Network Reconstruction

Ulf Leser
Content

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL / ARACNE
 - Example
- Quantitative network reconstruction
Networks

How do we know? Network reconstruction
Approaches to Network Reconstruction

- By many, many small-scale experiments
- By mathematical modeling from high-throughput data sets
- By evolutionary inference from model organisms
- By curation from the literature (see first bullet)
Reconstruction from Indirect High-Throughput Data

• Network reconstruction, re-engineering, inference, ...

• Idea: Derive network from indirect observations
 – **Network**: Links and their effect (strength, activation, ...)
 • We usually assume the players (genes, metabolites, ...) to be given
 – **Observation**: High-throughput measurements
 • Here: Transcriptome, microarrays, RNA-Seq
 – **Indirect**: We try to infer physical causality by correlation of expression intensities

• Warning: All current methods are **highly reductionist**
Reconstruction from Indirect High-Throughput Data

- Quantitative time-resolved network inference: Infer intensities of activities over time
 - Very complicated
- **Dynamic networks**: Synchronize time and discretize activity
 - Nodes get one of two states: active / inactive
 - Edges determine how states propagate through the network
 - Propagation proceeds in synchronized steps
 - Current states determine future states of connected nodes
Boolean Networks

• Definition

A Boolean Network is a set of nodes V with

- Every node has an associated Boolean state (on/off)
- Every node is labeled with a Boolean function over the states of nodes

• Visualization

- We map a BN V into a digraph $G=(X,Y)$ by:
 - $X = V$
 - $Y = \{ (v,w) \mid v, w \in X \text{ and } w \text{ is part of the boolean function of node } v \}$
- G has less information than B
 - Boolean formulas cannot be derived from G

\[f_A(B) = B \]
\[f_B(A, C) = A \text{ and } C \]
\[f_C(A) = \text{not } A \]
Boolean Network for Biology

- Vertices = genes
- Boolean formulas: Interplay of other genes necessary to activate (regulate) a node
- An edge (v,w) visualizes an effect of v on w
- Simplistic: No cofactors, no cellular context, no binding affinity, no time, no kinetics, ...
Static Boolean Networks

- **Definition**

 A *state* of a Boolean Network is a labelling of all nodes with TRUE or FALSE. A state S of a Boolean Network is called **consistent**, when the state of every node equals the value of its boolean function.

- **Remarks**
 - Not very interesting – nothing ever changes
 - Not every BN has a consistent state (e.g. $f_A(B) = B$, $f_B(A) = \text{NOT } A$)

\[
\begin{align*}
 f_A(B) &= \text{not } B \\
 f_B(A,B) &= A \text{ and not } C \\
 f_C(B) &= B
\end{align*}
\]
Network Dynamics

- **Definition**
 A *Dynamic Boolean Network (DBN)* is a Boolean network where every node v is assigned a sequence of states v_0, v_1, v_2, \ldots such that the state of v_t with $t>0$ equals the value of the Boolean function of v applied to the states w_{t-1} of all incoming nodes w of v. The initial states at $t=0$ are arbitrary.

- **Remarks**
 - Models the state of every gene over time
 - States at time point t only depend on states at time point $t-1$
 - No buffering, slow/fast reactions ...
 - **Deterministic**: Given all states at a time t, any state at any later time point can be uniquely determined
Example

Example: Changes over Time

<table>
<thead>
<tr>
<th>genes time</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Network Analysis

- Many things can be analyzed using DBN
- For instance, an attractor is a (set of) states towards which a subset of the network states converge
 - Point attractor: State which cannot be left any more
 - Cyclic attractor: A series of states which will repeat forever
 - Every DBN must have at least one attractor, as the number of network states is finite – we must “repeat” after at most $2^{|V|}$ steps
 - Number / shape of attractors depend largely on size of network and complexity of Boolean functions
- However, we want to reconstruct networks
Network Reconstruction

- Assume we know all genes, but not their relationships
- Assume that the states of genes only depend on (the states of) the other genes in the past
- Assume we observe the states of n genes over m time points (a matrix S; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?

<table>
<thead>
<tr>
<th>genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

S
Example

\[
\begin{align*}
 f_A(B) &= \text{not } B \\
 f_B(A,B) &= A \text{ and not } B \\
 f_C(B) &= B
\end{align*}
\]

\[
\begin{array}{c|ccc}
 \text{genes} & A & B & C \\
 \text{time} & 0 & 1 & 1 & 0 \\
 & 1 & 0 & 0 & 1 \\
 & 2 & 1 & 0 & 0 \\
 & 3 & 1 & 1 & 0 \\
 & 4 & 0 & 0 & 1 \\
 & 5 & \ldots & \ldots & \ldots
\end{array}
\]
Formal Problem

- **Definition**

 *Let S_t, $0 \leq t \leq m$, be the vector of all observed states of all genes at time point t. A DBN G with functions f_1, \ldots, f_n, $n = |V|$, is called
 - consistent with S_t iff $S_t = [f_1(S_{t-1}), f_2(S_{t-1}), \ldots f_n(S_{t-1})]$
 - consistent with S iff it is consistent for all S_t, $1 \leq t \leq m$*

- **The Boolean network reconstruction problem**
 Given an observation S over a set V, find a DBN G that is consistent with S.

- **Remark**
 - Reconstruction means finding the functions f_1, \ldots, f_n
Solutions

- Clearly, there are many observations S for which no consistent G exists
 - Recall that DBN are deterministic
 - Imagine S_t, S_{t+1} and S_u, S_{u+1} with $S_t = S_u$ but $S_{t+1} \neq S_{u+1}$
- Also, there are many observation S for which more than one consistent G exists
- Every time point narrows the options for G – the longer S, the (monotonically) less consistent G’s exist
Optimal Networks

- Definition
 - For a DBN G, let $\text{size}(G)$ be the total number of variables (edges) appearing in the Boolean functions of G
 - A DBN G is minimal for observation S, if G is consistent with S and there is no G' which is also consistent with S and $\text{size}(G') < \text{size}(G)$

- Remark
 - Parsimony assumption: Small models are better
 - Thus, the smallest network is the best – functions are as simple as possible, nothing is inferred that is not enforced by the data
 - Not necessarily unique
Naïve Algorithm

- Exhaustive naïve algorithm for finding minimal networks
- **Very complex** (AND, OR, NOT, no paranthesis)
 - k=1: 2n functions
 - k=2: 2*2n*2n=O(n²) functions
 - ...
 - General: $O(2^{2k-1}n^k)$ functions

```plaintext
N = V;
for k = 1...|V|  # length of functions
    for every n in N  # all unexplained nodes
        test all functions f of size k for n on S;
        if f is consistent for n on S
            N := N \ n;  # n is explained
            Add f to network;
        end if;
    end for;
end for;
```
Pros and Cons

• Application (transcriptome data)
 – Perform time-series gene expression experiments
 – Brutally discretize each measurement: Genes are on or off
 – Reconstruct DBN

• Pros: Simple

• Cons
 – Binary values are not capturing reality
 – Nature has no synchronized time or reactions
 – No quantification ("it needs 2*A and one B to regulate C")
 – Only small networks are solvable
 – No unique solutions
 – ...
Content

• Network reconstruction
 – Boolean models
 – Correlation-Based Approaches: REVEAL / ARACNE
 – Example

• Quantitative network analysis
Towards Reality

- There are less complex & more robust algorithms
- REVEAL replaces Boolean functions by mutual information; correlations rather than deterministic switching
- ARACNE is even simpler: Build correlation network and removal some (presumably indirect) correlations
Foundations

- Definition

Let X, Y be two discrete random variables. The **mutual information** $MI(X,Y)$ is defined as

$$MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \ast \log \left(\frac{p(x,y)}{p(x) \ast p(y)} \right)$$

- Remark
 - Measures the variable’s mutual dependency
 - Deviation of **observation** $(p(x,y))$ from **expectation** in case of independence $(p(x) \ast p(y))$
 - How much does x determine the state of y (and vice versa)?
 - How helpful is it to know x to know y (and vice versa)?

- Similar measures: Information gain, Pearson correlation, conditional entropy, ...
 - Note: Many are asymmetric
Example

\[MI(X, Y) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \cdot \log \left(\frac{p(x, y)}{p(x) \cdot p(y)} \right) \]

<table>
<thead>
<tr>
<th>p(x, y)</th>
<th>(y=0)</th>
<th>(y=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0; (p(x=0)=0.2)</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>x=1; (p(x=1)=0.8)</td>
<td>0.48</td>
<td>0.32</td>
</tr>
</tbody>
</table>

\[MI(X, Y) = 0 \]

\[MI(X, Y) = 0.24 \]
Two more Facts

- With a little math, we find
 \[MI(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]
 - \(H(X) \): Entropy of \(X \)
 - \(H(X|Y) \): Conditional entropy of \(X \) given \(Y \)
- It follows: \(MI(X,Y) < \min(H(X),H(Y)) \)
 - In case of \(H(X|Y)=0 \) or \(H(Y|X)=0 \), which means that \(X \) (or \(Y \)) completely determines \(Y \) (or \(X \))
 - This defines a maximal value for \(MI(X,Y) \)
- \(MI \) can be extended to sets of three, four, \ldots \ variables
 - Like Boolean functions over three, four, \ldots \ variables
 - Multivariate mutual information
Application

- Assume m observation of n genes
 - Can be m time points, m conditions, m samples, m treatments ...
 - REVEAL has no notion of time
- Discretize expression values to 0 or 1 (again)
- Compute for each gene X $p(X=0)$ and $p(X=1)$; the fraction of observations in which X was 0 / 1
 - Compute for each pair X,Y the probabilities $p(X=0, Y=0)$, ...
 - Compute for each triple X,Y,Z the probabilities ...
 - ...
- Task: Find network such that every node X has the minimal number of incoming edges with maximal mutual information
 - Minimal number of other variables offering maximal explanation
REVEAL Algorithm

\[
N = V;
\text{for } k=1 \ldots |V| \quad \# \text{number of nodes/variables}
\text{ for every } X \text{ in } N \quad \# \text{all unexplained nodes}
\text{ find subset } T=(Y_1, \ldots, Y_k) \text{ with } MI(X,Y_1,\ldots,Y_k) = H(X);
\text{ if } T \text{ exists}
\text{ } N := N \setminus X; \quad \# \text{n is explained}
\text{ end for;}
\text{end for;}
\]

- Very strict: \(Y_1, \ldots, Y_k \) must \textbf{maximally explain} \(X \)
 - Unrealistic – noise, neglected effects, ...
 - Still very high complexity (“all subsets…”)

- Practical modifications
 - Only require \(|MI(X,Y_1,\ldots,Y_k) - H(X)| < \varepsilon\)
 - Set a \textbf{maximal} \(k \) and find best explanation with \(\leq k \) edges
ARACNE

- Fast variation of REVEAL which (a) considers each pair in isolation and (b) gives up model minimality
- Idea
 - Compute mutual information between all pairs of genes
 - This gives a complete network
 - Remove edges where $|\text{MI}(X,Y)-H(X)| > \varepsilon$
 - ε can be estimated from the distribution of MI – created at random?
 - Do not consider composite effects – all Y in isolation
 - Remove certain indirect effects (“data processing inequalities”)
Data Processing Inequalities

Imagine with strong effects of A on B and B on C; will appear as

But if we find which edge most likely is an artifact?

- Assumption: If $\text{MI}(X,Z) \leq \min(\text{MI}(X,Y),\text{MI}(Y,Z))$, then the correlation between X-Z is an indirect effect and removed
- Procedural: In every triangle, remove the smallest edge
 - But in which order should triangles be visited?
Content

• Network reconstruction
 – Boolean models
 – Correlation-Based Approaches: REVEAL/ ARACNE
 – Example
• Quantitative network analysis
Reconstructing the Mammalian Clock

- DA Sven Lund, 2015
- Data
 - ~630 rather unspecific arrays from GEO
 - Compared to two time-resolved clock-specific experiments
- Reconstruction quality of three algorithms
 - Aracne, Bayes Networks, Time-Delay Aracne
Results

- Filtering of ARACNE reduces recall a lot, while precision increases only marginally.
- Data set size outweighs specificity – reconstruction about as good using many untargeted arrays or using fewer targeted arrays.

<table>
<thead>
<tr>
<th>Kennzahl</th>
<th>Verfahren</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{x}</td>
<td>Pearson</td>
<td>53.75</td>
<td>20.00</td>
<td>41.00</td>
<td>21.25</td>
<td>0.72</td>
<td>0.57</td>
</tr>
<tr>
<td>s</td>
<td>Pearson</td>
<td>4.979</td>
<td>8.718</td>
<td>8.718</td>
<td>4.979</td>
<td>0.068</td>
<td>0.070</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>Bayes</td>
<td>36.00</td>
<td>33.50</td>
<td>27.50</td>
<td>39.00</td>
<td>0.48</td>
<td>0.57</td>
</tr>
<tr>
<td>s</td>
<td>Bayes</td>
<td>12.739</td>
<td>10.282</td>
<td>12.739</td>
<td>10.282</td>
<td>0.170</td>
<td>0.020</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>ARACNE</td>
<td>18.88</td>
<td>48.00</td>
<td>13.00</td>
<td>56.13</td>
<td>0.25</td>
<td>0.59</td>
</tr>
<tr>
<td>s</td>
<td>ARACNE</td>
<td>5.515</td>
<td>3.47</td>
<td>3.47</td>
<td>3.47</td>
<td>0.017</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Averages over all data sets

<table>
<thead>
<tr>
<th>Kennzahl</th>
<th>Datenquelle</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
<th>Recall</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{x}</td>
<td>GEO</td>
<td>45.00</td>
<td>26.00</td>
<td>35.00</td>
<td>30.00</td>
<td>0.60</td>
<td>0.57</td>
</tr>
<tr>
<td>s</td>
<td>GEO</td>
<td>17.550</td>
<td>16.480</td>
<td>16.480</td>
<td>17.550</td>
<td>0.235</td>
<td>0.034</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>Korenčič</td>
<td>35.67</td>
<td>36.22</td>
<td>24.78</td>
<td>39.33</td>
<td>0.48</td>
<td>0.60</td>
</tr>
<tr>
<td>s</td>
<td>Korenčič</td>
<td>16.462</td>
<td>12.940</td>
<td>12.940</td>
<td>16.462</td>
<td>0.219</td>
<td>0.037</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>Hogenesch</td>
<td>30.89</td>
<td>36.67</td>
<td>24.33</td>
<td>44.11</td>
<td>0.41</td>
<td>0.55</td>
</tr>
<tr>
<td>s</td>
<td>Hogenesch</td>
<td>15.648</td>
<td>12.708</td>
<td>12.708</td>
<td>15.648</td>
<td>0.208</td>
<td>0.094</td>
</tr>
</tbody>
</table>
Content

- Network reconstruction
- Quantitative network reconstruction
Networks as Equations

- REVEAL / ARACNE infer relationships based on correlation
- Alternative: Describe states as sets of (linear) equations
 - No discretization
 - Extensibility: Incorporate different types of experiments (“multi-omics” – proteome, binding, epigenetic status, …)
 - Still many limitations: Synchronized time, no kinetics
- We look at one simple approach in between reconstruction and analysis (Schacht et al., 2014)
 - Differentiates between regulators (transcription factors) and regulated entities (genes)
 - Goal: Rank transcription factors by effect strength
 - Which are the most important TFs in this data set?
 - This involves estimating the impact of TF on genes
Approach

- Assume a network $G=(V,E)$, where V consists of a set of transcription factors T and a set of genes G
 - Transcription factors regulate genes, but not vice versa
 - We ignore that a TF may regulate TFs (even including itself)
 - Each gene g is regulated by all TFs
 - For efficiency, we can also assume this set to be constrained – “potential regulators”
- Measurements: m observations for n nodes (genes / TFs)
- We model the expression values of all genes as linear combinations of the expression values of its regulating TFs

$$g_{i,s} = \beta_0 + \sum_{t=1}^{\left|T\right|} \beta_t \ast \delta_{t,i} \ast e_{t,s}$$
\[g_{i,s} = \beta_0 + \sum_{t=1}^{\vert T \vert} \beta_t \cdot \delta_{t,i} \cdot e_{t,s} \]

- \(g_{i,s} \): Expression of gene \(i \) in observation \(s \)
- \(\beta_0 \): Fixed additive offset
- \(\beta_t \): Global activity parameter for transcription factor \(t \)
 - Independent of observation and gene
- \(\delta_{t,i} \): Affinity of TF \(t \) to gene \(I \)
 - E.g. Binding strength to promoter
- \(e_{t,s} \): Expression of TF \(t \) in observation \(s \)
Optimization

- Typically, these (large) systems cannot be solved exactly
- Instead, minimize the error

\[
| g_{i,s} - \left(\beta_0 + \sum_{t=1}^{\vert T \vert} \beta_t \cdot \delta_{t,i} \cdot e_{t,s} \right) | \Rightarrow \min
\]

- ... under a set of constraints
- Several solvers available
Comparison (Trescher & Leser, 2018)

- Comparison of different tools shows very little agreement
- Research question essentially open – which method is best? How can we infer regulatory activity?
Many Other Models

- **Stoichiometric networks**
 - Model the turnover of molecules
 - Especially metabolism
 - Needs to consider enzymatic effects
 - What will a network produce given a certain input?
 - Is a network in flux balance?

- **Kinetic networks**
 - Takes into account reaction rates: How many in what time
 - No linear relationship
 - Leads to systems of differential equations
 - Can predict system behavior in time under realistic assumptions
Further Reading