Proteomics:
Large-Scale Identification of Proteins

Ulf Leser
This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
Proteomics

- **Genomics** =
 Determining the genome of a species

- **Transcriptomics** =
 Determining the mRNA of a cell / tissue / state

- **Proteomics** =
 Determining the proteins in a cell / tissue / state

- Proteomics and transcriptomics have mostly identical goals
 - **Understanding** the processes happening in a cell
 - Differentiate between states, tissues, developmental state, ...
 - **Biomarker**: Finding protein/mRNA/... (forms, concentrations) that are characteristic for a certain phenotype (e.g., a disease)

- Metabolomics, epigenomics, bibliomics, ...
Proteomics versus Transcriptomics

• Advantages
 – Proteins make you live, not mRNA
 – mRNA is only **indirect evidence** with little correlation with proteome
 • Regulation by miRNA, post-translation modifications, decay, ...
 – Protein survive (some time), mRNA is (mostly) transient
 – Proteins are favorite **drug targets**
Proteomics versus Transcriptomics

- Disadvantages
 - Scale: $\sim 20K$ genes, $\sim 300K$ proteins, $\sim 1M$ protein forms
 - Handling: No PCR, no hybridization, no simple synthesis, no sequencing, no long-term "storage" as clones, high reactivity, ...
 - Behavior highly context-dependent: Temperature, solution, pH, ...
Typical Proteomics Workflow

1. **Proteome Extraction**
 - From a cell mixture

2. **Protein Separation**
 - 2D gel electrophoresis / LC/GC

3. **Sample Isolation**
 - From the gel / from the flow

4. **Protein Identification**
 - Mass spectrometry

5. **Analysis**
 - Quantification, clustering, ...
This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
2D Gel Elektrophoresis

- Separation of proteins in **two dimensions**
 - Mass
 - Charge
- Every “spot” one protein (hopefully)
Method

1. Separation in **pH-gradient**: Proteins move to their isoelectric points

2. Charging of proteins with SDS (Sodiumdodecylsulphate)

3. Place on slide of polyacrylamide gel (PAGE)

4. Proteins move in an **electric field**: speed depends on mass

5. **Staining**: photo; image analysis; excision
Analysis

- 2D-Page may separate up to 10,000 proteins
- Under identical conditions, the position of a particular protein is fairly stable
- Software for identification of proteins by position
 - After photo and image analysis
 - Align image to reference
- Various databases of 2D-Gels
Pro / Contra

• Comparably simple and cheap
• Disadvantages
 – No high-throughput – much manual work
 – No robust quantification (spot intensity depends on staining)
 – Similar proteins (e.g. protein forms) build overlapping spots
 – Many restrictions
 • No proteins with <20KD or >200KD
 • No highly charged proteins
 • No detection of low concentrations
 • No membrane proteins (depending on method)
 • …
 – No de-novo protein identification
 – Limited accuracy in comparative identification
Liquide / Gas Chromatography

- **Other option:** GC/LC
 - Chamber contains two phases (liquid / liquid, liquid/gas)
 - **Different speeds** depending on mass/charge ratio
 - Separation by retention times
This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
 - Method
 - Algorithms: Naïve, probabilistic
Mass Spectrometry

- Accelerate particles (must be charged) in an electric field
- Detector measures hits at back wall
- **Time of flight** (ToF) proportional to mass
 - Other techniques exist (magnetic drift, ...)
- **Spectrum of mass peaks** is used to identify particle
Mass Spectrometry

Source: http://imr.osu.edu

Source: http://www.sysbio.org
MS for Protein Identification

• Problem: Proteins are fragile and break during acceleration

• Solution
 – Break proteins into peptides before acceleration (digestion)
 – Measure peptides ToF (each peptide one signal)
 – Identify protein based on spectrum of peptide signals

• In theory, every protein has an almost unique spectrum
 – Using modern MS/MS, even different forms of the same protein are separable
Digestion

Trypsin:
Cleaves after Arginine und Lysine if next AA is not Proline

Chymotrypsin:
After Tyr, Trp, Phe, Met
Ionization

- Problem: Peptides often are uncharged – no acceleration
- Solution
 - MALDI – **Matrix Assisted Laser Desorption / Ionization**
 - Peptide are embedded in a „matrix“
 - Crystallization with **charged, light-sensitive molecules**
 - Fire on crystal with laser
 - Light-sensitive molecules vaporize and carry peptides with them
 - Accelerate
- Other techniques known
 - E.g. ESI: electrospray ionization
From Spectra to Peaks

- **Detecting peaks** and assigning them to peptides is difficult
 - Technical bias in runs / machines
 - Inaccuracies of measurement
 - Inhomogeneous sample preparation
 - Matrix etc.
 - Different quantities of peptides

- Creating a spectrum: **Signal processing** (not covered here)
 - Peak detection, peak disambiguation, noise filtering, ...
This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
 - Method
 - Algorithms: Naïve, probabilistic
Algorithms for Protein Identification from Spectra

• We focus on **database-based** identification

• Idea
 – We have a database D of protein sequences d_1, d_2, \ldots
 • Each d_i is subjected to electronic digestion – set of peptides
 • For each peptide, we know its theoretical ToF
 • Compute a theoretical spectrum s_i for each d_i
 – Measure real spectrum s of unknown protein k
 – Compare empirical spectrum s with all theoretical spectra s_i

• We can only **find what we already know**
Illustration

Real experiment

Theoretical experiment

Comparison
Naive Algorithm: Hitcount

- Compare measured spectrum \(s \) with all \(s_i \) in DB
- Protein \(d_i \) which has the most peaks in common wins
 - Input: \(s=\{p_1,...,p_m\} \), database D with many \(s_i=\{q_{i1},...,q_{ij}\} \)
 - For each \(s_i \): Compute \(|s \cap s_i| \)
 - Protein \(d_i \) where \(s_i \) has maximal overlap wins
- Complexity?
 - Keep peak lists \(s \) and \(s_i \) sorted
 - We need to compare \(|s| \) hits with \(|D| \) proteins in DB
 - Let \(q \) be the average number of peaks in a database spectrum
 - Together: \(\sim(|s|+q)*|D| \) comparisons
 - Can be sped-up further (indexing)
Why “Naïve”?

- Peptide masses are not really equal (e.g. isotopes)
 - Small deviation – nearest peak; match might not be unique
- Some (short) peptides are more frequent than others
 - Some peptides appear in almost all proteins – little signal
 - Smaller peptides are much more frequent but much less specific
 - And peptide length is stochastic
 - Frequent peptides should have a lower impact
- Proteins have different lengths
 - Longer proteins have a higher a-priori chance for more peak matches
Example

• Which one would you prefer?
More Problems

- Many sources of error
 - Enzymes don’t work 100%
 - Theoretical spectra don’t match
 - Protein sequences in DB contain errors
 - Especially when directly translated from genome
 - Leads to theoretical spectra not existing in nature
 - Posttranslational modifications modify real spectra
 - MS is not perfect – spurious, shifted, missing peaks
 - Lead to false positive and false negative peak matches

- Closed-world assumption
 - What if real sequence is not in the database?
 - Some protein always has the highest count – high enough?
 - No confidence scores
Some Relevant Algorithms

- **Heuristic: MOWSE (outdated)**
 - Considers total protein mass and peptide frequencies
 - Generates a score

- **Probabilistic algorithm: Profound**
 - Copes with measurement errors, deviation in protein mass, and different peptide frequencies
 - Generates a probability of match for each protein (~ confidence)

- **Many more (and newer) algorithms**
 - MASCOT, PeptIdent, ProteinProspector, SEQAN, ...
Example of a Probabilistic Method: ProFound \[\text{ZC00}\]

- Given: Measured spectrum D and a protein k
 - D: Previously s; k: previously s_i
- ProFound computes prob. $p(k|D)$ that D was produced by k
- The formula is complex; its derivation is even more complex and skipped
- Basic assumption: Measured peptide masses are normally distributed around the “canonical” value
 - Most probable isotope composition
ProFound Approach

- First step: Assign peaks from k to closest peaks from D
 - A-priori assignment is a strong first filter; errors are propagated
- Then compute probabilities using

\[
P(k|D|I) \propto P(k|I) \frac{(N - r)!}{N!} \prod_{i=1}^{r} \left\{ \sqrt{\frac{2 (m_{\text{max}} - m_{\text{min}})}{\pi \sigma_i}} \times \right. \\
\left. \sum_{j=1}^{g_i} \exp \left[-\frac{(m_i - m_{ij0})^2}{2\sigma_i^2} \right] \right\} F_{\text{pattern}}
\]
Legend

\[P(k|DI) \propto P(k|I) \frac{(N - r)!}{N!} \prod_{i=1}^{r} \left\{ \sqrt{\frac{2}{\pi}} \frac{m_{\text{max}} - m_{\text{min}}}{\sigma_i} \right\} \times \sum_{j=1}^{g_i} \exp \left[-\frac{(m_i - m_{ij0})^2}{2\sigma_i^2} \right] \right\} F_{\text{pattern}} \]

- \(p(k|D,I) = \) prob. that protein \(k \) was observed by spectrum \(D \) given the background information \(I \)
- \(p(k|I): \) A-priori probability of \(k \) in the given species / cell / tissue
- \(N: \) Predicted number of peptides of database protein \(k \)
- \(r: \) Number of hits between \(D \) and \(k \) (results from initial assignment)
- \(m_{\text{max}}, m_{\text{min}} \) – range of observed masses for current peak (background)
- \(\sigma_i \) – standard deviation of current peak (background)
- \(g_i: \) How often is the \(i \)'th peptide contained in \(k \)?
- \(m_i: \) Mean mass of the DB peak (background)
- \(m_{ij0}: \) Measured mass of \(j \)'th occurrence of this peptide
- \(F_{\text{pattern}}: \) Heuristic factor dealing with “overlapping peaks”
ProFound Explanation

- How many of the expected peptides of k did we observe?
- Multiply probabilities of all hits
- “Freedom” of measurements of hits for this peptide
- Many predicted peaks may create only one measured peak
- Probability of the difference between the expected mass and the measured mass (assuming normal distribution)
ProFound Intuition

- Many hits ($r \sim N$) – score goes down (outweighs influence of more factors in the red product)
- Hits with a small stddev or a broad range – score goes up
- Many observed peaks match the predicted peaks – score goes up
- Observed peaks close to canonical peaks – score goes up
- Theoretical peak as high stddev – scores go down (also green)
Critique

• Score assumes that protein is in the database
 – Better: formulate „null“ hypothesis, compute prob. of the spectrum given the null hypothesis, and report the log-odds ratio as score
 – But this is not as simple done as said

• Assumes that every peak comes from “the” protein
 – But measurements might be contaminated with peptides from other proteins

• Assumes that observed peaks can be assigned clearly to predicted peaks
 – This problem is tried to be covered by F_{pattern}
Further Reading

- Basics on proteomics: Every Bioinformatics book