

Algorithms and Data Structures

Searching in Lists

Ulf Leser

This Course

- Introduction
- Abstract Data Types
- Complexity analysis
- Styles of algorithms
- List implementations
- Sorting (lists)
- Searching (in (sorted) lists)
- Hashing (to manage lists)
- Trees (to manage lists)
- Graphs (no lists!)
- Sum

2

2

1

1
1
1
3
4

4
5
~9/25

Topics of Next Lessons

- Search: Given a (sorted or unsorted) list A with $|A|=n$ elements (integers). Check whether a given value c is contained in A or not
- Search returns true or false
- If A is sorted, we can exploit transitivity of " \leq " relation
- Fundamental problem with a zillion applications
- Select: Given an unsorted list A with $|\mathrm{A}|=\mathrm{n}$ elements (integers). Return the i'th largest element of A.
- Returns an element of A
- The sorted case is trivial - return $A[i]$
- Interesting problem (especially for median) with some applications
- [Interesting proof]

Content of this Lecture

- Searching in Unsorted Lists
- Searching in Sorted Lists
- Selecting in Unsorted Lists

Searching in an Unsorted List

- No magic
- Compare c to every element of A
- Worst case ($c \notin A$): O(n)
- Average case ($c \in A$)
- If c is at position i, we require i tests
- All positions are equally

```
1. A: unsorted_int_array;
2. c: int;
3. for i := 1.. |A| do
4. if A[i]=c then
                return true;
    end if;
    end for;
    return false;
``` likely: probability \(1 / n\)
- This gives
\[
\frac{1}{n} \sum_{i=1}^{n} i=\frac{1}{n} * \frac{n^{2}+n}{2}=\frac{n+1}{2}=O(n)
\]
- Sequential access: Same for array, linked lists, ...

\section*{Content of this Lecture}
- Searching in Unsorted Lists
- Searching in Sorted Lists
- Binary Search
- Fibonacci Search
- Interpolation Search
- Selecting in Unsorted Lists

\section*{Binary Search (binsearch)}
- If \(A\) is sorted, we can be much faster
- Binary Search: Exploit transitivity

\section*{Recursive versus Iterative Binsearch}
- Recursive binsearch uses only end-recursion
- Equivalent iterative program is more space-efficient
- We don't need old values for I,r - no call stack
- O(1) additional space
```

1. func bool binsearch(A: sorted_array;
c,f,r : int) {
2. If f>r then
3. return false;
4. end if;
5. m := f+((r-f) div 2);
6. If c<A[m] then
7. return binsearch(A, c, f, m-1);
8. else if c>A[m] then
9. return binsearch(A, c, m+1, r);
10. else
11. return true;
12. end if;
```
13. \}
```

1. A: sorted_int_array;
2. c: int;
3. f := 1;
4. r := |A|;
5. while f\r do
6. m := f+(r-f) div 2;
7. if c<A[m] then
8. r := m-1;
9. else if c>A[m] then
10. f := m+1;
11. else
12. return true;
13. end while,
14. return false;
```

\section*{Complexity of Binsearch}
- In every call to binsearch (or every while-loop), we only do constant work
- Independent of \(n\)
- With every call, we reduce the size of sub-array by \(50 \%\)
- We call binsearch once with n, with n/2, with n/4, ...
- Binsearch has worst-case complexity O(log(n))
- Average case only marginally better
- We only stop if we find c before the interval has size 1
- Chances to "hit" target in the middle of the search is low for (many) first steps
- Chances increase for (few) last steps
- See Ottmann/Widmayer

Source: railspikes.com

\section*{Content of this Lecture}
- Searching in Unsorted Lists
- Searching in Sorted Lists
- Binary Search
- Fibonacci Search
- Interpolation Search
- Selecting in Unsorted Lists

\section*{Searching without Divisions}
- Can we search in \(\mathrm{O}(\log (\mathrm{n}))\) without complex arithmetic?
- Simple arithmetic operations are faster on real hardware
- But: Binsearch usually uses bit shift (div 2) - very fast
- Fibonacci search: \(\mathrm{O}(\log (\mathrm{n}))\) without division/multiplication
- Also interesting: O(log(n)) without the "always \(50 \%\) " pattern
- Recall Fibonacci numbers
\(-\mathrm{fib}(1)=\mathrm{fib}(2)=1 ; \mathrm{fib}(\mathrm{i})=\mathrm{fib}(\mathrm{i}-1)+\mathrm{fib}(\mathrm{i}-2)\)
- \(1,1,2,3,5,8,13,21,34, \ldots\)
- Observation: fib(i-2) is roughly \(1 / 3\), fib(\(\mathrm{i}-1\)) roughly \(2 / 3\) of fib(i)

\section*{Fibonacci Search: Idea}

- Let fib(i) be the smallest fib-number with fib(i) \(\geq|A|\)
- If \(A[f i b(i-2)]=c\) : stop
- Otherwise, search in [1 ... fib(i-2)] or
\([f \mathrm{ib}(\mathrm{i}-2)+1 \ldots \mathrm{n}]\)
- Beware out-of-range part A[n+1...fib(i)]
- No divisions

\section*{Algorithm (assume \(|\mathrm{A}|=\) fib(i)-1)}
- 3-6: Search at A[fib(i-2)]
- With fib2, fib3 we can compute all other fib's
- fib(i)=fib(i-1)+fib(i-2)
\(-\mathrm{fib}(\mathrm{i}-1)=\mathrm{fib}(\mathrm{i}-2)+\mathrm{fib}(\mathrm{i}-3)\)
- ...
- 7-24: Partition A at descending Fibonacci numbers
- After each comparison, update fib3 and fib2
```

1. A: sorted_int_array;
2. c: int;
3. compute i; \#smallest fib(i)>|A|
4. fib3 := fib(i-3); \# Precomputed
5. fib2 := fib(i-2); \# Precomputed
6. m := fib2;
7. repeat
8. if c>A[m] then
9. if fib3=0 then return false
10. else
11. m := m+fib3;
12. tmp := fib3;
13. fib3 := fib2-fib3;
14. fib2 := tmp;
15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib3;
20. fib2 := fib2 - fib3;
21. fib3 := fib3 - fib2;
22. end if;
23. else return true;
24.until true;
```

\section*{Example (recall: 1,1,2,3,5,...)}

Search 3 in \{1,2,3\}; i=5
\begin{tabular}{|c|c|c|}
\hline fib2 & fib3 & \(m\) \\
\hline 2 & 1 & 2 \\
\hline 1 & 1 & 3 \\
\hline
\end{tabular}
true

Search 6 in \{1,2,3,4\}; i=5
\begin{tabular}{|c|c|c|}
\hline fib2 & fib3 & \(m\) \\
\hline 2 & 1 & 2 \\
\hline 1 & 1 & 3 \\
\hline 1 & 0 & 4 \\
\hline
\end{tabular}
false
```

1. A: sorted_int_array;
2. c: int;
3. compute i; \#smallest fib(i)>|A|
4. fib3 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
8. if c>A[m] then
9. if fib3=0 then return false
10. else
11. m := m+fib3;
12. tmp := fib3;
13. fib3 := fib2-fib3;
14. fib2 := tmp;
15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib3;
20. fib2 := fib2 - fib3;
21. fib3 := fib3 - fib2;
22. end if;
23. else return true;
24.until true;
```

\section*{Complexity}
- Worst-case: c is always in the larger fraction of A
- We roughly call once for \(n\), once for \(2 n / 3\), once for \(4 n / 9, \ldots\)
- Formula of Moivre-Binet: For large i ...
\[
f i b(i) \sim\left[\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{i}\right] \sim k^{*} 1.62^{i}
\]
- We find \(i\) such that fib(i-1) \(\leq n \leq f i b(i) \sim k^{*} 1,62^{i}\)
- In worst-case, we make ~i comparisons
- We break the array i times
- Since \(i=\log _{1,62}(n / k)\), we are in \(O(\log (n))\)

\section*{Main message}
- If you break an array always in the middle, you can do this at most \(\mathrm{O}(\log (\mathrm{n}))\) times
- If you break an array always at \(1 / 3\) and \(2 / 3\), you also can do this at most \(O(\log (n))\) times
- What if we break an array always at \(1 / 10-9 / 10\) ?
- Wait a minute

\section*{Searching without Math (sketch - details later)}
- We actually can solve the search problem in \(\mathrm{O}(\log (\mathrm{n}))\) using only comparisons (no additions etc.)
- Transform A into a balanced binary search tree
- At every node, the depth of the two subtrees differ by at most 1
- At every node n, all values in the left (right) subtree are smaller (larger) than n
- Search
- Recursively compare c to node labels and descend left/right
- Balanced bin-tree has depth \(O(\log (n))\)

- We need at most log(n) comparisons - and nothing else

\section*{Content of this Lecture}
- Searching in Unsorted Lists
- Searching in Sorted Lists
- Binary Search
- Fibonacci Search
- Interpolation Search
- Selecting in Unsorted Lists

\section*{Interpolation Search}
- Imagine you have a telephone book and search for „Zacharias"
- Will you open the book in the middle?
- We can exploit additional knowledge about the keys
- Interpolation Search: Estimate where c lies in A based on the distribution of values in A
- Simple: Use max and min values in A and assume equal distribution
- Complex: Approximation of real distribution (histograms, ...)

\section*{Simple Interpolation Search}
- Assume equal distribution - values within A are equally distributed in range [\(\mathrm{A}[1], \mathrm{A}[\mathrm{n}]\)]
- Best guess for the rank (position in A) of c
\[
\operatorname{rank}(c)=f+(r-f) * \frac{c-A[f]}{a[r]-A[f]}
\]
- Idea: Use \(m=r a n k(c)\) and proceed recursively
- Example: "Xylophon"

\section*{Analysis}
- On average, Interpolation Search on equally distributed data requires \(\mathrm{O}(\log (\log (n))\) comparison
- Proof: See [OW94]
- But: Worst-case is \(\mathrm{O}(\mathrm{n})\)
- If concrete distribution deviates heavily from expected distribution
- E.g., A contains "aaa" and all other names>" Xylophon"
- Further disadvantage: In each phase, we perform ~4 adds/subs and \(2 *\) mults/divs
- Assume this takes 12 cycles (\(1 \mathrm{mult} / \mathrm{div}=4\) cycles)
- Binsearch requires \(2 * a d d s / s u b s+1 *\) shift ~3 cycles
- Even for \(n=2^{32} \sim 4 E 9\), this yields \(12 * \log (\log (4 E 9)) \sim 72\) ops versus 3* \(\log (4 \mathrm{E} 9) \sim 90\) ops - not that much difference

\section*{Content of this Lecture}
- Searching in Unsorted Lists
- Searching in Sorted Lists
- Selecting in Unsorted Lists
- Naïve or clever

\section*{Quantiles}
- Recall: The median of a list is its middle value
- Sort all values and take the one in the middle
- Generalization: x\%-quantiles
- Sort all values and take the value at \(x \%\) of all values
- Typical: 25, 75, 90, -quantiles
- How long do \(90 \%\) of all students need to obtain their degree?
- The \(25 \%, 50 \%, 75 \%\) are called quartiles
- Median \(=50 \%\)-quantile

\section*{Selection Problem}
- Definition

The selection problem is to find the \(x \%\)-quantile of a set \(A\) of unsorted values
- Solutions
- We can sort A and then access the quantile directly
- Thus, \(O\left(n^{*} \log (n)\right)\) is easy
- It is easy to see that we have to look at least at each value once; thus, the problem is in \(\Omega(\mathrm{n})\)
- Can we solve this problem in linear time?

\section*{Observation and Example: Top-k Problem}
- Top-k: Find the k largest values in A
- For constant \(k\), a naïve solution is linear (and optimal)
- repeat k times
- go through \(A\) and find largest value \(v\);
- remove v from A;
- return v
- Requires \(\mathrm{k}^{*}|\mathrm{~A}|=\mathrm{O}(|\mathrm{A}|)\) comparisons
- But if \(\mathrm{k}=\mathrm{c}^{*}|\mathrm{~A}|\), we are in \(\mathrm{O}\left(\mathrm{c}^{*}|\mathrm{~A}|^{*}|\mathrm{~A}|\right)=\mathrm{O}\left(|\mathrm{A}|^{2}\right)\)
- For any constant factor c
- We measure complexity in size of the input
- It is decisive whether c is part of the input or not

\section*{Selection Problem in Linear Time}
- We sketch an algorithm which solves the selection problem in linear time
- Actually, we solve the equivalent problem of returning the k'th value in the sorted \(A\) (without sorting \(A\))
- Interesting from a theoretical point-of-view
- Practically, the algorithm is of no importance because the linear factor gets enormously large
- It is instructive to see why (and where)

\section*{Algorithm}
- Recall QuickSort: Chose pivot element \(p\), divide array wrt p, recursively sort both partitions using the same trick
- We reuse the idea: Chose pivot element p, divide array wrt p, recursively select in the one partition that must contain the k'th element
```

1. func integer divide(A array;
f,r integer) {
2. ...
3. while true
4. repeat
5. i := i+1;
6. until A[i]>=val;
7. repeat
8. j := j-1;
9. until A[j]<=val or j<i;
10. if i>j then
11. break while;
12. end if;
13. swap( A[i], A[j]);
14. end while;
15. swap( A[i], A[r]);
16. return i;
18.}
```
12.}
```

```
1. func int quantile(A array;
```

1. func int quantile(A array;
k, f, r int) {
k, f, r int) {
if r\leqf then
if r\leqf then
return A[f];
return A[f];
end if;
end if;
pos := divide( A, f, r);
pos := divide( A, f, r);
if (k \leq pos-l) then
if (k \leq pos-l) then
return quantile(A, k, f, pos-1);
return quantile(A, k, f, pos-1);
else
else
return quantile(A, k-pos+l, pos, r);
return quantile(A, k-pos+l, pos, r);
end if;
```
 end if;
```


## Analysis

- Worst-case: Assume

```
1. func int quantile(A array;
2. k, f, r int) {
3. if r\leqf then
4. return A[f];
5. end if;
6. pos := divide(A, f, r);
7. if (k\leqpos-l) then
8. return quantile(A, k, f, pos-1);
9. else
10. return quantile(A, k-pos+l, pos, r);
11. end if;
12.}
``` arbitrarily badly chosen pivot elements
- pos always is \(\mathrm{r}-1\) (or \(\mathrm{f}+1\) )
- Gives O( \(\mathrm{n}^{2}\) )
- Need to chose the pivot element p more carefully

\section*{Choosing p}
- Assume we can chose p such that we always continue with at most \(q \%\) of \(A\) (with \(0<q<1\) )
- I.e., (1-q)\% of elements are discarded
- We perform at most \(T(n)=T\left(q^{*} n\right)+c^{*} n\) comparisons
\(-T\left(q^{*} n\right)\) - recursive descent, with \(T(0)=0\)
- \(c^{*} n\) - function "divide"
- \(T(n)=T\left(q^{*} n\right)+c^{*} n=T\left(q^{2}{ }^{*} n\right)+q^{*} c^{*} n+c^{*} n=\)
\[
T\left(q^{2} n\right)+(q+1) * c^{*} n=T\left(q^{3} n\right)+\left(q^{2}+q+1\right) * c^{*} n=\ldots
\]
\[
\underset{n \rightarrow \infty}{T(n)}=c^{*} n * \sum_{i=0}^{n} q^{i} \leq c^{*} n * \sum_{i=0}^{\infty} q^{i}=c^{*} n * \frac{1}{1-q}=O(n)
\]

\section*{Discussion}
- Our algorithm has worst-case complexity O(n) when we manage to always reduce the array by a fraction of its size, no matter how large the fraction
- This is not an average-case. We must always (not on average) cut some fraction of \(A\)
- Eh - magic?
- No - follows from the way we defined complexity and what we consider as input
- Many operations become "hidden" in the linear factor
- q=0.9: c*10*n
- q=0.99: c*100*n
- q=0.999: c*1000*n

\section*{Median-of-Median}
- How can we guarantee to always cut a fraction of A?
- Median-of-median algorithm
- Partition A in disjoint partitions of length 5
- Compute the median \(v_{i}\) for each partition (with \(i<f l o o r(n / 5)\) )
- Find the median \(v\) of all \(v_{i}\) by repeating this process
- Hint: v will not be the exact median of A - but not too far away
- Use \(v\) as pivot element for the quantile computation


\section*{Complexity}
- \(O(n)\) : Run through \(A\) in partitions of length 5
- \(O(1)\) : Find each median
- Runtime of sorting a list of length 5 does not depend on \(n\)
- The next iteration will work on only \(20 \%\) of the input
- Since we always reduce the number of values to look at by \(80 \%\), this requires O(n) time in total
- See previous result

\section*{What Happens? (source: Wikipedia)}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 12 & 15 & 11 & 2 & 9 & 5 & 0 & 7 & 3 & 21 & 44 & 40 & 1 & 18 & 20 & 32 & 19 & 35 & 37 & 39 \\
\hline & 13 & 16 & 14 & 8 & 10 & 26 & 6 & 33 & 4 & 27 & 49 & 46 & 52 & 25 & 51 & 34 & 43 & 56 & 72 & 79 \\
\hline Median & 17 & 23 & 24 & 28 & 29 & 30 & 31 & 36 & 42 & 47 & 50 & 55 & 58 & 60 & 63 & 65 & 66 & 67 & 81 & 83 \\
\hline & 22 & 45 & 38 & 53 & 61 & 41 & 62 & 82 & 54 & 48 & 59 & 57 & 71 & 78 & 64 & 80 & 70 & 76 & 85 & 87 \\
\hline 96 & 95 & 94 & 86 & 89 & 69 & 68 & 97 & 73 & 92 & 74 & 88 & 99 & 84 & 75 & 90 & 77 & 93 & 98 & 91 \\
\hline
\end{tabular}
- Median-of-median of a randomly permuted list \(0 . .99\)
- For clarity, each 5-tuple is sorted (top-down) and all 5tuples are sorted by median (left-right)
- Gray/white: Values with actually smaller/greater than med-of-med 47
- Blue: Range with certainly smaller / larger values

\section*{Why Does this Help?}
- We have \(\sim n / 5\) first-level-medians \(v_{i}\)
- \(v\) (as median of medians) is smaller than halve of the \(v_{i}\) and greater than the other half
- The smaller and the larger set of medians both have \(\sim n / 10\) values
- Each \(v_{i}\) itself is smaller than (and greater than) 2 values
- Since for the smaller (greater) medians this median itself is also smaller (greater) than \(\mathrm{v}, \mathrm{v}\) is larger (smaller) than at least \(3^{*} \mathrm{n} / 10\) elements
- Border holds in both directions: \(v\) is in the range [3n/10...7n/10]```

