

Algorithms and Data Structures

Amortized Analysis

Ulf Leser

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis
- This lecture is not covered in [OW93] but, for instance, in [Cor09]

Setting

- SOL: Sequences of operations influencing each other
- We have a sequence Q of operations on a data structure
- Searching SOL and rearranging a SOL
- Operations are not independent - by changing the data structure, costs of subsequent operations are influenced
- Conventional WC-analysis produces misleading results
- Assumes all operations to be independent
- Search order in workload does not influence WC result
- Amortized analysis analyzes the complexity of a sequence of interfering operations
- In other terms: We seek the worst average cost of each operation in any sequence

"Amortizing"

- Economics: How long does it take until a (high) initial investment pays off because it leads to continuous business improvements (less costs, more revenue)?
- Example
- Investment of $6000 €$ leads to daily rev. increase from 500 to $560 €$
- Investment amortized after 100 days
- WC: Look at all days independently
- Look at difference cost / revenue
- Compare 560-6000 to 500-0
- Do not invest! Never!

Algorithmic Example 1: Multi-Pop (mpop)

- Assume a stack S with a special operation: $\operatorname{mpop}(k)$
- mpop(k) pops min(k, |S|) elements from S
- Implementation: mpop calls pop k times
- Assume any sequence Q of operations push, pop, mpop
- E.g. Q=\{push,push,mpop(k),push,pop,push,mpop(k),...\}
- Assume costs $c(p u s h)=1, c(p o p)=1, c(m p o p(k))=k$
- What cost do we expect for a given Q with $|\mathrm{Q}|=\mathrm{n}$?
- Cost of ops in Q: 1 (push) or 1 (pop) or k (mpop)
- In the worst case, k can be n
- $n-1$ times push, then one mpop(n)
- Worst case of a single operation is $\mathrm{O}(\mathrm{n})$

Note: True costs only ~2*n

- For n operations: Total worst-case cost: O(n²)

Problem

- Clearly, the cost of Q is in $\mathrm{O}\left(\mathrm{n}^{2}\right)$, but this is not tight
- A simple thought shows: The cost of Q is in $\mathrm{O}(\mathrm{n})$
- Every element can be popped only once
- No matter if this happens through a pop or a mpop
- Pushing an element costs 1 , popping it costs 1
- A given Q can at most push n elements and pop n elements
- Every pushed element can be popped only once
- Thus, the total cost is in $\mathrm{O}(\mathrm{n})$
- It is maximally $\sim 2 n$
- We want to derive such a result in a systematic manner
- Analyzing SOLs is not that easy

Example 2: Bit-Counter

- We want to generate bitstrings by iteratively adding 1
- Starting from 0
- Assume bitstrings of length k
- Roll-over counter if we exceed 2^{k}-1
- Q is a sequence of „+1"
- We count as cost of an operation the number of bits we have to flip
- Classical WC analysis
- A single operation can flip up to k bits
- "1111111" +1
- Worst case cost for $\mathrm{Q}: ~ O\left(k^{*} n\right)$

00000000		
00000001	1	1
00000010	2	3
00000011	1	4
00000100	3	7
00000101	1	8
00000110	2	10
00000111	1	11
00001000	4	15
00001001	1	16
00001010	2	18
\ldots		

Problem

- Again, this complexity is overly pessimistic / not tight
- Cost actually is in $\mathrm{O}(\mathrm{n})$
- The right-most bit is flipped in every operation: cost=n
- The second-rightmost bit is flipped every second time: $\mathrm{n} / 2$
- The third ...: n/4
- Together

$$
\sum_{i=0}^{k-1} \frac{n}{2^{i}}<n * \sum_{i=0}^{\infty} \frac{1}{2^{i}}=2 * n
$$

- Two Examples
- Two Analysis Methods
- Accounting Method
- Potential Method
- Dynamic Tables
- SOL - Analysis

Accounting Analysis

- Idea: We create an account for Q
- Operations put / withdraw some amounts of "money"
- We choose these amounts such that the current state of the account is always (throughout Q) an upper bound of the actual cost incurred by Q
- Let c_{i} be the true cost of operation i, d_{i} its effect on the account
- We require

$$
\forall 1 \leq k \leq n: \sum_{i=1}^{k} c_{i} \leq \sum_{i=1}^{k} d_{i}
$$

- Additional constraint: The account must never become negative
- " \leq " gives us more freedom in analysis than "="
- It follows: An upper bound for the account (d) after Q is also an upper bound for the true cost (c) of Q

Application to mpop

- Assume $d_{\text {push }}=2, d_{\text {pop }}=0, d_{\text {mpop }}=0$
- Upper bounds?
- Clearly, $d_{\text {push }}$ is an upper bound on $\mathrm{c}_{\text {push }}$ (ywich is 1)
- But neither $\mathrm{d}_{\text {pop }}$ nor $\mathrm{d}_{\text {mpop }}$ are upper bounds for $\mathrm{c}_{\text {pop }} / \mathrm{c}_{\text {mpop }}$
- Let's try: $\mathrm{d}_{\text {push }}=2, \mathrm{~d}_{\mathrm{pop}}=1, \mathrm{~d}_{\mathrm{mpop}}=\mathrm{n}$
- Now all individual d's are upper bounds for their c's
- But this doesn't help (worst-case analysis)

$$
\sum_{i=1}^{n} c_{i} \leq \sum_{i=1}^{n} d_{i} \leq n * n \in O\left(n^{2}\right)
$$

- But: We only have to show that the sum of d's for any prefix of Q is higher than the sum of c's

Application to mpop

- Assume again: $\mathrm{d}_{\text {push }}=2, \mathrm{~d}_{\mathrm{pop}}=0, \mathrm{~d}_{\text {mpop }}=0$
- Summing these up along a sequence of ops yields an upper bound on the real cost
- Idea: Whenever we push an element, we pay 1 for the push and 1 for the operation that will (sometime later) pop exactly this element
- It doesn't matter whether this will be through a pop or a mpop
- Recall: For every pop, there must have been a push before
- Thus, when it comes to a pop or mpop, there is always "enough money" on the account
- Deposited by previous push's
- "enough": Enough such that the sum remains an upper bound
- This proves

$$
\sum_{i=1}^{n} c_{i} \leq \sum_{i=1}^{n} d_{i} \leq 2 * n \in O(n)
$$

Choose d's carefully

- Assume $\mathrm{d}_{\text {push }}=1, \mathrm{~d}_{\text {pop }}=1, \mathrm{~d}_{\text {mpop }}=1$
- Assume Q=\{push,push,push,mpop(3)\}
$-\Sigma \mathrm{c}=6>\Sigma \mathrm{d}=4$
- Assume $\mathrm{d}_{\text {push }}=1, \mathrm{~d}_{\text {pop }}=0, \mathrm{~d}_{\text {mpop }}=0$
- Assume Q=\{push,push,mpop(2)\}
$-\Sigma \mathrm{c}=4>\Sigma \mathrm{d}=2$
- Assume $d_{\text {push }}=3, d_{\text {pop }}=0, d_{\text {mpop }}=0$
- Fine as well, but not as tight (but also leads to O(n))
- Take-Away: We must chose d such that the upper bound inequality always holds

Application to Bit-Counter

- Look at the sequence Q^{\prime} of flips generated by a sequence Q
- Every +1 creates a sequence of [0...k] flip-to-0 and [0...1] flip-to-1
- There is no "flip to $1^{\prime \prime}$ if we roll-over
- Since only flips cost, Q' can be used to study the cost of Q
- Let's set $\mathrm{d}_{\text {flip-to- } 1}=2$ and $\mathrm{d}_{\text {flip-to-0 }}=0$
- Note: We start with only 0 and can flip-to-0 any 1 only once
- Before we flip-to-1 again, again enabling one flip-to-0 etc.
- Idea: When we flip-to-1, we pay 1 for flipping and 1 for the back-flip-to-0 that might happen at some later time in Q'
- There can be only one flip-to-0 per single flip-to-1
- Thus, the account is always an upper bound on the actual cost
- Same idea: No flip-to-0 (pop) without prev. flip-to-1 (push)

Application to Bit-Counter -2-

- We know that the account is always an upper bound on the actual cost for any prefix of Q
- Every step of Q creates a sequence of flip-to-1 (at most one) and flip-to-0 in Q'
- This sequence in Q^{\prime} costs at most 2
- There can be only on flip-to-1, and all flip-to-0 are free
- Every step in Q creates a sequence in Q^{\prime} costing at most 2
- Thus, Q is bound by $\mathrm{O}(\mathrm{n})$
- qed.
- Two Examples
- Two Analysis Methods
- Accounting Method
- Potential Method
- Dynamic Tables
- SOL - Analysis

Potential Method: Idea

- In the accounting method, we assign a cost to every operation and compare aggregated accounting costs of ops with aggregated real costs of ops
- In the potential method, we assign a potential $\Phi(\mathrm{D})$ to the data structure D manipulated by Q
- Think of the potential as potential future cost
- As ops from Q change D, they also change D's potential
- The trick is to design Φ such that we can use it to derive an upper bound on the real cost of Q
- "Accounting" and "potential" methods are quite similar use whatever is easier to apply for a given problem

Potential Function

- Let $D_{0}, D_{1}, \ldots D_{n}$ be the states of D when applying Q
- We define the amortized cost d_{i} of the i'th operation as $d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- We derive the amortized cost of Q as

$$
\sum_{i=1}^{n} d_{i}=\sum_{i=1}^{n}\left(c_{i}+\phi\left(D_{i}\right)-\phi\left(D_{i-1}\right)\right)=\sum_{i=1}^{n} c_{i}+\phi\left(D_{n}\right)-\phi\left(D_{0}\right)
$$

- Idea: If we find a Φ such that (a) we can obtain formulas for the amortized costs for all individual d_{i} and (b) $\Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right)$, we have an upper bound for the real costs
- Because then:

$$
\sum_{i=1}^{n} d_{i}=\sum_{i=1}^{n} c_{i}+\phi\left(D_{n}\right)-\phi\left(D_{0}\right) \geq \sum_{i=1}^{n} c_{i}
$$

Details: Always Pay in Advance

- Operations raise or lower the potential of D
- We need to find a function Φ such that
- Req. 1: $\Phi\left(D_{i}\right)$ depends on a property of D_{i} (future cost)
- Req. 2: $\Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right)$ [here we will always have $\Phi\left(D_{0}\right)=0$]
- Req. 3: We can compute $d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$
- As within a sequence we do not know its future, we also have to require that $\Phi\left(D_{i}\right)$ never is negative
- Otherwise, the amortized cost of the prefix $\mathrm{Q}[1 . . . \mathrm{i}]$ would not be an upper bound of the real costs at step i
- Idea: Always pay in advance

Example: mpop

- We use the number of objects on the stack as its potential
- Then
- Req. 1: $\Phi\left(D_{i}\right)$ depends on a property of D_{i}
- Future cost: To empty a stack with n elements, we need cost n
- Req. 2: $\Phi\left(\mathrm{D}_{\mathrm{n}}\right) \geq \Phi\left(\mathrm{D}_{0}\right)$ and $\Phi\left(\mathrm{D}_{0}\right)=0$
- Req. 3: Compute $d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$ for all ops:
- Assume $x=\Phi\left(\mathrm{D}_{\mathrm{i}}\right)$
- If op is push: $\mathrm{d}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}+(\mathrm{x}-(\mathrm{x}-1))=1+1=2$
- If op is pop: $\mathrm{d}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}+(\mathrm{x}-(\mathrm{x}+1))=1-1=0$
- If op is $\operatorname{mpop}(k): d_{i}=c_{i}+(x-(x+k))=k-k=0$
- Thus, $2 * \mathrm{n} \geq \sum \mathrm{d}_{\mathrm{i}} \geq \sum \mathrm{c}_{\mathrm{i}}$ and Q is in $\mathrm{O}(\mathrm{n})$

Example: Bit-Counter

- We use the number of „ 11 " in the bitstring as its potential
- Then
- Req. 1: $\Phi\left(D_{i}\right)$ depends on a property of D_{i}
- Req. 2: $\Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right)$ and $\Phi\left(D_{0}\right)=0$
- Req. 3: We compute $d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)$ for all ops
- Let the i'th operation incur t_{i} flip-to-0 and 0 or 1 flip-to-1
- Thus, $\mathrm{c}_{\mathrm{i}} \leq \mathrm{t}_{\mathrm{i}}+1$
- If $\Phi\left(D_{i}\right)=0$, then operation i has flipped all positions to 0 ; this implies that previously they were all 1 , which means that $\Phi\left(D_{i-1}\right)=k$
- If $\Phi\left(D_{i}\right)>0$, then $\Phi\left(D_{i}\right)=\Phi\left(D_{i-1}\right)-t_{i}+1$
- In both cases, we have $\Phi\left(D_{i}\right) \leq \Phi\left(D_{i-1}\right)-t_{i}+1$
- Thus, $\mathrm{d}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}+\Phi\left(\mathrm{D}_{\mathrm{i}}\right)-\Phi\left(\mathrm{D}_{\mathrm{i}-1}\right) \leq\left(\mathrm{t}_{\mathrm{i}}+1\right)+\left(\Phi\left(\mathrm{D}_{\mathrm{i}-1}\right) \mathrm{t}_{\mathrm{i}}+1\right)-\Phi\left(\mathrm{D}_{\mathrm{i}-1}\right) \leq 2$
- Thus, $2^{*} \mathrm{n} \geq \Sigma \mathrm{d}_{\mathrm{i}} \geq \Sigma \mathrm{c}_{\mathrm{i}}$ and Q is in $\mathrm{O}(\mathrm{n})$
- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL will be complicated ... we still try to get familiar with the analysis method using simpler problems ...
- SOL - Analysis

Dynamic Tables

- We use amortized analysis for something more useful: Complexity of operations on a dynamic table
- Assume an array T and a sequence Q of inserts/deletes
- Dynamic Tables: Keep the array small, yet avoid overflows
- Start with a table T of size 1
- When inserting and T is full, we double $|T|$; upon deleting and T is only half-full, we reduce |T| by 50%
- "Doubling", "reducing" means: Copying data to a new array
- Assumption: Copying an element of an array costs 1
- Thus, any operation (ins or del) costs either 1 or |T|

Example

With Potential Method

$$
\begin{aligned}
& \text { 1: } \Phi\left(D_{i}\right) \text { depends on a property of } D_{i} \\
& \text { 2: } \Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right) \\
& \text { 3: } d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
\end{aligned}
$$

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad|\mathrm{T}|=8 ; \operatorname{num}(\mathrm{T})=6$

- Let num(T) be the current number of elements in T
- We use potential $\Phi(T)=2 * n u m(T)-|T|$
- Intuitively a "potential"
- Immediately before an expansion, num $(T)=|T|$ and $\Phi(T)=|T|$, so there is much potential in T (we saved for the expansion to come)
- Immediately after an expansion, num $(T)=|T| / 2+1$ and $\Phi(T)=2$; almost all potential has been used, we need to save again for next expansion
- Formally
- Requirement 1: Of course
- Requirement 2: As T is always at least half-full, $\Phi(T)$ is always ≥ 0; we start with $|T|=0$, and thus $\Phi\left(T_{n}\right)-\Phi\left(T_{0}\right) \geq 0$

Continuation

$$
\begin{aligned}
& \text { 1: } \Phi\left(D_{i}\right) \text { depends on a property of } D_{i} \\
& \text { 2: } \Phi\left(D_{n}\right) \geq \Phi\left(D_{0}\right) \\
& \text { 3: } d_{i}=c_{i}+\Phi\left(D_{i}\right)-\Phi\left(D_{i-1}\right)
\end{aligned}
$$

- Req. 3: Let's look at $d_{i}=c_{i}+\Phi\left(T_{i}\right)-\Phi\left(\mathrm{T}_{\mathrm{i}-1}\right)$ for insertions
- Without expansion

$$
\begin{aligned}
\mathrm{d}_{\mathrm{i}} \quad & =1+\left(2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}}\right)-\left|\mathrm{T}_{i}\right|\right)-\left(2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}-1}\right)-\left|\mathrm{T}_{\mathrm{i}-1}\right|\right) \\
& =1+2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}}\right)-2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}-1}\right)-\left|\mathrm{T}_{\mathrm{i}}\right|+\left|+\left|\mathrm{T}_{\mathrm{i}-1}\right|\right. \\
& =1+ \\
& =3 \\
& =3
\end{aligned}
$$

- With expansion

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}}=\operatorname{num}\left(\mathrm{T}_{\mathrm{i}}\right)+\quad\left(2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}}\right)-\left|\mathrm{T}_{\mathrm{i}}\right|\right) \quad-\quad\left(2 * \operatorname{num}\left(\mathrm{~T}_{\mathrm{i}-1}\right)-\left|\mathrm{T}_{\mathrm{i}-1}\right|\right) \\
& =\operatorname{num}\left(T_{i}\right)+\quad 2 * \operatorname{num}\left(T_{i}\right)-\left|T_{i}\right| \quad-\quad 2 * \operatorname{num}\left(T_{i-1}\right)+\left|T_{i-1}\right| \\
& =\operatorname{num}\left(T_{i}\right)+2 * \operatorname{num}\left(T_{i}\right)-2^{*}\left(\operatorname{num}\left(T_{i}\right)-1\right)-2^{*}\left(\operatorname{num}\left(T_{i}\right)-1\right)+\operatorname{num}\left(T_{i}\right)-1 \\
& =3 * \operatorname{num}\left(T_{i}\right)-2 * \operatorname{num}\left(T_{i}\right)+2-2 * \operatorname{num}\left(T_{i}\right)+2+\operatorname{num}\left(T_{i}\right)-1 \\
& =3
\end{aligned}
$$

- Thus, $3^{*} n \geq \sum d_{i} \geq \sum c_{i}$ and Q is in $O(n)$ (for only insertions)

Intuition

- For inserts, we deposit 3 because
- 1 for the insertion (the real cost)
- 1 for the time when we need to copy this new element at the next expansion
- These 1 's fill the account with $\left|T_{i}\right| / 2$ before the next expansion
- 1 for one of the $\left|T_{i}\right| / 2$ elements

1	2	3	4	5	6

 \square

- These fill the account with another $\left|\mathrm{T}_{\mathrm{i}}\right| / 2$ before the next expansion
- Thus, we have enough credit at the next expansion

Problem: Deletions

- Our strategy for deletions so far is not very clever
- Assume a table with num $(T)=|T|$
- Assume a sequence $\mathrm{Q}=\{\mathrm{I}, \mathrm{D}, \mathrm{I}, \mathrm{D}, \mathrm{I}, \mathrm{D}, \mathrm{I} . .$.
- This sequence will perform $|T|+|T| / 2+|T|+|T| / 2+\ldots$ real ops
- As $|T|$ is $O(n)$, this Q really is in $O\left(n^{2}\right)$ and not in $O(n)$
- Simple trick: Do only contract when num $(T)=|T| / 4$
- Leads to amortized cost of $O(n)$ for any sequence of operations
- We omit the proof (see [Cor03])
- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis
- Goal and idea
- Preliminaries
- A short proof
- Einen Beweis findet man erst in der dritten Cormen Aussgabe (2009) (vorher steht aber Accounting / potential method drin)
- Was der beweist, weis ich icht
- Im Web)Folien Leiserson, selbes Buch) findet man auch einfachere Beweise, die eine 4-competitiveness fest beweist
- Auch in das Verezcihnis kopiert
- Sollte ich anpassen

Re-Organization Strategies

- Recall self-organizing lists (SOL)
- Accessing the i'th element costs i
- After searching an element, we change the list L
- Three strategies
- MF, move-to-front:
- T, transpose:

- FC, frequency count:

Notation

- Assume we have a strategy A and a workload S on list L
- After accessing element i, A may move i by swapping
- Swap with predecessor (to-front) or successor (to-back)
- Let $F_{A}(I)$ be the number of front-swaps and $X_{A}(I)$ the number of back-swaps of step I when using strategy A
- This means: $\mathrm{F}_{\mathrm{MF}} / X_{\mathrm{MF}}$ for strategy MF, $\mathrm{F}_{\mathrm{T}} / X_{T} \ldots \mathrm{~F}_{\mathrm{F}} / X_{\mathrm{FC}}$
- Note: Our three strategies never back-swap: $\forall \mathrm{I}: \mathrm{X}_{\mathrm{MF}}(\mathrm{I})=\mathrm{X}_{\mathrm{T}}(\mathrm{I})=\mathrm{X}_{\mathrm{FC}}(\mathrm{I})=0$
- But a new strategy A could
- Let $C_{A}(S)$ be the total access cost of A incurred by S
- Again: $\mathrm{C}_{\text {MF }}$ for strategy MF, C_{T} for $\mathrm{T}_{\text {, }} \mathrm{C}_{\mathrm{FC}}$ for FC
- With conventional worst-case analysis, we can only derive that $\mathrm{C}_{\mathrm{A}}(\mathrm{S})$ is in $\mathrm{O}(|\mathrm{S}| *|\mathrm{~L}|)$ - for any A
- Searched element always at last positions, swaps ignored

Theorem

- Theorem (Amortized costs)

Let A be any self-organizing strategy for a SOL L, MF be the move-to-front strategy, and S be a sequence of accesses to L. Then

$$
c_{\mathrm{MF}}(S) \leq 2 * C_{\mathrm{A}}(S)+X_{\mathrm{A}}(S)-F_{\mathrm{A}}(S)-/ S /
$$

- What does this mean?
- We don't learn more about the absolute complexity of SOLs
- But we learn that MF is quite good
- Any strategy with the same constraints (only series of swaps) will at best be roughly twice as good as MF
- Assuming $\mathrm{C}_{\mathrm{A}}(\mathrm{S}) \gg|\mathrm{S}|$ and for $|\mathrm{S}| \rightarrow \infty$: $\mathrm{X}(\mathrm{S})<\mathrm{F}(\mathrm{S})$ for any strategy
- Despite its simplicity, MF is a fairly safe bet for all workloads

Idea of the Proof

- We will compare access costs in L between MF and any A
- Think of both strategies (MF, A) running S on two copies of the same initial list L
- After each step, A and MF perform different swaps, so all list states except the first very likely are different
- We will compare list states by looking at the number of inversions ("Fehlstellungen")
- Actually, we only analyze how the number of inversions changes
- We will show that the number of inversions defines a potential of a pair of lists that helps to derive an upper bound on the differences in real costs

Content of this Lecture

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis
- Goal and idea
- Preliminaries
- A short proof

Inversions

- Let L and L ' be permutation of the set $\{1,2, \ldots, n\}$
- Definition
- A pair (i,j) is called an inversion of L and L' iff i and j are in different order in L than in L ' $($ for $1 \leq i, j \leq n$ and $i \neq j)$
- The number of inversions between L and L ' is denoted by $\operatorname{inv}(L, L ')$
- Remarks
- Different order: Once i before j, once i after j
- Obviously, inv(L, L') $=\operatorname{inv}\left(L^{\prime}, L\right)$
- Example: $\operatorname{inv}(\{4,3,1,5,7,2,6\},\{3,6,2,5,1,4,7\})=12$
- Without loss of generality, we assume that $\mathrm{L}=\{1, \ldots, \mathrm{n}\}$
- Because we only look at changes in number of inversions and not at the actual set of inversions

Sequences of Changes

- Assume we applied $\mathrm{I}-1$ steps of S on L, creating $\mathrm{L}_{\text {MF }}$ using MF and L_{A} using A
- Let us consider the next step I, creating $\mathrm{L}_{\mathrm{MF}}{ }^{\prime}$ and $\mathrm{L}_{\mathrm{A}}{ }^{\prime}$

Inversion Changes

- How does step I change the number of inv's between $L_{M F} / L_{A}$?
- We compute $\operatorname{inv}\left(L_{M F}^{\prime}, L_{A}{ }^{\prime}\right)$ from $\operatorname{inv}\left(L_{M F,}, L_{A}\right)$
- Assume step I accesses element i from L_{A}
- We may assume it is at position i
- Let this element i be at some position k in $L_{\text {MF }}$
- Access in L_{A} costs i, access in $L_{\text {MF }}$ costs k
- After step I, A performs an unknown number of swaps; MF performs exactly k -1 front-swaps

Counting Inversion Changes 1

- Let X_{I} be the set of values that are before position k in L_{MF} and after position i in L_{A}

- Let Y_{1} be the values before pos. k in $L_{M F}$ and before i in L_{A}
- Clearly, $\left|X_{\|}\right|+\left|Y_{\mid}\right|=k-1$
- All pairs (i, c) with $\mathrm{c} \in \mathrm{X}_{\mathrm{l}}$ are inversions between L_{A} and L_{MF}
- There may be more; but only inv's with i are affected in this step
- After step I, MF moves element i to the front
- Assume first that A does simply nothing
- All inversions (i, c) with $\mathrm{c} \in \mathrm{X}_{1}$ disappear (there are $\left|\mathrm{X}_{I}\right|$ many)
- But $\left|Y_{\mid}\right|=k-1-\left|X_{\mid}\right|$new inversions appear
- Thus: $\operatorname{inv}\left(L_{M F}{ }^{\prime}, L_{A}{ }^{\prime}\right)=\operatorname{inv}\left(L_{M F}, L_{A}\right)-\left|X_{I}\right|+k-1-\left|X_{I}\right|$
- But A does something

Counting Inversion Changes 2

- Assume: In step I, let A perform
$\mathrm{F}_{\mathrm{A}}(\mathrm{I})$ front-swaps and

$X_{A}(I)$ back-swaps
- Every front-swap (swapping i before any j) in L_{A} decreases $\operatorname{inv}\left(L_{M F}{ }^{\prime}, L_{A}{ }^{\prime}\right)$ by 1
- Before step I, j must be before i in L_{A} (it is a front-swap), but after i in $L_{M F}{ }^{\prime}$ (because i now is the first element in $L_{M F}{ }^{\prime}$)
- After step I, i is before j in both $L_{A}{ }^{\prime}$ and $L_{M F}{ }^{\prime}$ - inversion removed
- Equally, every back-swap increases inv(${\left.L_{M F}{ }^{\prime}, L_{A}{ }^{\prime}\right) \text { by } 1}$
- Together: After step I, we have

$$
\operatorname{inv}\left(L_{M F}^{\prime} \prime^{\prime} L_{A}^{\prime}\right)=\underbrace{\operatorname{inv}\left(L_{M F}, L_{A}\right)}_{\text {Before step I }}-\underbrace{\left|X_{I}\right|+k-1-\left|X_{I}\right|}_{\text {through MF }}-\underbrace{F_{A}(I)+X_{A}(I)}_{\text {through } A}
$$

Amortized Costs

- Let $\mathrm{t}_{\mathrm{MF}}(\mathrm{I})$ be the real cost of strategy MF for step I
- We use the number of inversions as potential function $\Phi\left(\mathrm{L}_{A^{\prime}}, L_{M F}\right)=\operatorname{inv}\left(\mathrm{L}_{A^{\prime}} \mathrm{L}_{M F}\right)$ on the pair $\mathrm{L}_{A^{\prime}} \mathrm{L}_{M F}$
- Definition
- The amortized costs of step I, called a_{ν} are

$$
a_{l}=t_{M F}(I)+\operatorname{inv}\left(L_{A}(I), L_{M F}(I)\right)-i n v\left(L_{A}(I-1), L_{M F}(l-1)\right)
$$

- Accordingly, the amortized costs of sequence $S, \mid S /=m$, are

$$
\Sigma a_{l}=\Sigma t_{M F}(I)+\operatorname{inv}\left(L_{A}(m), L_{M F}(m)\right)-\operatorname{inv}\left(L_{A}(0), L_{M F}(0)\right)
$$

- This is a proper potential function
- 1: Φ depends on a property of the pair $L_{A}, L_{M F}$
- 2: inv() can never be negative, so $\forall \mathrm{I}: \Phi\left(\mathrm{L}_{\mathrm{A}}(\mathrm{I}), \mathrm{L}_{\mathrm{MF}}(\mathrm{I})\right) \geq \Phi(\mathrm{L}, \mathrm{L})=0$
- Let's look at how operations change the potential

Content of this Lecture

- Two Examples
- Two Analysis Methods
- Dynamic Tables
- SOL - Analysis
- Goal and idea
- Preliminaries
- A short proof (after much preparatory work)

Putting it Together

- We know for every step I from S accessing some i : $\operatorname{inv}\left(L_{M F}{ }^{\prime}, L_{A}{ }^{\prime}\right)=\operatorname{inv}\left(L_{M F}, L_{A}\right)-\left|X_{I}\right|+k-1-\left|X_{I}\right|-F_{A}(I)+X_{A}(I)$ and thus
$\operatorname{inv}\left(L_{M F}{ }^{\prime}, L_{A}{ }^{\prime}\right)-\operatorname{inv}\left(L_{M F}, L_{A}\right)=-\left|X_{I}\right|+k-1-\left|X_{I}\right|-F_{A}(I)+X_{A}(I)$
- Since $t_{M F}(I)=k$, we get amortized costs of

$$
\begin{aligned}
a_{\mid} & =t_{M F}(I)+\operatorname{inv}\left(L_{A}^{\prime}, L_{M F}\right)-\operatorname{inv}\left(L_{A}{ }^{\prime} L_{M F}\right) \\
& =k-\left|X_{\mid}\right|+k-1-\left|X_{I}\right|-F_{A}(I)+X_{A}(I) \\
& =2\left(k-\left|X_{I}\right|\right)-1-F_{A}(I)+X_{A}(I)
\end{aligned}
$$

- Recall that $Y_{1}\left(\left|Y_{\mid}\right|=k-1-\left|X_{\mid}\right|\right)$are those elements before i in both lists. This implies that $k-1-\left|X_{l}\right| \leq i-1$ or $k-\left|X_{\mid}\right| \leq i$
- There can be at most $i-1$ elements before position i in L_{A}
- Therefore: $\mathrm{a}_{\mathrm{I}} \leq 2 \mathrm{i}-1-\mathrm{F}_{\mathrm{A}}(\mathrm{I})+\mathrm{X}_{\mathrm{A}}(\mathrm{I})$

Putting it Together

- This is the central trick!
- Because we only looked at inversions (and hence the sequence of values), we yan draw a connection between the value that is accessed and the number of inversions that are affected
- Recall that $Y_{1}\left(\left|Y_{\mid}\right|=k-1-\left|X_{\mid}\right|\right)$are those elemas before i in both lists. This implies that $k-1-\left|X_{l}\right| \leq i-1$ o($k-\left|X_{\mid}\right| \leq i$
- There can be at most i -1 elements before position 1 ini $-\frac{1}{2}$
- Therefore: $\mathrm{a}_{\mathrm{I}} \leq 2 \mathrm{i}-1-\mathrm{F}_{\mathrm{A}}(\mathrm{I})+\mathrm{X}_{\mathrm{A}}(\mathrm{I})$

Aggregating

- We also know the real cost of accessing i using $A: t_{A}(I)=i$
- Together: $\mathrm{a}_{1} \leq 2 \mathrm{t}_{\mathrm{A}}(\mathrm{I})-1-\mathrm{F}_{\mathrm{A}}(\mathrm{I})+\mathrm{X}_{\mathrm{A}}(\mathrm{I})$
- Aggregating this inequality over all a_{1} in S , we get

$$
\Sigma a_{1} \leq 2 * C_{A}(S)-|S|-F_{A}(S)+X_{A}(S)
$$

- By definition, we also have ($\mathrm{m}=|\mathrm{S}|$)

$$
\Sigma \mathrm{a}_{1}=\Sigma \mathrm{t}_{M F}(\mathrm{I})+\operatorname{inv}\left(\mathrm{L}_{\mathrm{A}}{ }^{m}, L_{M F}{ }^{m}\right)-\operatorname{inv}\left(\mathrm{L}_{\mathrm{A}}{ }^{0}, \mathrm{~L}_{\mathrm{MF}}{ }^{0}\right)
$$

- Since $\sum \mathrm{t}_{\text {MF }}(\mathrm{I})=\mathrm{C}_{\mathrm{MF}}(\mathrm{S})$ and $\operatorname{inv}\left(\mathrm{L}_{\mathrm{A}}{ }^{0}, \mathrm{~L}_{M F}{ }^{0}\right)=0$, we get

$$
C_{M F}(S)+\operatorname{inv}\left(L_{A}{ }^{m}, L_{M F}{ }^{m}\right) \leq 2^{*} C_{A}(S)-|S|-F_{A}(S)+X_{A}(S)
$$

- It finally follows (inv() ≥ 0)

$$
C_{M F}(S) \leq 2 * C_{A}(S)-|S|-F_{A}(S)+X_{A}(S)
$$

Summary

- Looking at sequences of operations with self-organization creates a new class of problem
- Things change during a workload
- These changes (positively) influence future costs of operations
- Not at random - we follow a strategy
- Analysis is none-trivial, but
- Helped to find a elegant and surprising conjecture
- Very interesting in itself: We showed relationships between measures we never counted (and could not count easily)
- But beware the assumptions (e.g., only single swaps)
- Original work: Sleator, D. D. and Tarjan, R. E. (1985). "Amortized efficiency of list update and paging rules." Communications of the ACM 28(2): 202-208.

