

Algorithms and Data Structures

Searching in Lists

This Course

•	Sum	~9/25
•	Graphs (no lists!)	5
•	Trees (to manage lists)	4
•	Hashing (to manage lists)	2
•	Searching (in (sorted) lists)	4
	Sorting (lists)	3
	List implementations	1
	Styles of algorithms	1
	Complexity analysis	1
	Abstract Data Types	1
	Introduction	2

- Search: Given a (sorted or unsorted) list A with |A|=n elements (integers). Check whether a given value c is contained in A or not
 - Search returns true or false
 - If A is sorted, we can exploit transitivity of "≤" relation
 - Fundamental problem with a zillion applications
- Select: Given an unsorted list A with |A|=n elements (integers). Return the i'th largest element of A.
 - Returns an element of A
 - The sorted case is trivial return A[i]
 - Interesting problem (especially for median) with some applications
 - [Interesting proof]

- Searching in Unsorted Lists
- Searching in Sorted Lists
- Selecting in Unsorted Lists

- No magic
- Compare c to every element of A

Searching in an Unsorted List

- Worst case (c∉A): O(n)
- Average case (c∈A)
 - If c is at position i, we require i tests
 - All positions are equally likely: probability 1/n
 - This gives

$$\frac{1}{n}\sum_{i=1}^{n}i = \frac{1}{n}*\frac{n^{2}+n}{2} = \frac{n+1}{2} = O(n)$$

Sequential access: Same for array, linked lists, ...

- Searching in Unsorted Lists
- Searching in Sorted Lists
 - Binary Search
 - Fibonacci Search
 - Interpolation Search
- Selecting in Unsorted Lists

Binary Search (binsearch)

- If A is sorted, we can be much faster
- Binary Search: Exploit transitivity

Source: http://hki.uni-koeln.de

Recursive versus Iterative Binsearch

- Recursive binsearch uses only end-recursion
- Equivalent iterative program is more space-efficient
 - We don't need old values for l,r no call stack
 - O(1) additional space

```
1. func bool binsearch(A: sorted array;
                       c,f,r : int) {
2.
     If f>r then
3.
     return false;
4. end if;
5. m := f+((r-f) div 2);
6.
   If c<A[m] then
7.
      return binsearch(A, c, f, m-1);
8. else if c>A[m] then
9.
       return binsearch(A, c, m+1, r);
10.
     else
11.
       return true;
12.
    end if;
13.}
```

```
1. A: sorted int array;
2. c: int;
3. f := 1;
4. r := |A|;
5. while f≤r do
6. m := f+(r-f) div 2;
7. if c<A[m] then
8.
      r := m-1;
9. else if c>A[m] then
10. f := m+1;
11. else
12.
       return true;
13. end while,
14. return false;
```

Complexity of Binsearch

- In every call to binsearch (or every while-loop), we only do constant work
 - Independent of n
- With every call, we reduce the size of sub-array by 50%
 - We call binsearch once with n, with n/2, with n/4, ...
- Binsearch has worst-case complexity O(log(n))
- Average case only marginally better
 - We only stop if we find c before the interval has size 1
 - Chances to "hit" target in the middle of the search is low for (many) first steps
 - Chances increase for (few) last steps
 - See Ottmann/Widmayer

- Searching in Unsorted Lists
- Searching in Sorted Lists
 - Binary Search
 - Fibonacci Search
 - Interpolation Search
- Selecting in Unsorted Lists

- Can we search in O(log(n)) without complex arithmetic?
 - Simple arithmetic operations are faster on real hardware
 - But: Binsearch usually uses bit shift (div 2) very fast
- Fibonacci search: O(log(n)) without division/multiplication
 - Also interesting: O(log(n)) without the "always 50%" pattern
- Recall Fibonacci numbers
 - fib(1)=fib(2)=1; fib(i)=fib(i-1)+fib(i-2)
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
 - Observation: fib(i-2) is roughly 1/3, fib(i-1) roughly 2/3 of fib(i)

Fibonacci Search: Idea

- Let fib(i) be the smallest fib-number with fib(i)≥|A|
- If A[fib(i-2)]=c: stop
- Otherwise, search in

 [1 ... fib(i-2)] or
 [fib(i-2)+1 ... n]
- Beware out-of-range part A[n+1...fib(i)]
- No divisions

- 3-6: Search at A[fib(i-2)]
 - With fib2, fib3 we can compute all other fib's
 - fib(i)=fib(i-1)+fib(i-2)
 - fib(i-1)=fib(i-2)+fib(i-3)
 - ..
- 7-24: Partition A at descending Fibonacci numbers
- After each comparison, update fib3 and fib2

```
1. A: sorted int array;
2. c: int;
3. compute i; #smallest fib(i)>|A|
4. fib3 := fib(i-3); # Precomputed
5. fib2 := fib(i-2); # Precomputed
6. m := fib2;
7. repeat
     if c>A[m] then
8.
       if fib3=0 then return false
9.
10.
       else
11.
         m := m + fib3;
12.
         tmp := fib3;
13.
         fib3 := fib2-fib3;
14.
         fib2 := tmp;
15.
       end if;
    else if c<A[m]
16.
17.
       if fib2=1 then return false
18. else
19.
         m := m-fib3;
         fib2 := fib2 - fib3;
20.
21.
         fib3 := fib3 - fib2;
22.
       end if;
23.
     else return true;
24. until true;
```

Example (recall: 1,1,2,3,5,...)

fib2 fib3 m Search 3 in 2 2 {1,2,3}; 1 i=51 3 1 true fib₂ fib3 m Search 6 in 2 2 1 {1,2,3,4}; 3 1 1 i=5false 1 4 0 fib₂ fib3 m Search 100 in 4181 2584 4181 $\{1...10000\}$ 1597 987 1597

```
1. A: sorted int array;
2. c: int;
3. compute i; #smallest fib(i)>|A|
4. fib3 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
8.
     if c>A[m] then
       if fib3=0 then return false
9.
10.
    else
11.
        m := m+fib3;
12.
         tmp := fib3;
13.
         fib3 := fib2-fib3;
14.
         fib2 := tmp;
15.
       end if;
16. else if c<A[m]
17.
       if fib2=1 then return false
18. else
19.
        m := m-fib3;
20.
         fib2 := fib2 - fib3;
21.
         fib3 := fib3 - fib2;
22.
       end if;
23.
     else return true;
24. until true;
```

Complexity

- Worst-case: c is always in the larger fraction of A
 We roughly call once for n, once for 2n/3, once for 4n/9, ...
- Formula of Moivre-Binet: For large i ...

$$fib(i) \sim \left[\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^i\right] \sim k*1.62^i$$

- We find i such that $fib(i-1) \le n \le fib(i) \sim k^*1, 62^i$
- In worst-case, we make ~i comparisons
 - We break the array i times
- Since i=log_{1,62}(n/k), we are in O(log(n))

- If you break an array always in the middle, you can do this at most O(log(n)) times
- If you break an array always at 1/3 and 2/3, you also can do this at most O(log(n)) times
- What if we break an array always at 1/10 9/10?
 - Wait a minute

Searching without Math (sketch – details later)

- We actually can solve the search problem in O(log(n)) using only comparisons (no additions etc.)
- Transform A into a balanced binary search tree
 - At every node, the depth of the two subtrees differ by at most 1
 - At every node n, all values in the left (right) subtree are smaller (larger) than n
- Search
 - Recursively compare c to node labels and descend left/right
 - Balanced bin-tree has depth O(log(n))
 - We need at most log(n) comparisons – and nothing else

- Searching in Unsorted Lists
- Searching in Sorted Lists
 - Binary Search
 - Fibonacci Search
 - Interpolation Search
- Selecting in Unsorted Lists

- Imagine you have a telephone book and search for "Zacharias"
- Will you open the book in the middle?
- We can exploit additional knowledge about the keys
- Interpolation Search: Estimate where c lies in A based on the distribution of values in A
 - Simple: Use max and min values in A and assume equal distribution
 - Complex: Approximation of real distribution (histograms, ...)

- Assume equal distribution values within A are equally distributed in range [A[1], A[n]]
- Best guess for the rank (position in A) of c

$$rank(c) = f + (r - f) * \frac{c - A[f]}{a[r] - A[f]}$$

Idea: Use m=rank(c) and proceed recursively

Analysis

- On average, Interpolation Search on equally distributed data requires O(log(log(n)) comparison
 - Proof: See [OW94]
- But: Worst-case is O(n)
 - If concrete distribution deviates heavily from expected distribution
 - E.g., A contains "aaa" and all other names>" Xylophon"
- Further disadvantage: In each phase, we perform ~4 adds/subs and 2*mults/divs
 - Assume this takes 12 cycles (1 mult/div = 4 cycles)
 - Binsearch requires 2*adds/subs + 1*shift ~3 cycles
 - Even for n=2³²~4E9, this yields 12*log(log(4E9))~72 ops versus 3*log(4E9)~90 ops not that much difference

- Searching in Unsorted Lists
- Searching in Sorted Lists
- Selecting in Unsorted Lists
 - Naïve or clever

- Recall: The median of a list is its middle value
 - Sort all values and take the one in the middle
- Generalization: x%-quantiles
 - Sort all values and take the value at x% of all values
 - Typical: 25, 75, 90, -quantiles
 - How long do 90% of all students need to obtain their degree?
 - The 25%, 50%, 75% are called quartiles
 - Median = 50%-quantile

Definition

The selection problem is to find the x%-quantile of a set A of unsorted values

- Solutions
 - We can sort A and then access the quantile directly
 - Thus, O(n*log(n)) is easy
 - It is easy to see that we have to look at least at each value once; thus, the problem is in $\Omega(n)$
 - Can we solve this problem in linear time?

Observation and Example: Top-k Problem

- Top-k: Find the k largest values in A
- For constant k, a naïve solution is linear (and optimal)
 - repeat k times
 - go through A and find largest value v;
 - remove v from A;
 - return v
 - Requires k*|A|=O(|A|) comparisons
- But if k=c*|A|, we are in O(c*|A|*|A|)=O(|A|²)
 - For any constant factor c
 - We measure complexity in size of the input
 - It is decisive whether c is part of the input or not

- We sketch an algorithm which solves the selection problem in linear time
 - Actually, we solve the equivalent problem of returning the k'th value in the sorted A (without sorting A)
- Interesting from a theoretical point-of-view
- Practically, the algorithm is of no importance because the linear factor gets enormously large
- It is instructive to see why (and where)

Algorithm

- Recall QuickSort: Chose pivot element p, divide array wrt p, recursively sort both partitions using the same trick
- We reuse the idea: Chose pivot element p, divide array wrt p, recursively select in the one partition that must contain the k'th element

```
func integer divide(A array;
1.
2.
                         f,r integer) {
3.
     while true
4.
5.
        repeat
6.
          i := i+1;
7.
       until A[i]>=val;
8.
       repeat
9.
          i := j - 1;
10.
       until A[j]<=val or j<i;</pre>
11.
       if i>j then
12
         break while;
13.
       end if:
14.
       swap( A[i], A[j]);
15
     end while;
16.
     swap( A[i], A[r]);
17.
     return i;
18.}
```

```
func int quantile(A array;
1.
2.
                      k, f, r int) {
3.
     if r≤f then
4.
       return A[f];
5.
     end if;
6.
     pos := divide( A, f, r);
     if (k \leq pos-1) then
7.
8.
       return quantile(A, k, f, pos-1);
9.
     else
10.
       return quantile(A, k-pos+1, pos, r);
     end if;
11.
12.
```

Analysis

8. 9. else 10. 11. end if: Worst-case: Assume 12.}

1. 2.

3. 4.

```
5. end if;
6. pos := divide( A, f, r);
7. if (k \leq pos-1) then
       return quantile(A, k, f, pos-1);
       return quantile(A, k-pos+1, pos, r);
```

k, f, r int) {

func int quantile(A array;

if r≤f then

return A[f];

- arbitrarily badly chosen pivot elements
- pos always is r-1 (or f+1)
- Gives $O(n^2)$
- Need to chose the pivot element p more carefully

Choosing p

- Assume we can chose p such that we always continue with at most q% of A (with 0<q<1)
 - I.e., (1-q)% of elements are discarded
- We perform at most T(n) = T(q*n) + c*n comparisons
 - T(q*n) recursive descent, with T(0)=0
 - c*n function "divide"
- $T(n) = T(q^*n)+c^*n = T(q^{2*}n)+q^*c^*n+c^*n =$ $T(q^2n)+(q+1)*c^*n = T(q^3n)+(q^2+q+1)*c^*n = ...$

$$T(n)_{n \to \infty} = c * n * \sum_{i=0}^{n} q^{i} \le c * n * \sum_{i=0}^{\infty} q^{i} = c * n * \frac{1}{1-q} = O(n)$$

- Our algorithm has worst-case complexity O(n) when we manage to always reduce the array by a fraction of its size, no matter how large the fraction
 - This is not an average-case. We must always (not on average) cut some fraction of A
- Eh magic?
- No follows from the way we defined complexity and what we consider as input
- Many operations become "hidden" in the linear factor
 - q=0.9: c*10*n
 - q=0.99: c*100*n
 - q=0.999: c*1000*n

Median-of-Median

- How can we guarantee to always cut a fraction of A?
- Median-of-median algorithm
 - Partition A in disjoint partitions of length 5
 - Compute the median v_i for each partition (with i < floor(n/5))
 - Find the median v of all v_i by repeating this process
 - Hint: v will not be the exact median of A but not too far away
 - Use v as pivot element for the quantile computation

- O(n): Run through A in partitions of length 5
- O(1): Find each median
 - Runtime of sorting a list of length 5 does not depend on n
- The next iteration will work on only 20% of the input
- Since we always reduce the number of values to look at by 80%, this requires O(n) time in total
 - See previous result

What Happens? (source: Wikipedia)

- Median-of-median of a randomly permuted list 0..99
- For clarity, each 5-tuple is sorted (top-down) and all 5tuples are sorted by median (left-right)
- Gray/white: Values with actually smaller/greater than medof-med 47
- Blue: Range with certainly smaller / larger values

- We have ~n/5 first-level-medians v_i
- v (as median of medians) is smaller than halve of the v_i and greater than the other half
 - The smaller and the larger set of medians both have $\sim n/10$ values
- Each v_i itself is smaller than (and greater than) 2 values
- Since for the smaller (greater) medians this median itself is also smaller (greater) than v, v is larger (smaller) than at least 3*n/10 elements
 - Border holds in both directions: v is in the range [3n/10...7n/10]