash functions h(k)=k mod 13 and h'(k)=3+k mod 9 when inserting keys 17,12,4,1,36,25,6
- Use the same list for creating a hash table with double hashing and Brent's algorithm
- Use the same list for creating a hash table with ordered linear probing (linear probing such that the probe sequences are ordered).
- Analyze the WC complexity of searching key k in a hash table with direct chaining using a sorted linked list when (a) k is in A; (b) k is not in A.