

Algorithms and Data Structures

One Problem, Four Algorithms

Ulf Leser

Content of this Lecture

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

Where is the Sun?

Source: http://www.layoutsparks.com

How can we find the Sun Algorithmically?

- Assume pixel (RGB) representation
- The sun obviously is bright
- RGB colors can be transformed into brightness scores
- The sun is the brightest spot
- Compute an average brightness for the entire picture
- Subtract this from each brightness value (will yield negative values)
- Find the shape (spot) such that the sum of its brightness values is maximal

Size of the Spot not Pre-Determined

Example (Shapes: only Rectangles)

1	6	8	6	5	3
7	9	5	4	2	2
2	7	6	3	2	1
1	3	0	0	0	1
2	4	8	8	3	2
3	7	9	8	8	3

-3	2	4	2	1	-1
3	5	1	0	-2	-2
-2	3	2	-1	-2	-3
-3	-1	-4	-4	-4	-3
-2	0	4	4	-1	-2
-1	3	5	4	4	-1

-3	2	4	2	1	-1
3	5	1	0	-2	-2
-2	3	2	-1	-2	-3
-3	-1	-4	-4	-4	-3
-2	0	4	4	-1	-2
-1	3	5	4	4	-1

-3	2	4	2	1	-1
3	5	1	0	-2	-2
-2	3	2	-1	-2	-3
-3	-4	-4	-4	-3	-3
-2	0	4	4	-1	-2
-1	3	5	4	4	-1

-3	2	4	2	1	-1
3	5	1	0	-2	-2
-2	3	2	-1	-2	-3
-3	-4	-4	-4	-3	-3
-2	0	4	4	-1	-2
-1	3	5	4	4	-1

Simpler Problem

- This is a bit complicated
- Which shapes?
- Shape should not be too big (sun is small compared to sky)
- What if the sun is almost filling the picture?
- Maximal sum of scores or maximal average score?
- (see very last slide)
- For now, we look at a simpler problem: Max Subarray
- Where is the sun?
\square

Max-Subarray Problem

- Definition (Max-Subarray Problem)

Assume an array A of integers. Find the highest sum-score s^{*} of all subarrays A^{*} of A, where the sum-score of an array A^{*} is the sum of all its values.

- If s^{*} is negative, return 0
- Remarks
- Cells may have positive or negative values (or 0)
- We only want the maximal sum, not the borders of A*
- There might be multiple A*, but only one max sum-score
- Length of the subarray A^{*} is not fixed (like shape of spot)

-2	0	4	3	4	-6	-1	12	-2	0	15

A Greedy Solution

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity?

A Greedy Solution

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let $\mathrm{n}=|\mathrm{A}|$)
- $O(n)$ to find maximal value
- O(n) expansion steps in worst case
- O(n) together
- Do we optimally solve our problem?

A Greedy Solution

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let $\mathrm{n}=|\mathrm{A}|$)
- $O(n)$ together
- Do we optimally solve our problem?

-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1

A Greedy Solution

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let $\mathrm{n}=|\mathrm{A}|$)
- $\mathrm{O}(\mathrm{n})$ together
- Do we optimally solve our problem?

-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1

- First step may already be wrong

-2	0	4	3	4	-6	-6	10	-6	-1	1

Content of this Lecture

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

Naive Solution: Look at all Subarrays

```
A: array_of_integer;
n := |A|;
m := 0;
for i := 1 ... n do
    for j := i ... n do
        s := 0;
        for k := i ... j do
        s := s + A[k];
        end for;
        if s>m then
        m := s;
        end if;
    end for;
end for;
return m;
```

- i: Every start point of an array
- j: Every end point of an array
- k: Compute sum of values between start i and end j

Illustration

Complexity

```
A: array_of_integer;
\(\mathrm{n}:=|\mathrm{A}|\);
m : = 0;
for \(i\) := 1 ... \(n\) do
    for j := i ... n do
        s := 0;
        for \(k\) := i ... j do
            s := s + A[k];
        end for;
        if \(s>m\) then
            m := s ;
        end if;
    end for;
end for;
return m;
```

- Complexity?

Quiz

```
A: array_of_integer;
n := |A|;
m := 0;
for i := 1 ... n do
    for j := i ... n do
        s := 0;
        for k := i ... j do
        s := s + A[k];
        end for;
        if s>m then
        m := s;
        end if;
        end for;
end for;
return m;
```

- Is this in $\mathrm{O}(\mathrm{n})$?
- Is this in $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
- Is this in $\mathrm{O}\left(\mathrm{n}^{2} \log (\mathrm{n})\right)$ but not $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
- Is this in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ but not $\mathrm{O}\left(\mathrm{n}^{2}\right)$?
- Is this in $\mathrm{O}\left(\mathrm{n}^{4}\right)$?

Complexity

```
A: array_of_integer;
n := |A|;
m := 0;
for i := 1 ... n do
    for j := i ... n do
        s := 0;
        for k := i ... j do
        s := s + A[k];
        end for;
        if s>m then
            m := S;
        end if;
    end for;
end for;
return m;
```

- i-loop: n times
- j-loop: n times (worst-case)
- Together $\sim n^{2} / 2$, which is in $O\left(n^{2}\right)$
- Inner loop: n times
- Together: O(n³)
- But: We are summing up the same numbers again and again
- We perform redundant work
- More clever ways?

Exhaustive Solution

- First sum: $\mathrm{A}[1]$
- Second: A[1]+A[2]
- 3rd: A[1]+A[2]+A[3]
- 4th: ...
- For a given i, every

| -2 | 0 | 4 | 3 | 4 | -3 | -1 | 12 | 2 | -1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | next sum (k) is the previous sum plus the next cell (j)

- How can we reuse the previous sum?

Exhaustive Solution, Improved

- Every next sum is the previous sum s plus the next cell $\mathrm{A}[\mathrm{j}]$
- Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

```
A: array_of_integer;
n := |A|;
m:= 0;
for i := 1 ... n do
    s := 0;
    for j := i ... n do
        s := s + A[j];
        if s>m then
        m := s;
        end if;
    end for;
end for;
return m;
```


Content of this Lecture

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

Observation

- We optimized computation of sums in the j / k looks
- We still compute many sums multiple times - across i's

-2	0	4	3	4	-3	-1	12	2	-1	1

Divide and Conquer

- We can break up our problem into smaller ones by looking only at parts of the array
- A very common trick: Break into two equally-sized pieces
- One scheme: Assume $A=A_{1} \mid A_{2}$
- With " \mid " meaning array concatenation and $\left|A_{1}\right|=\left|A_{2}\right|(+0 / 1)=|A| / 2$
- The max-subarray (msa) of A ...
- either lies in A_{1} - can be found by solving $\mathrm{msa}\left(\mathrm{A}_{1}\right)$
- or in A_{2} - can be found by solving $\operatorname{msa}\left(A_{2}\right)$
- or partly in A_{1} and partly in A_{2}
- Can be solved by summing-up the msa's in A_{1} / A_{2} that align with the right/left end of $\mathrm{A}_{1} / \mathrm{A}_{2}$
- We divide the problem into smaller ones and create the "bigger" solution from the "smaller" solutions

Algorithm (for simplicity, assume $|A|=2^{x}$ for some x)

```
function msa (A: array_of_int)
    n := |A|;
    if (n=1) then
        if A[1]>0 then
            return A[1]
        else
            return 0;
    end if;
    m := n/2;
    A1 := A[1...m];
    A2 := A[m+1..n]
    11 := rmax(A1);
    12 := lmax(A2)
    m := max(msa(A1) ,
        11+12,
        msa(A2));
    return m;
}
```


Example

Complexity

- This time it is not so easy
- Complexity of Imax / rmax?

```
function rmax (A: array_of_int) {
    n := |A|;
    s := 0;
    m := 0;
    for i := n .. 1 do
        s := s + A[i];
        if s>m then
            m := s;
        end if;
    end for;
    return m;
}
```


Complexity

```
function msa (A: array_of_int) {
    n := |A|;
    if ( }\textrm{n}=1)\mathrm{ then
        if A[1]>0 then
            return A[1]
        else
            return 0;
    end if;
    m := n/2; \# ...
    m := n/2; \# ...
Y A1 \(:=\mathrm{A}[1 \ldots \mathrm{~m}]\);
Y A1 \(:=\mathrm{A}[1 \ldots \mathrm{~m}]\);
    A2 \(:=A[m+1 \ldots n]\);
    A2 \(:=A[m+1 \ldots n]\);
    \(11:=\operatorname{rmax}(\mathrm{A} 1)\);
    \(11:=\operatorname{rmax}(\mathrm{A} 1)\);
    12 Imax (A2);
    12 Imax (A2);
    \(\mathrm{m}:=\max (\mathrm{mssa}(\mathrm{A} 1), 11+12, \operatorname{msa}(\mathrm{~A} 2))\);
    \(\mathrm{m}:=\max (\mathrm{mssa}(\mathrm{A} 1), 11+12, \operatorname{msa}(\mathrm{~A} 2))\);
    return
    return
\}
```

\}

```
- The two sub-solutions require \(T\left(n^{\prime}\right)\) each
- This yields: \(T(n) \sim O(1)+O(n)+T\left(n^{\prime}\right)+T\left(n^{\prime}\right)\)

\section*{Complexity}
```

function msa (A: array_of_int) {
n := |A|;
if (}\textrm{n}=1)\mathrm{ then
if A[1]>0 then
return A[1]
else
return 0;
end if;
m := n/2; \# ..
A1 := A[1...m];
A2 := A[m+1..n];
11 := rmax(A1);
12 := lmax(A2);
m := max(msa(A1),11+12,msa(A2));
return m;
}

```
- This time it is not so easy ...
- Complexity of Imax / rmax?
- O(n)
- Function msa
- Let T(n) be the number of steps necessary to execute the algorithm for \(|A|=n\)
- In each level, \(\mathrm{n}^{\prime}=\mathrm{n} / 2\)
- The two sub-solutions require \(T\left(n^{\prime}\right)\) each
- This yields: \(T(n) \sim O(1)+O(n)+T\left(n^{\prime}\right)+T\left(n^{\prime}\right)\)
\[
\begin{aligned}
& =O(1)+O(n)+T(n / 2)+T(n / 2) \\
& =O(n)+2 * T(n / 2)
\end{aligned}
\]

\section*{Complexity}
```

function msa (A: array_of_integer) \{
$\mathrm{n}:=|\mathrm{A}|$;
if ($\mathrm{n}=1$) then
if $A[1]>0$ then
return A[1]
else
return 0;
end if;
A1 $:=$ [1...m];
A2 : $=A[m 1$ n];
$11-\operatorname{rmax}(\mathrm{A} 1)$
12 . $1 \max (A 2)$.
fin $:=\max (\mathrm{msa}(\mathrm{A} 1), 11+12$, msa(A2))
return

```
- Further: \(\mathrm{T}(1)=\)
- For constants \(c_{1}, c_{2}\)

\section*{Complexity}
- For constants \(\mathrm{c}_{1}, \mathrm{c}_{2}\)
- \(T(n)=2 * T(n / 2)+c_{1} * n\)
- Further: \(T(1)=c_{2}\)
- Iterative substitution:
```

function msa (A: array_of_integer) {

```
function msa (A: array_of_integer) {
    n := |A|;
    n := |A|;
    if (n=1) then
    if (n=1) then
        if A[1]>0 then
        if A[1]>0 then
        return A[1]
        return A[1]
        else
        else
            return 0;
            return 0;
    end if;
    end if;
    m := n/2; # Assume even sizes
    m := n/2; # Assume even sizes
    A1 := A[1...m];
    A1 := A[1...m];
    A2 := A[m+1..n];
    A2 := A[m+1..n];
    11 := rmax(A1);
    11 := rmax(A1);
    12 := lmax(A2);
    12 := lmax(A2);
    m := max( msa(A1), l1+l2, msa(A2));
    m := max( msa(A1), l1+l2, msa(A2));
    return m;
    return m;
}
```

}

```
\[
\begin{aligned}
T(n) & =2 * T(n / 2)+c_{1} n= \\
& =2\left(2 T(n / 4)+c_{1} n / 2\right)+c_{1} n=4 T(n / 4)+2 c_{1} n= \\
& =4\left(2 T(n / 8)+c_{1} n / 4\right)+2 c_{1} n=8 T(n / 8)+3 c_{1} n=\ldots
\end{aligned}
\]
\[
2^{\log (n) *} c_{2}+\log (n) * c_{1} n=
\]
\[
n * c_{2}+\log (n) * c_{1} n=O(n * \log (n))
\]

\section*{Same Problem, Different Algorithms}
- Naive:
- Less naive, still redundant:
- Divide \& Conquer:
- The problem:
\(O\left(n^{3}\right)\)
\(\mathrm{O}\left(\mathrm{n}^{2}\right)\)
\(O(n * \log (n))\)
\(\mathrm{O}(\mathrm{n})\)

\section*{Content of this Lecture}
- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Linear Solution

\section*{Let's Think again - More Carefully}
- Let's use another strategy for dividing the problem
- Let's look at the solutions for \(A[1], A[1 . .2], A[1 . .3], \ldots\)
- What can we say about the msa for \(A^{i+1}=A[1 \ldots i+1]\), given the msa of \(A^{i}=A[1 \ldots i]\) ?


\section*{Let's Think again - More Carefully}
- Let's use another strategy for dividing the problem
- Let's look at the solutions for \(A[1], A[1 . .2], A[1 . .3], \ldots\)
- What can we say about the msa for \(A^{i+1}=A[1 \ldots i+1]\), given the msa of \(A^{i}=A[1 \ldots i]\) ?

- msa(A \(\mathrm{A}^{i+1}\) ) is ...
- either somewhere within \(A^{i}\), which means the same as msa( \(A^{i}\) )
- or includes \(A[i+1]\), i.e., it is \(\operatorname{rmax}\left(A^{i}\right)+A[i+1]\)
- Idea: Keep msa and rmax while scanning once through A

\section*{Algorithm \& Complexity}
- Obviously: O(n)
```

A: array_of_integer;
rmax:= 0;
m := 0;
for i:=1 to n do
rmax := max(0, rmax+A[i]);
m := max(rmax, m);
end for;
return m;

```
Asymptotically optimal
- We only look a constant number of times at every element of A
- But we need to look at least once at every element of A to solve msa
- Thus, the problem is \(\Omega(n)\)
- Example of dynamic programming: Build larger solutions from smaller ones

\section*{Example}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline -2 & 3 & 1 & 3 & 4 & -3 & -4 & 2 & 0 & 0 \\
\hline -2 & 3 & 1 & 3 & 4 & -3 & -4 & 2 & 3 & 3 \\
\hline -2 & 3 & 1 & 3 & 4 & -3 & -4 & 2 & 4 & 4 \\
\hline -2 & 3 & 1 & 3 & 4 & -3 & -4 & 2 & 7 & 7 \\
\hline -2 & 3 & 1 & 3 & 4 & -3 & -4 & 2 & 11 & 11 \\
\hline -2 & 3 & 1 & 3 & 4 & -3 & -4 & 2 & 8 & 11 \\
\hline -2 & 3 & 1 & 3 & 4 & -3 & -4 & 2 & 4 & 11 \\
\hline -2 & 3 & 1 & 3 & 4 & -3 & -4 & 2 & 6 & 11 \\
\hline
\end{tabular}

\section*{Why Better?}
```

A: array_of_integer;
rmax:= 0;
m := 0;
for i:= 1 to n do
rmax := max(0, A[i],
rmax+A[i]);
m := max(rmax, m);
end for;

```
```

function msa (A: array_of_integer) {
n := |A|;
m := n/2; \# Assume even sizes
A1 := A[1..m];
A2 := A[m+1..n];
11 := rmax(A1);
12 := lmax(A2);
m := max(msa(A1), l1+12, msa(A2));
return m;
}

```
- Algorithm to the right: Breaks in the middle
- \(\log (n)\) recursive calls
- But we need to compute new rmax and Imax values all the time
- Algorithm to the left: Break iteratively
- n extensions
- But we can compute the next rmax from the previous rmax

\section*{Optimization Problems}
- Optimization - find the best among all possible solutions
- Shortest path, best schedule, best query plan, best superstring, ...
- Issues
- Find solutions: Simple for msa, but sometimes hard
- Score solutions: Simple for msa, but sometimes hard
- Search space pruning: Do we need to look at all possible solutions?
- msa: No need to break array at position 3/7
- Be aware: Sometimes all possible "divides" are necessary
- Typical pattern
- Enumerate solutions in a systematic manner
- Often generates a tree of partial and finally complete solutions
- Prune parts of the search space where no optimal solution can be
- If possible, stop early

\section*{Fundamental Types of Algorithms}
- Greedy: Find some promising start point and expand aggressively until a complete solution is found
- Fast, but usually doesn't find the optimal solution
- Exhaustive: Test all solutions and find the one that is best
- No pruning - slow, sometimes the only choice
- Divide \& Conquer: Break problem into smaller ones until these can be solved "directly"; construct solutions for bigger problems from these small solutions
- Dynamic programming
- Special case of d\&c involving tables of intermediate results
- Backtracking
- Special case of d\&c: Move from smaller solutions to larger, but allow undoing previous moves

\section*{Types of Algorithms}
- For the max subarray problem
- Greedy:
- Exhaustive:
- With pruning
- Divide \& Conquer:
- Other Divide \& Conquer:
\(\mathrm{O}(\mathrm{n})\), but wrong
\(\mathrm{O}\left(\mathrm{n}^{3}\right)\)
\(O\left(n^{2}\right)\)
O(n*log(n))
\(\mathrm{O}(\mathrm{n})\)
- Notes
- Usually there are different greedy, exhaustive, ... solutions

\section*{Exemplary Questions}
- Give an optimal algorithm for the max-subarray problem and prove its optimality
- Assume the max-subarray problem with the additional restriction that the length of sub-array must be short-orequal a constant \(k\). Give a linear algorithm solving this problem.
- Give an algorithm for the max-subarray problem in 2D, where \(|A|\) is quadratic and the subarray must be a square. Analyze its worst-case complexity.
- Hint: For improvements, store intermediate results```

