

Algorithms and Data Structures One Problem, Four Algorithms

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

Where is the Sun?

Source: http://www.layoutsparks.com

How can we find the Sun Algorithmically?

- Assume pixel (RGB) representation
- The sun obviously is bright
- RGB colors can be transformed into brightness scores
- The sun is the brightest spot
 - Compute an average brightness for the entire picture
 - Subtract this from each brightness value (will yield negative values)

 Find the shape (spot) such that the sum of its brightness values is maximal

Size of the Spot not Pre-Determined

Example (Shapes: only Rectangles)

1	6	8	6	5	3		-3	2	4	2	1	-1
7	9	5	4	2	2	_	3	5	1	0	-2	-2
2	7	6	3	2	1		-2	3	2	-1	-2	-3
1	3	0	0	0	1	Avg. ~4	-3	-1	-4	-4	-4	-3
2	4	8	8	3	2		-2	0	4	4	-1	-2
3	7	9	8	8	З		-1	3	5	4	4	-1
									•			

-3	2	4	2	1	-1	-3	2	4	2	1	-1	-3	2	4	2	1	-1
3	5	1	0	-2	-2	С	5	1	0	-2	-2	3	5	1	0	-2	-2
-2	3	2	-1	-2	-3	-2	3	2	-1	-2	-3	-2	3	2	-1	-2	-3
-3	-1	-4	-4	-4	-3	-3	-4	-4	-4	-3	-3	-3	-4	-4	-4	-3	-3
-2	0	4	4	-1	-2	-2	0	4	4	-1	-2	-2	0	4	4	-1	-2
-1	3	5	4	4	-1	-1	3	5	4	4	-1	-1	3	5	4	4	-1

- This is a bit complicated
 - Which shapes?
 - Shape should not be too big (sun is small compared to sky)
 - What if the sun is almost filling the picture?
 - Maximal sum of scores or maximal average score?
 - (see very last slide)
- For now, we look at a simpler problem: Max Subarray
 - Where is the sun?

- Definition (Max-Subarray Problem) Assume an array A of integers. Find the highest sum-score s* of all subarrays A* of A, where the sum-score of an array A* is the sum of all its values.
 - If s* is negative, return 0
- Remarks
 - Cells may have positive or negative values (or 0)
 - We only want the maximal sum, not the borders of A*
 - There might be multiple A*, but only one max sum-score
 - Length of the subarray A* is not fixed (like shape of spot)

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity?

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let n=|A|)
 - O(n) to find maximal value
 - O(n) expansion steps in worst case
 - O(n) together
- Do we optimally solve our problem?

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let n=|A|)

– O(n) together

• Do we optimally solve our problem?

-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let n=|A|)

– O(n) together

• Do we optimally solve our problem?

-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1

• First step may already be wrong

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

```
A: array of integer;
n := |A|;
m := 0;
for i := 1 \dots n do
  for j := i ... n do
     s := 0;
     for \mathbf{k} := \mathbf{i} \dots \mathbf{j} do
       s := s + A[k];
     end for;
     if s>m then
      m := s;
     end if;
  end for;
end for;
return m;
```

- i: Every start point of an array
- j: Every end point of an array
- k: Compute sum of values between start i and end j

Illustration


```
A: array_of_integer;
n := |A|;
m := 0;
for i := 1 \dots n do
  for j := i ... n do
    s := 0;
    for k := i \dots j do
    s := s + A[k];
    end for;
    if s>m then
     m := s;
    end if;
  end for;
end for;
return m;
```

• Complexity?

Quiz

```
A: array_of_integer;
n := |A|;
m := 0;
for i := 1 \dots n do
  for j := i ... n do
    s := 0;
    for k := i \dots j do
      s := s + A[k]:
    end for;
    if s>m then
      m := s;
    end if;
  end for;
end for;
return m;
```

- Is this in O(n)?
- Is this in O(n²)?
- Is this in O(n²log(n)) but not O(n²)?
- Is this in O(n³) but not O(n²)?
- Is this in O(n⁴)?

```
A: array of integer;
n := |A|;
m := 0;
for i := 1 \dots n do
  for j := i ... n do
    s := 0;
    for k := i \dots j do
      s := s + A[k];
    end for;
    if s>m then
      m := s;
    end if;
  end for;
end for;
return m;
```

- i-loop: n times
- j-loop: n times (worst-case)
 - Together $\sim n^2/2$, which is in O(n²)
- Inner loop: n times
- Together: O(n³)
- But: We are summing up the same numbers again and again
- We perform redundant work
- More clever ways?

Exhaustive Solution

- First sum: A[1]
- Second: A[1]+A[2]
- 3rd: A[1]+A[2]+A[3]
- 4th: ...

- For a given i, every next sum (k) is the previous sum plus the next cell (j)
- How can we reuse the previous sum?

- Every next sum is the previous sum s plus the next cell A[j]
- Complexity: O(n²)

```
A: array of integer;
n := |A|;
m := 0;
for i := 1 \dots n do
  s := 0;
  for j := i ... n do
    s := s + A[j];
    if s>m then
      m := s;
    end if;
  end for;
end for;
return m;
```

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

Observation

- We optimized computation of sums in the j/k looks
- We still compute many sums multiple times across i's

- We can break up our problem into smaller ones by looking only at parts of the array
- A very common trick: Break into two equally-sized pieces
- One scheme: Assume $A = A_1 | A_2$
 - With "|" meaning array concatenation and $|A_1| = |A_2|(+0/1) = |A|/2$
- The max-subarray (msa) of A ...
 - either lies in A_1 can be found by solving msa(A_1)
 - or in A_2 can be found by solving msa(A_2)
 - or partly in A_1 and partly in A_2
 - Can be solved by summing-up the msa's in A_1/A_2 that align with the right/left end of A_1/A_2
- We divide the problem into smaller ones and create the "bigger" solution from the "smaller" solutions

Algorithm (for simplicity, assume $|A|=2^x$ for some x)

m=(msa(A1),rmax(A1)+lmax(a2),msa(A2)

- This time it is not so easy ...
- Complexity of Imax / rmax?

```
function rmax (A: array_of_int) {
    n := |A|;
    s := 0;
    m := 0;
    for i := n .. 1 do
        s := s + A[i];
        if s>m then
            m := s;
        end if;
    end for;
    return m;
}
```

- This time it is not so easy ...
- Complexity of Imax / rmax?
 O(n)
- Function msa
 - Let T(n) be the number of steps necessary to execute the algorithm for |A|=n
 - In each level, n'=n/2
 - The two sub-solutions require T(n') each

```
function msa (A: array of int) {
  n := |A|;
  if (n=1) then
    if A[1]>0 then
      return A[1]
    else
      return 0;
  end if;
  m := n/2; \# ...
  A1 := A[1...m];
  A2 := A[m+1...n];
  11 := rmax(A1);
  12 🔁 lmax(A2);
   := max(msa(A1),11+12,msa(A2));
  return m
```

- This yields: $T(n) \sim O(1)+O(n)+T(n')+T(n')$

- This time it is not so easy ...
- Complexity of Imax / rmax? - O(n)
- Function msa
 - Let T(n) be the number of steps necessary to execute the algorithm for |A|=n
 - In each level, n'=n/2
 - The two sub-solutions require T(n') each

```
function msa (A: array of int) {
  n := |A|;
  if (n=1) then
    if A[1]>0 then
      return A[1]
    else
      return 0;
  end if;
  m := n/2; \# ...
  A1 := A[1...m];
  A2 := A[m+1...n];
  11 := rmax(A1);
  12 := lmax(A2);
  m := max(msa(A1), 11+12, msa(A2));
  return m;
```

- This yields: $T(n) \sim O(1)+O(n)+T(n')+T(n')$ = O(1)+O(n)+T(n/2)+T(n/2)= O(n) + 2*T(n/2)

}

- For constants c₁, c₂
- $T(n) = 2*T(n/2)+c_1*n$
- Further: $T(1) = c_2$
- Iterative substitution: $T(n) = 2*T(n/2)+c_{1}n =$ $= 2(2T(n/4)+c_{1}n/2)+c_{1}n = 4T(n/4)+2c_{1}n =$ $= 4(2T(n/8)+c_{1}n/4)+2c_{1}n = 8T(n/8)+3c_{1}n = ...$ $2^{\log(n)*}c_{2} + \log(n)*c_{1}n =$ $n*c_{2}+\log(n)*c_{1}n = O(n*\log(n))$

- Naive:
- Less naive, still redundant:
- Divide & Conquer:
- The problem:

O(n³) O(n²) O(n*log(n))

O(n)

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Linear Solution

- Let's use another strategy for dividing the problem
- Let's look at the solutions for A[1], A[1..2], A[1...3], ...
- What can we say about the msa for Aⁱ⁺¹=A[1...i+1], given the msa of Aⁱ=A[1...i]?

- Let's use another strategy for dividing the problem
- Let's look at the solutions for A[1], A[1..2], A[1...3], ...
- What can we say about the msa for Aⁱ⁺¹=A[1...i+1], given the msa of Aⁱ=A[1...i]?

- msa(Aⁱ⁺¹) is ...
 - either somewhere within Aⁱ, which means the same as msa(Aⁱ)
 - or includes A[i+1], i.e., it is rmax(Aⁱ)+A[i+1]
- Idea: Keep msa and rmax while scanning once through A

```
A: array_of_integer;
rmax:= 0;
m := 0;
for i:= 1 to n do
  rmax := max( 0, rmax+A[i]);
  m := max( rmax, m);
end for;
return m;
```

Obviously: O(n)

Asymptotically optimal

- We only look a constant number of times at every element of A
- But we need to look at least once at every element of A to solve msa
- Thus, the problem is $\Omega(n)$
- Example of dynamic programming: Build larger solutions from smaller ones

Example

Why Better?

```
function msa (A: array_of_integer) {
    n := |A|;
    ...
    m := n/2;  # Assume even sizes
    A1 := A[1...m];
    A2 := A[m+1...n];
    l1 := rmax(A1);
    l2 := lmax(A2);
    m := max( msa(A1), l1+l2, msa(A2));
    return m;
}
```

- Algorithm to the right: Breaks in the middle
 - log(n) recursive calls
 - But we need to compute new rmax and Imax values all the time
- Algorithm to the left: Break iteratively
 - n extensions
 - But we can compute the next rmax from the previous rmax

Optimization Problems

- Optimization find the best among all possible solutions
 - Shortest path, best schedule, best query plan, best superstring, ...
- Issues
 - Find solutions: Simple for msa, but sometimes hard
 - Score solutions: Simple for msa, but sometimes hard
 - Search space pruning: Do we need to look at all possible solutions?
 - msa: No need to break array at position 3/7
 - Be aware: Sometimes all possible "divides" are necessary
- Typical pattern
 - Enumerate solutions in a systematic manner
 - Often generates a tree of partial and finally complete solutions
 - Prune parts of the search space where no optimal solution can be
 - If possible, stop early

- Greedy: Find some promising start point and expand aggressively until a complete solution is found
 - Fast, but usually doesn't find the optimal solution
- Exhaustive: Test all solutions and find the one that is best
 No pruning slow, sometimes the only choice
- Divide & Conquer: Break problem into smaller ones until these can be solved "directly"; construct solutions for bigger problems from these small solutions
- Dynamic programming
 - Special case of d&c involving tables of intermediate results
- Backtracking
 - Special case of d&c: Move from smaller solutions to larger, but allow undoing previous moves

• For the max subarray problem

– Greedy:	O(n), but wrong
 Exhaustive: 	O(n ³)
 With pruning 	O(n ²)
– Divide & Conquer:	O(n*log(n))
– Other Divide & Conquer:	O(n)

- Notes
 - Usually there are different greedy, exhaustive, ... solutions

- Give an optimal algorithm for the max-subarray problem and prove its optimality
- Assume the max-subarray problem with the additional restriction that the length of sub-array must be short-or-equal a constant k. Give a linear algorithm solving this problem.
- Give an algorithm for the max-subarray problem in 2D, where |A| is quadratic and the subarray must be a square. Analyze its worst-case complexity.
 - Hint: For improvements, store intermediate results