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Summary – So Far

Comparisons
worst case

Comparisons
best case

Additional
space

Moves
worst/best

Selection Sort O(n2) O(n2) O(1) O(n)*

Insertion Sort O(n2) O(n) O(1) O(n2) / O(n)
Bubble Sort O(n2) O(n) O(1) O(n2) / O(1)
Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))
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Content of this Lecture

• Merge Sort
• Quick Sort
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Central Idea for Improvements in Sorting

• Methods we analyzed so-far did not optimally exploit 
transitivity of the „greater-or-equal“ relationship

• If x≤y and y≤z, then x≤z
• If we compared “x and y” and “y and z”, there is no need 

any more to compare x and z
– But all our simple algorithms in worst case compare every element 

with every element – at least once
• The clue to lower complexity algorithms for sorting is 

finding systematic (algorithmic) ways to exploit transitivity
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Merge Sort

• There are various algorithms with O(n*log(n)) comparisons
– We will later also learn HeapSort

• (Probably) Simplest one: Merge Sort
– Divide-and-conquer algorithm
– Break array in two partitions of equal size
– Sort each partition recursively if it has more than 1 elements
– Merge sorted partitions

• Merge Sort is not in-place: O(n) additional space
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Illustration

Divide

Source: WikiPedia

Conquer
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Illustration

Divide - Partition 

Source: WikiPedia

Conquer - Merge
• Here we exploit transitivity
• We save comparisons during 

merge because both sub-lists 
are sorted
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Algorithm

Source: WikiPedia

function void mergesort(S array;
f,r integer) {

if (f<r) then 

# Sort each ~50% of array
m := (r-f) div 2;
mergesort( S, f, f+m);
mergesort( S, f+m+1, r);

# Merge both sorted lists
merge( S, f, f+m ,r); 

else
# Nothing to do, 1-element list

end if;
}
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Merging Two Sorted Lists

• Most work is done in the merge step
– Recall: Intersection of two sorted doc-lists in IR

• Idea
– Move one pointer through each list
– Whatever element is smaller, copy to a new list and increment this 

pointer
• “New list” requires additional space
• Faster: If keys are equal, move both 

pointers and copy both values
– Repeat until one list is exhausted
– Copy rest of other list to new list
– Note: You cannot do this in-place
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Example
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Merge

function void merge(S array;
f,m,r integer) {

B: array[1..r-f+1];
i := f; # Start of 1st list
j := m+1; # Start of 2nd list
k := 1; # Target list
while (i<=m) and (j<=r) do
if S[i]<=S[j] then
B[k] := S[i]; # From 1st list
i := i+1;

else
B[k] := S[j]; # From 2nd list
j := j+1;

end if;
k := k+1;       # Next target 

end while;
if i>m then     # What remained?
copy S[j..r] to B[k..k+r-j];

else
copy S[i..m] to B[k..k+m-i];

end if;
# Back to original list
copy B[1..r-f+1] to S[f..r];

}

Source: WikiPedia
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Complexity

• Theorem
Merge Sort requires Ω(n*log(n)) and O(n*log(n)) 
comparisons

• Proof of O(n*log(n))
– Merging two sorted lists of size n requires O(n) comparisons

• After every comp, 1 element is moved to target; there are only 2*n 
elements; thus, there can be only 2*n comparisons

– Merge Sort calls MergeSort twice with always ~50% of the array
• Let T(n) be the number of comparisons 
• Thus: T(n) = T(n/2) + T(n/2) + O(n) 

– This is O(n*log(n))
• See recursive solution of max subarray

• Ω(n*log(n)): # comparisons does not depend on data in S
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Remarks

• Merge Sort is worst-case optimal: Even in the worst of all 
inputs of size n, it does not need more than (in the order 
of) the minimal number of comparisons
– Given our lower bound for sorting

• But there are also disadvantages
– O(n) additional space
– Requires Ω(n*log(n)) moves

• Sorted sub-arrays get copied to new array in any case
• See Ottmann/Widmayer for proof

• Note: Basis for sorting algorithms on external memory
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Summary

Comparisons
worst case

Comparisons
best case

Additional
space

Moves
worst/best

Selection Sort O(n2) O(n2) O(1) O(n)
Insertion Sort O(n2) O(n) O(1) O(n2) / O(n)
Bubble Sort O(n2) O(n) O(1) O(n2) / O(1)
Merge Sort O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))
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Content of this Lecture

• Merge Sort
• Quick Sort

– Algorithm
– Average Case Analysis
– Improving Space Complexity
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Comparison Merge Sort and Quick Sort

• What can we do better than Merge Sort?
– The O(n) additional space is a problem
– We need this space because the growing sorted subarrays have 

fixed sizes of up to 50% of |S| (2, 4, 8, …, ceil(n/2))
– We cannot efficiently merge two sorted lists in-place, because we 

have no clue how the numbers are distributed in the two lists
• We could with linked list – but halving them would be difficult

• Quick-sort uses a similar yet different way
– We also recursively generate kind-of “sorted” subarrays
– Whenever we create two such subarrays, we make sure that one 

contains only “small” and one contains only “large” values - relative 
to a value that needs to be determined

– This allows us to do a kind-of “merge” in-place
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Main Idea

• Let k be an arbitrary index of S, 1≤k≤|S|
• Look at element  p=S[k] (pivot element)
• Modify S such that ∃i: ∀j≤i: S[j]≤p and ∀l>i: p≤S[l]

– How? Wait a minute
– Result: S is partitioned in two subarrays S’ and S’’ 

• S’ with values smaller-or-equal than pivot element p
• S’’ with values larger-or-equal than pivot element p
• Note that afterwards value p is at its final position in the array

– S’ and S’’ are smaller than S
• At least one element smaller
• But we don’t know how much smaller – depends on choice of k

• Treat S’ and S’’ using the same method recursively
– How often? Not clear – depends on choice of k (again)
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Illustration

p’’p’                          

k

k’’k’
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S’ S’’

S’’

p
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A Bad Case

k

k’
p

S[k]

pp’
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Quick Sort Framework

• Start with qsort(S, 1, |S|)
• “Sort” S around the pivot 

element p (divide)
– Problem P1: Choose k (i.e. p)
– Problem P2: Do this in-place

• Recursively sort values smaller-
or equal than pivot element

• Recursively sort values larger-
or-equal than pivot element

• Problem P3: How often do we 
need to do this?

1. func void qsort(S array;
2. f,r integer) {
3. if r≤f then
4. return;  
5. end if;
6. pos := divide( S, f, r);
7. qsort( S, f, pos-1);
8. qsort( S, pos+1, r);
9. }
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Addressing Problem P1

• P1: We need to choose k (p=S[k])
• p determines the sizes of S’ and S’’

• Best: p is the middle value of S (median)
– S’ and S’’ are of equal size (~|S|/2)
– Creates the most shallow search tree

• Worst: p at the border of the values of S
– |S’|~0 and |S’’|~|S|-1 or vice versa
– Creates a deep search tree

• Hint to P3: Somewhere in [log(n), n] times
– Depending on choice of p
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Intermezzo: Mean and Median

• In statistics, one often tries to capture the “essence” of a 
(potentially large) set of values

• One essence: Mean
– Average temperature per month, average income per year, average 

height of males at age of 18, average duration of study, …
• Less sensitive to outliers: Median

– The middle value
– Assume temps in June 25 24 24 23 25 25 24 4 -1 9 18 24 
– Which temperature do you expect for an average day in June?

• Mean: 18.6
• Median: 24 – more realistic

– How long will you need for your Bachelor? 6,35 semesters?
– German median net income (2010) was 24.152€ – but on average?
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P1: Choosing k

• In the best case, p is the median of S
• Computing a mean of n values is in O(n)
• But there is no efficient way to find the median of n values 
• One option: Approximations

– If S is an array of people’s income in Germany, we call the 
“Statistische Bundesamt” to ask for the mean of all incomes in 
Germany, and scan the array until we find a value that is 10% or 
less different, and use this value as pivot

• If S is large and randomly drawn from a set of incomes, this scan will 
be very short

– If S is an array of family names in Berlin, we take the Berlin 
telephone book and open it roughly in the middle
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P1: Choosing k - Again

• Option 1: Find min/max in S; search k with p~(max-min)/2
– Why should the values in S be equally distributed in this range?
– For instance: Incomes are not equally distributed at all

• Option 2: Choose a (small) set of values X from S at 
random and determine k with p=median(X)
– X follows the same distribution as S, but |X|<<|S|
– Since this procedure would have to be performed for each qSort, 

only very small X (with constant size) do not influence runtime a lot
• Beware: If |X|=c*|S| for any c, we are still in O(|S|)

– But: Small X will lead to bad median estimations
• Option 3: Choose k (and thus p) at random 

– For instance, simply use the last value in the array
– We’ll see that this already produces good result on average
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Recall: Quick Sort Framework

• Start with qsort(S, 1, |S|)
• “Sort” S around the pivot 

element (divide)
– Problem 1: Choose k
– Problem 2: Do this in-place

• Recursively sort values smaller-
or equal than pivot element

• Recursively sort values larger-
or-equal than pivot element

• Problem 3: How often do we 
need to do this?

1. func void qsort(S array;
2. l,r integer) {
3. if r≤l then
4. return;  
5. end if;
6. pos := divide( S, l, r);
7. qsort( S, l, pos-1);
8. qsort( S, pos+1, r);
9. }
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Problem P2: Do this in-place

• We use k=r (random choice of p)
• Simple idea

– Search from f towards r until first 
value greater-or-equal p

– Search from r towards f until first 
value smaller-or-equal p

– Swap these two values
– Repeat if i has not reached j yet
– Result: Values left from i are 

smaller than p and values right 
from j are larger than p 

– Move p into the middle

1. func int divide(S array;
2. f,r integer) {
3. p := S[r];
4. i := f;
5. j := r-1;
6. repeat
7. while (S[i]<=p and i<r)
8. i := i+1;
9. end while;
10. while (S[j]>=p and j>l)
11. j := j-1;
12. end while;
13. if i<j then
14. swap( S[i], S[j]);
15. end if;
16. until i>=j;
17. swap( S[i], S[r]);
18. return i;
19.}
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Example

1 8 6 3 5 9 3 1 7
i j

1 1 6 3 5 9 3 8 7
i j

1 1 6 3 5 3 9 8 7
j i

1 1 6 3 5 3 7 8 9

1 1 6 3 5 3
i j

1 1 3 6 5 3
j i

1 1 3 3 5 6

8 9

5 6

1 1 3
j i
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P2: Complexity of divide() 

• # of comparisons: O(r-f)=O(n)
– Whenever we perform a 

comparison, either i or j are 
incremented / decremented

– i starts from f, j starts from r, 
and the algorithm stops once 
they meet

– This is worst, average and best 
case

• # of swaps: O(r-f) in worst 
case
– Example: 8,7,8,6,1,3,2,3,5
– Requires ~(r-f)/2 swaps

1. func int divide(S array;
2. f,r integer) {
3. p := S[r];
4. i := f;
5. j := r-1;
6. repeat
7. while (S[i]<=p and i<r)
8. i := i+1;
9. end while;
10. while (S[j]>=p and j>l)
11. j := j-1;
12. end while;
13. if i<j then
14. swap( S[i], S[j]);
15. end if;
16. until i>=j;
17. swap( S[i], S[r]);
18. return i;
19.}
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Recall: Quick Sort Framework

• Start with qsort(S, 1, |S|)
• “Sort” S around the pivot 

element (divide)
– Problem 1: Choose k
– Problem 2: Do this in-place

• Recursively sort values smaller-
or equal than pivot element

• Recursively sort values larger-
or-equal than pivot element

• Problem 3: How often do we 
need to do this?

1. func void qsort(S array;
2. f,r integer) {
3. if r≤f then
4. return;  
5. end if;
6. pos := divide( S, f, r);
7. qsort( S, f, pos-1);
8. qsort( S, pos+1, r);
9. }
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Worst-Case Complexity of Quick Sort (Problem 3)

• Worst case:  A sorted list and k=|S|=r
– S[r] in first iteration is the smallest element, later 

always the smallest or the largest
– Requires r-f comparisons in every call of divide()
– Every pair of qSort’s has |S’|=0 and |S’’|=n-1
– This gives (n-1)+((n-1)-1)+…+1 = O(n2)

comparisons in the divide steps
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Intermediate Summary

• Great disappointment
• We are in O(1) additional space, but as slow as our basic 

sorting algorithms in worst case
– Space … wait a minute

• Nevertheless, Quick Sort is a very fast sorting algorithm in 
practice

• Why? Let‘s look at the average case
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Content of this Lecture

• Merge Sort
• Quick Sort

– Algorithm
– Average Case Analysis
– Improving Space Complexity
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Average Case

• Without loss of generality, we assume that S contains all 
values 1…|S| in arbitrary order
– If S had duplicates, we would at best save swaps 
– Sorting n different values is the same problem as sorting the values 

1…n – replace each value by its rank
• For p, we choose any value in S with equal probability 1/n
• This choice divides S such that |S’|=p-1 and |S’’|=n-p
• Let T(n) be the average # of comparisons. Then:

– Where b*n is the time to divide the array and T(0)=0
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Induction

• Hypothesis – QuickSort is in O(n*log(n)) in average case
• We need to show that, for some c and some n≥n0: 

• Proof by induction
– T(1)=b, which is never smaller than c*1*log(1)=0 
– Thus, we set n0=2; we have T(2)=3b≤c*2*log(2) if c≥3b/2
– We assume the above assumption holds for all 2≤k<n
– We start with (for simplicity, assume n=2x for some x):
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Induction
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Continued

Set c≥4b
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Conclusion

• Although there are cases where we need O(n2) 
comparisons, these are so rare in the set of all possible 
permutations that we do not need more than O(n*log(n)) 
comparisons on average 

• In other words: If we average over the runtimes of Quick 
Sort over many (all) different orders of n values, then this 
average will grow with n*log(n), not with n2

• One can show the same for the # of swaps
• Quick Sort is a fast general-purpose sorting algorithm
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Content of this Lecture

• Merge Sort
• Quick Sort

– Algorithm
– Average Case Analysis
– Improving Space Complexity
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Looking at Space Again

• We were quite sloppy
• Quick Sort as described actually does need extra space –

every recursive call puts some data on the stack
– Array can be implemented as a global variable
– But we always need to pass f and r

• Our current version has worst-case space complexity O(n)
– Consider the worst-case of the time complexity 

• Reverse-sorted array
– Creates 2*n recursive calls
– This requires n times 2 integers on the stack

1. func void qsort(S array;
2. f,r integer) {
3. if r≤f then
4. return;  
5. end if;
6. pos := divide( S, f, r);
7. qsort( S, f, pos-1);
8. qsort( S, pos+1, r);
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Improving Space Complexity 

• Idea: In the recursive decent, always treat the smaller of 
the two sub-arrays first
– S’ or S’’, whatever is smaller

• This branch can generate at most O(log(n)) calls, because 
the smaller array is always smaller than n/2

• Use iteration to sort the bigger array afterwards
– No recursion, no stack

• Space complexity: O(log(n))

Recursive
sort

Iterative 
sort
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Implementation
1. func integer qSort(S array;
2. f,r int) {
3. if r≤f then
4. return;  
5. end if;
6. val := S[r];
7. i := f-1;
8. j := r;  
9. repeat
10. while (S[i]<=val and i<r)
11. i := i+1;
12. end while;
13. while (S[j]>=val and j>f)
14. j := j-1;
15. end while;
16. if i<j then
17. swap( S[i], S[j]);
18. end if;
19. until i>=j;
20. swap( S[i], S[r]);
21. qsort(S, f, i-1);
22. qSort(S, i+1, r);
23.}

1. func integer qSort++(S array;
2. l,f int) {
3. if r≤f then
4. return;  
5. end if;
6. while r > f do
7. val := S[r];
8. i := f-1;
9. j := r;  
10. repeat
11. … # as before
12. until i>=j;
13. swap( S[i], S[r]);
14. if (i-1-f) < (r-i-1) then
15. qsort(S, f, i-1);
16. f := i+1;
17. else
18. qSort(S, i+1, r);
19. r := i-1;
20. end if;
21. end while;
22.}
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Implementation

• 14-20: Choose the smaller 
and sort it recursively
– Note: Only one call is made 

for each division
• We adjust f/r and sort the 

larger sub-array directly 
– New loop (6-21) applies the 

same procedure performing 
the next sort

• We turned a linear tail 
recursion into an iteration 
(without stack)

1. func integer qSort++(S array;
2. l,f int) {
3. if r≤f then
4. return;  
5. end if;
6. while r > f do
7. val := S[r];
8. i := f-1;
9. j := r;  
10. repeat
11. … # as before
12. until i>=j;
13. swap( S[i], S[r]);
14. if (i-1-f) < (r-i-1) then
15. qsort(S, f, i-1);
16. f := i+1;
17. else
18. qSort(S, i+1, r);
19. r := i-1;
20. end if;
21. end while;
22.}
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Improving Space Complexity Further 

• Even O(1) space is possible
– Do not store f/r, but search them at runtime within the array
– Requires extra work in terms of runtime, but within the same 

complexity
– See Ottmann/Widmayer for details
– Is it worth it in practice? 

• log(n) usually is not a lot of space
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Summary

Comps
worst case avg. case best case

Additional
space

Moves
(wc / ac)

Selection 
Sort

O(n2) O(n2) O(1) O(n)

Insertion 
Sort

O(n2) O(n) O(1) O(n2)

Bubble Sort O(n2) O(n) O(1) O(n2)
Merge Sort O(n*log(n)) O(n*log(n)) O(n*log(n)) O(n) O(n*log(n))
QuickSort O(n2) O(n*log(n) O(n*log(n) O(log(n)) O(n2) / 

O(n*log(n))
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Exemplary Questions

• Proof that any sort algorithm using only value comparisons 
needs Ω(n*log(n)) comparisons in worst case

• Proof or refute: For every n, there exists a list with n 
elements which is a best case for quick sort (choosing first 
element as pivot) and for bubble sort

• Give pseudo code for QuickSort with O(log(n)) additional 
space

• Imagine your main memory can use only n/16 values. 
Recall that access disk is much more expensive than 
accessing memory. Which of the sorting algorithms can be 
used to keep disk IO low? Describe the algorithm in 
pseudo code and argue about the number of blocks read
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