

Multiple Sequence Alignment Sum-of-Pairs and Clustal-W

Ulf Leser

This Lecture

- Multiple Sequence Alignment
- The problem
- Theoretical approach: Sum-of-Pairs scores
- Practical approach: Clustal-W

Multiple Sequence Alignment

- We now align multiple ($k>2$) sequences
- Note: Also BLAST aligns only two sequences
- Why?
- Imagine k sequences of the promoter region of genes, all regulated by the same transcription factor f. Which subsequence within the k sequences is recognized by f ?
- Imagine k sequences of proteins that bind to DNA. Which subsequence of the k sequences code for the part of the proteins that performs the binding?
- General
- We want to know the common part(s) in k sequences
- "common" does not mean identical
- These parts can be anywhere within the sequences

Definition

- Definition
- A multiple sequence alignment (MSA) of k Strings $s_{i j} 1 \leq i \leq k$, is a table of k rows and I columns (sum($\left./ s_{i} /\right) \geq I \geq \max \left(/ s_{i} /\right)$) such that
- Row i contains the sequence of s_{j} with an arbitrary number of blanks being inserted at arbitrary positions
- Every symbol of every s_{i} stands in exactly one column
- No column contains only blanks

```
AACGTGATTGAC
TCGAGTGCTTTACAGT GCCGTGCTAGTCG TTCAGTGGACGTGGTA GGTGCAGACC
```


Good MSA

- We are searching for good (optimal) MSAs
- Defining „optimal" here is not as simple as in the $\mathrm{k}=2$ case
- Intuition
- All sequences had a common ancestor and evolved by evolution
- We want to assume as few evolutionary events as possible
- Thus, we want few columns (\sim few INSDELs)
- Thus, we want homogeneous columns (\sim few replacements)

This Lecture

- Multiple Sequence Alignment
- The problem
- Theoretical approach: Sum-of-Pairs scores
- Practical approach: Clustal-W

What Should we Count?

- For two sequences
- We scored each column using a scoring matrix
- Find the alignment such that the total score is maximal
- But - how do we score a column with $5^{*} T, 3^{*} A, 1^{*}$?
- We would need an exponentially large scoring matrix
- Alternative: Sum-of-Pairs Score
- We only score the alignment of each pair of sequences
- We aggregate over all pairs to score the MSA
- We need a clever algorithm to find the MSA with the best score

Formally

- Definition
- Let M be a MSA for the set S of sequences $S=\left\{s_{1}, \ldots, s_{k}\right\}$
- The alignment of s_{i} with s_{j} induced by M is generated as follows
- Remove from M all rows except i and j
- Remove all columns that contain only blanks
- The sum-of-pairs score (sop) of M is the sum of all pair-wise induced alignment scores
- The optimal MSA for S wrt. sop is the MSA with the lowest sopscore over all possible MSAs for S

Example

- Given a MSA over k sequences of length I - how complex is it to compute its sop-score?
- How do we find the best MSA?

Analogy

- Think of the $\mathrm{k}=2$ case

		w	r	i	+	e	r	s
0	0	1.	2	3	4	5	6.	7
1	1	1.	2	3	4	5	6	7
2 i	2	2	2.	2	3	4	5	7
3 n	3	3	3	3.	3	4	5.	6
4	4	4	4	4	3	4	5	6
	5	5	5	5	4.	4	5	6
	6	6	6	6	5	4.	5	6

- Every alignment is a path through the matrix
- The three possible directions (down, right, down-right) conform to the three possible constellations in a column (XX, X_, _X)
- With growing paths, we align growing prefixes of both sequences

Analogy

- Assume k=3
- Think of a 3-dimensional cube with the three sequences giving the values in each dimension
- Now, we have paths aligning growing prefixes of three sequences
- Every column has seven possible constellations (XXX, XX_, X_X, XX, X__, _X_, __X)

Concrete Examples

$$
d(i, j-1, k)
$$

$$
d(i-1, j, k-1)
$$

- Best sop-score for $\mathrm{d}(\mathrm{i}, \mathrm{j}-1, \mathrm{k})$ is known
- We want to compute $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$
- This requires to align one symbol with two blanks (blank/blank does not count)
- $d(i, j, k)=d(i, j-1, k)+2$
- Best sop-score for d(i-1, j,k-1) is known
- We want to compute d(i,j,k)
- This requires aligning a blank with $\mathrm{s}_{1}[\mathrm{i}-1]$ and with $\mathrm{s}_{3}[\mathrm{k}-1]$ and to align $\mathrm{s}_{1}[\mathrm{i}-1]$ and $\mathrm{s}_{3}[\mathrm{k}-1]$
- $d(i, j, k)=d(i-1, j, k-1)+2+c_{i k}$

Dynamic Programming in three Dimensions

- We compute the best possible alignment $\mathrm{d}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ for every triple of prefixes (lengths $\mathrm{i}, \mathrm{j}, \mathrm{k}$) using the following formula
- We assume the usual edit costs: $I / D / R=+1, M=0$

Initialization

- Of course, we have $\mathrm{d}(0,0,0)=0$
- Aligning in one dimension: $\mathrm{d}(\mathrm{i}, 0,0)=2 * \mathrm{i}$
- Same for $\mathrm{d}(0, \mathrm{j}, 0), \mathrm{d}(0,0, k)$
- Aligning in two dimensions: $\mathrm{d}(\mathrm{i}, \mathrm{j}, 0)=\ldots$
- Let $d_{a, b}(i, j)$ be the alignment score for $S_{a}[1 . . i]$ with $S_{b}[1 . . j]$
$-\mathrm{d}(\mathrm{i}, \mathrm{j}, 0)=\mathrm{d}_{1,2}(\mathrm{i}, \mathrm{j})+(\mathrm{i}+\mathrm{j})$
$-d(i, 0, k)=d_{1,3}(i, k)+(i+k)$
$-d(0, j, k)=d_{2,3}(j, k)+(j+k)$

Algorithm

```
initialize matrix d;
for i := 1 to |S |
    for j := 1 to | | S |
        for k := 1 to }|\mp@subsup{S}{3}{}
                            if (S (i) = S S (j)) then coij := 0; else coij := 1;
                            if (S (i) = S (k)) then civ := 0; else coik
    if (S (j) = S S (k)) then cojk := 0; else cojk}:=1\mathrm{ ;
    d
    d
    d
    d
    d
    d
    d
    d[i,j,k] := min(d
    end for;
    end for;
end for;
```


Bad News: Complexity

- For 3 sequences of length n
- There are n^{3} cells in the cube
- For each cell (top-left-front corner), we need to look at 7 corners
- Together: O(7*n³) operations
- For k sequences of length n
- There are n^{k} cell corners in the cube
- For each corner, we need to look at 2^{k}-1 other corners
- Together: O(2 $\left.2^{k} n^{k}\right)$ operations

Bad News: Biological Meaningfulness

- Recall our motivation: Measure evolution

- Real number of events: 8
- sop-score: $2+3+6+6+2+\ldots$
- Single mutations are counted multiple times

This Lecture

- Multiple Sequence Alignment
- The problem
- Theoretical approach: Sum-of-Pairs scores
- Practical approach: Clustal-W

Different Scoring Function

- If we knew the phylogenetic tree of the k sequences
- Align every parent node pairwise with its children
- Aggregate all alignment scores
- This gives the "real" number of evolutionary operations
- But not yet the best MSA
- But: Finding the true phylogenetic tree requires a MSA
- Not covered in this lecture
- Use a heuristic: ClustalW
- Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice." Nucleic Acids Res 22(22): 4673-80.

Clustal-W

- Main idea
- Compute a "good enough" phylogeny - the guide tree
- Use the guide tree to iteratively align small MSA to larger MSA
- "Progressive" MSA
- Starting from single sequences
- Add more and more sequences and smaller MSA to ever bigger MSA
- Needs a fast method to align two MSAs
- Standard method for a long time
- Many newer (better) proposals
- DAlign, T-Coffee, HMMT, PRRT, MULTALIGN, ...

Step 1: Compute the Guide Tree

- Compute all pair-wise alignments and store in matrix M
$-M[i, j]=\operatorname{sim}\left(s_{i}, s_{j}\right)$
- Compute the guide tree using hierarchical clustering
- Choose the smallest M[i,j]
- Let s_{i} and s_{j} form a new (next) branch of the tree
- Compute the distance from the ancestor of s_{i} and s_{j} to all other sequences as the average of the distances to s_{i} and s_{j}
- Set M' = M
- Delete rows and columns i and j
- Add a new column and row (ij)
- For all $\mathrm{k} \neq \mathrm{ij}: \mathrm{M}^{\prime}[\mathrm{ij}, \mathrm{k}]=(\mathrm{M}[\mathrm{i}, \mathrm{k}]+\mathrm{M}[\mathrm{j}, \mathrm{k}]) / 2$
- Iterate until M^{\prime} has only one column / row

Sketch

Example

	A	B	C	D	E
A		17	59	59	77
B			37	61	53
C				13	41
D					21

	A	B	E	CD
A		17	77	59
B			53	49
E				31

	E	$C D$	$A B$
\mathbf{E}		31	65
$\mathbf{C D}$			54

Example

Step 2: Progressive MSA

- Pair-wise alignment of MSAs in the order of the guide tree
- Aligning a MSA M_{1} with a MSA M_{2}
- Use the usual (global) alignment algorithm
- To score a column, compute the average score over all pairs of symbols in these columns
- Example

A	...P...	
B	...G...	Score of this column
C	...P...	($2 *$ s ($\mathrm{P}, \mathrm{A})+\mathrm{s}(\mathrm{P}, \mathrm{Y})+$
		2*s (G,A) +s (G,Y) +
D	...A...	$2 * s(P, A)+s(P, Y)$) 9
E	...A.	
F	...Y...	

Issues

- There is a lot to say about whether hierarchical clustering actually computes the "correct" tree
- Clustal-W actually uses a different, more accurate phylogenetic algorithm called "neighbor-joining"
- Clustal-W is fast: $\mathrm{O}\left(\mathrm{k}^{2} \mathrm{n}^{2}+\mathrm{k}^{2} \log (\mathrm{k})\right)$
- For k sequences; plus cost for computing pairwise alignments
- Idea behind progressive alignment
- Find strong signals (highly conserved blocks) first
- Outliers are added last
- Increases the chances that conserved blocks survive
- Several improvements to this scheme are known

Problems of Progressive MSA

```
1: MAYFIELD THE LAST FAT RER
2: MAYFIELD THE FAST RAT
3: MAYLEENE IS A FAT RAT
4: MAYROONI THE LAST BIG RAT
```


Angelehnt: Cedric Notredame, 2001

MAYFIELD THE LAST FAT RER			
MAYFIELD THE FAST RAT			
MAYLEENE	IS	A	FAT
MAT			
MAYROONI THE LAST BIG RAT			

Besser:

| MAYFIELD THE LAST FAT RER | | |
| :--- | :--- | :--- | :--- | :--- |
| MAYFIELD THE FAST | | |
| MAYLEENE | IS | RAT |
| MAY | FAT RAT | |

Further Reading

- Merkl \& Waack, chapter 13
- Böckenhauer \& Bongartz, chapter 5.3

