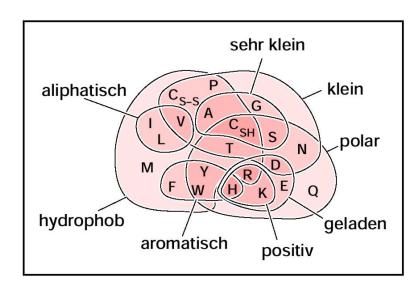


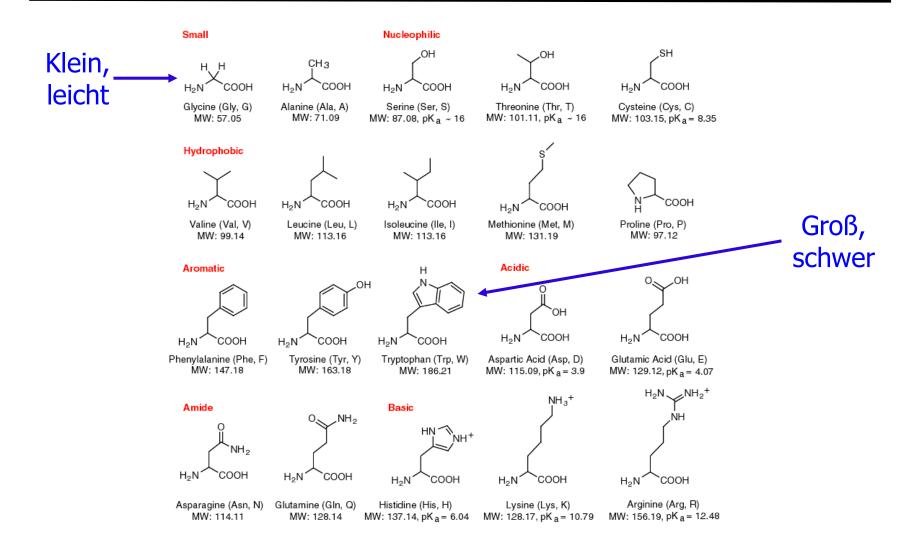
PAM and BLAST

Ulf Leser

Klausurtermin

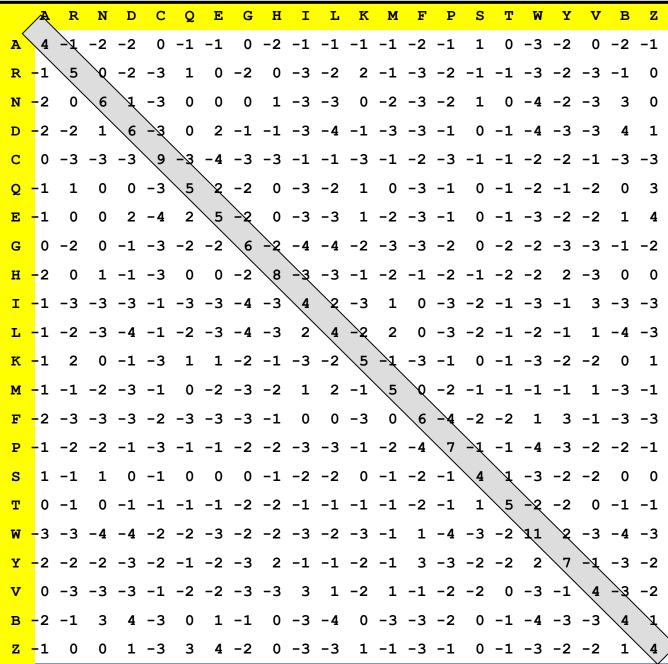

- Montag, 27.8.2018, 11-14 (11.30 13.30) Uhr
- Raum: 3.001
- Keine Hilfsmittel erlaubt
- Anmelden
- Übungsschein
- Mündliche Prüfungen

This Lecture


- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST

Substitution Matrices

- Recall
 - A scoring function (substitution matrix) is a function s: $\Sigma'x\Sigma' \rightarrow N$
- DNA: symmetric, simple matrices
- Protein sequences are different
 - Different AA have very different properties
 - Substitutions may change the 3D structure completely or just a little bit or not at all



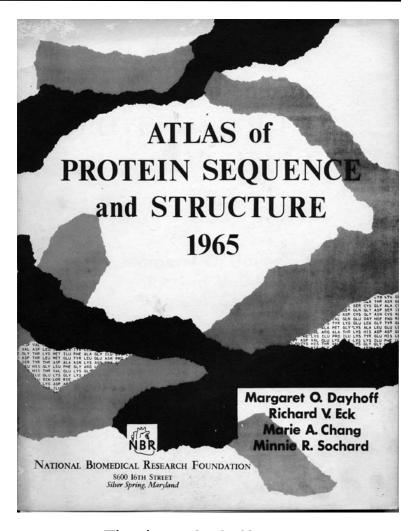
Amino Acids

Example

Where do all these numbers come from?

Is it Really Necessary?

Code	Häufig- keit	Mutier- barkeit
L	0.091	54
A	0.077	100
G	0.074	50
S	0.069	117
V	0.066	98
E	0.062	77
K	0.059	72
T	0.059	107
I	0.053	103
D	0.052	86
P	0.051	58
R	0.051	83
N	0.043	104
Q	0.041	84
F	0.040	51
Y	0.032	50
M	0.024	93
Н	0.023	91
C	0.020	44
W	0.014	25


- We count how often a particular AA was replaced by any other AA
 - Using "sure" sequence alignments
- Replacement rate of Alanin (A) := 100%
- Obviously no equal distribution
- Even if we assume that mutations happen more or the less at the same rate, they obviously don't survive at the same rate
 - Mutations are suppressed to different degrees
 - W (Tryptophan): Strong suppression
 - S (Serin): Little suppression

Filling a Substitution Matrix for Protein Sequences

- We need app. (20*20)/2=200 values
 - Scoring functions should be symmetric
- Possibility 1: Analytical
 - Capture weight, polarity, size, ...
 - Find a scoring scheme to measure the difference between two AA
 - Needs to produce a single value per AA pair
 - Not used in practice
- Possibility 2: Empirical
 - Count which substitutions survived at which frequency in reality
 - Needs true alignments: Pairs of homologues and aligned sequences

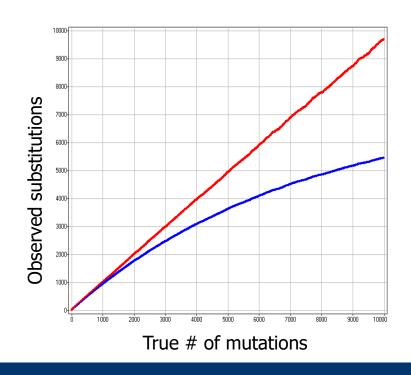
Margaret O. Dayhoff

- Goal: "Deduce evolutionary relationships of the biological kingdoms, phyla, and other taxa from sequence evidence"
- Collection of all known protein sequences
 - First edition: 65 proteins
 - Several releases followed
 - Resulted in the Protein
 Information Resource (PIR)

Thanks to Antje Krause

PAM: Point-Accepted Mutations

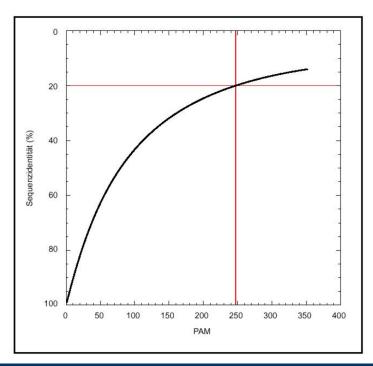
- Dayhoff, M. O., R. V. Eck, C. M. Park. (1972)
 A model of evolutionary change in proteins.
 in M. O. Dayhoff (ed.), Atlas of Protein Sequence and Structure Vol. 5.
- PAM has two meanings
 - 1 PAM Unit for measuring the similarity of two AA sequences
 - PAM-X matrix Substitution matrix to use when aligning two sequences that are X PAM distant


PAM as Distance Measure

Definition

Let S_1 , S_2 be two protein sequences with $|S_1| = |S_2|$. We say S_1 and S_2 are x PAM distant, iff S_1 most probably was produced from S_2 with x mutations per 100 AAs

Remarks


- PAM is motivated by evolution
- Assumptions: Mutations happen with the same rate at every position of a sequence
- If mutation rate is high or time is long, mutations will occur at the same positions
- PAM ≠ %-sequence-identity

PAM as Distance Measure

- No InDels, only replacements
- The PAM distance d of two DNA sequences can be derived analytically from their %-sequence-diversity p
 - d = -3/4*ln(1-4/3*p)
 - p = 1-"sequence identity"
 - Derivation skipped
- Pairs with PAM >250 are probably not homologues
 - %-sequence-identity < 20%</p>
 - Twilight zone
 - Which %-sequence-identity will two random protein sequences have?

(Jukes-Cantor model)

PAM Matrices

- The PAM-X matrix contains measures for the probability that a AA (column) was replaced by another AA (row) in two sequences that are x PAM distant
- Estimated from data
 - Let (S_{1,1}, S_{2,1}), ..., (S_{1,n}, S_{2,n}) be n x-PAM distant pairs of aligned sequences
 - Compute f(i), the relative frequency of AA A_i in all pairs
 - Compute f(i,j), the relative substitution frequency of A_i and A_j
 - Number of positions k in any of the aligned pairs with $S_{1,z}[k]=A_i$ and $S_{2,z}[k]=A_i$ or vice versa
 - Then

$$M_x(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

Some Explanations

Log-likelihood ratio combining

- Expectation: chances to generate this mutation by chance given the relative frequencies of the two involved AAs
- Observation: observed frequency of this mutation

$$M_x(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

Meaning

- M(i,j) = 0: No selection
- M(i,j) < 0: Negative selection, suppression of mutation
- M(i,j) > 0: Positive selection, mutation is favored

Example

 $S_{1,1}$: ACGTGAC

 $S_{2,1}$: AGGTGCC

 $S_{1,2}$: GTTAGTA

 $S_{2,2}$: TTTAGTA

 $S_{1,3}$: GGTCA

 $S_{2,3}$: AGTCA

Relative frequencies

A: 10/38 C: 6/38 G: 11/38 T: 11/38

Mutation rates

	А	С	G	Т
Α	4/19	1/19	1/19	0/19
С		2/19	1/19	0/19
G			4/19	1/19
Т				5/19

Matrix

	Α	С	G	Т
Α	0,48	0,10	-0,16	1
С		0,63	0,06	-
G			0,40	-0,20
Т				0,50

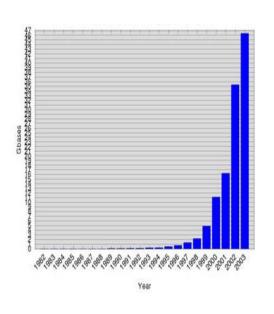
Problems

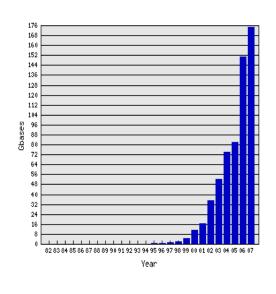
- Depends on predefined alignments
- We need a substitution matrix to find optimal alignments
 - A hen-egg problem
 - Alternative: Do it manually using experience, 3D-structure, ...
- Makes several assumptions
 - Mutations are equally likely at every position in a sequence
 - Mutations are equally likely independent from AA neighbors

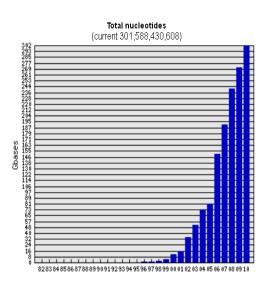
— ...

Real Substitution Matrices

- PAM requires large n for each x to adequately capture rare mutations
- Dirty trick: Molecular clock assumption
 - Assume that mutations appear with equal rate over time
 - Then the frequencies of PAM-x mutations depend on the frequencies of PAM-1 mutations
 - PAM-x matrices are computed by repeated matrix multiplication of PAM-1 with itself (assuming a linear relationship)
- The complete (highly heuristic) procedure
 - Choose set of n pairs with small PAM distance and align manually
 - Use these alignments to compute M₁
 - Compute $M_x = (M_1)^x$


BLOSUM


- PAM is a bit old-fashioned
- BLOSUM: BLOcks SUbstitution Matrix
 - Henikoff and Henikoff, 1993
 - Removes assumption of equal mutation rates across each sequence position by considering conserved blocks
 - Direct estimation for different PAM distances instead of errorpropagating self multiplication


This Lecture

- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST

Scaling Up Local Alignment

- Searching similar sequences (with a high local alignment score) is a fundamental operation in Bioinformatics
- Sequence databases grow exponentially
- We need faster algorithms, even if they sometimes fail

Similarity Search Problems and their Accuracy

- Task: Given a sequence s and a database D, find all sequences T in D that are sufficiently local-similar to s
 - Often, exactly computing T is not feasible and not necessary (think of the WWW and search engines)
- Assume a method that finds a set X of answers for s
- How good is this method?
 - Some sequences will be in X and T true positives
 - Some will be in X but not T false positives
 - Also called Type I error
 - Some will be in T but not X false negatives Reality
 - Also called Type II error
 - Some will be neitherin X nor T true negatives

Prediction + Tri

	+	-
+	TruePositive	FalsePositive
	(TP)	(FP)
-	FalseNegative	TrueNegative
	(FN)	(TN)

Precision and Recall

- Precision = TP/(TP+FP)
 - What is the fraction of correct answers in X?

Prediction

	Reality	
	+	-
+	TruePositive	FalsePositive
	(TP)	(FP)
-	FalseNegative	TrueNegative
	(FN)	(TN)

- Related to specificity
- Recall = TP/(TP+FN)
 - Which fraction of correct answers from T are also in X?
 - Also called sensitivity
- Trade-Offs
 - Usual methods compute a score per element of D
 - All sequences with a score above a threshold t are returned as X
 - Increasing t : higher precision, lower recall
 - Lowering t: lower precision, higher recall
 - ... if the score correlates with correctness ...

Example

• Let |DB| = 1000, |X| = 15, |T| = 20, $|X \cap T| = 9$

	Real: Positive	Real: Negative
Alg: Positive	TP = 9	FP = 6
Alg: Negative	FN = 11	TN= 974

- Precision = TP/(TP+FP) = 9/15 = 60%
- Recall = TP/(TP+FN) = 9/20 = 45%
- Assume we increase t: |X|=10, $|X \cap T|=7$

	Real: Positive	Real: Negative
Alg: Positive	TP = 7	FP = 3
Alg: Negative	FN = 13	

– Precision: 70%, recall = 35%

BLAST

- Altschul, Gish, Miller, Myers, Lipman: "Basic Local Alignment Search Tool", J Mol Bio, 1990
 - A heuristic algorithm for sequence similarity search
 - Very fast, high recall, not perfect
 - Very successful: You "blast" a sequence
 - NCBI runs thousands of BLAST searches every day
- A family of tools
 - Gapped-BLAST, PSI-BLAST, MegaBlast, BLAST-ALL, PATHBLAST, Name-BLAST, ...
 - BLAST for DNA, protein, DNA-protein, protein-DNA, ...
 - We only look at the simple DNA-DNA version
 - We skip several heuristic and domain-specific tricks

Fundamental Idea

- Fundamental idea: If two sequences have a good local alignment, then the matching area contains, with very high probability, a sub-area where the match is even better (or even exact)
- These sub-areas are called seeds

```
TTGACTCGATTATAGTCGCGGATATACTATCG
CCTATCACAAGAATATAGTCCCTGATCCAGC
```

```
TTGACTC GATTATAGTCGCGGAT ATACTATCG
CCTATCACAA GAATATAGTCCCTGAT CCAGC
```

```
TTGACTC GATTATAGTCGCGGAT ATACTATCG
CCTATCACAA GAATATAGTCCCTGAT CCAGC
```

Algorithm

- Given query sequence s and sequence database D={d_i}
- 1. Compute all substrings s_i of s of length q
 - Also called q-grams
 - How many?
- 2. Find all approximate occurrences of all s_i in all d_i
 - Gap-free alignment with matrix; score must be above threshold t
 - Hits are called seeds approx. occurrences of some s_i in d_i
- 3. Extend seeds to left and right in s_i and d_i until
 - [Constantly update the similarity score]
 - ... the score drops sharply
 - ... s_i or d_i ends
 - ... the score gets too bad compared to other hits found earlier

Example

q=5, t= 3, Matrix: M=+1, R=-1
s=ACGTGATA
d=GATTGACGTGACTGCTAGTGATACTATAT

 s_1 =ACGTG s_2 =CGTGA s_3 =GTGAT s_4 =TGATA

GATTGACGTGACTGCTAGTGATACTATAT
GATTGACGTGACTGCTAGTGATACTATAT
GATTGACGTGACTGCTAGTGATACTATAT
GATTGACGTGACTGCTAGTGATACTATAT

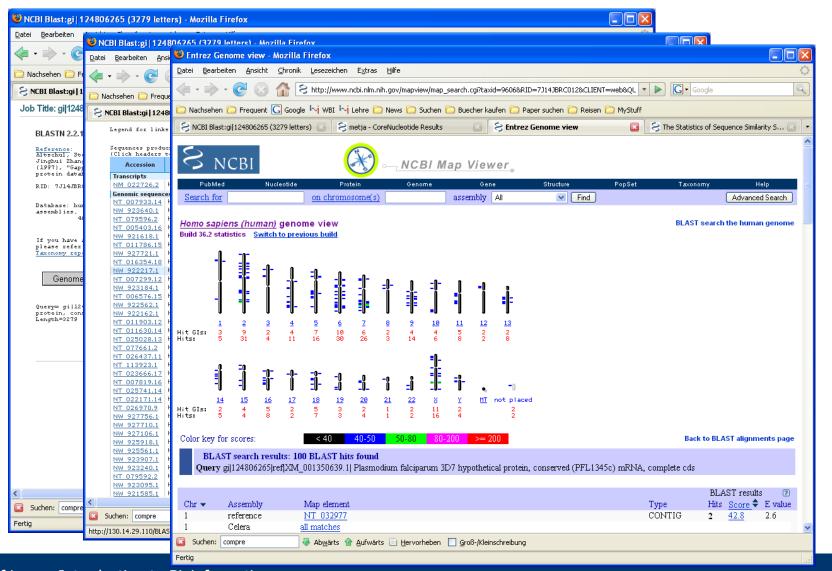
GATTGACGTGACTGCAAGTGATACTATAT	
ACGTGATA	5
ACGTGATA	5+1=6
ACGTGATA	6-1=5
• • •	• • •

Properties

- Finding seeds efficiently requires more work
 - Pre-compute all q-grams of all d_i
 - Group by q-gram
 - Called a hash-index (should be kept in main memory)
 - Lookup: Given s, find all matching q-grams (as seeds)

Exclusion method

- Vast majority of all sequences in DB are never looked at because they do not contain a seed
- The "seed" idea is the basis of nearly all fast alignment methods


Where it fails

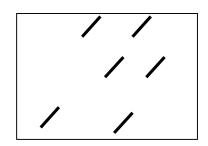
- Sensitive to t: Too high missing hits; too low slow
- Does not consider gaps

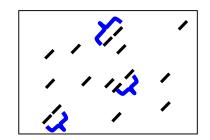
Speed – Precision - Recall

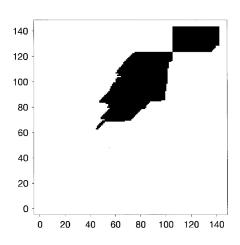
- Increasing t
 - Higher requirements for any seed
 - Less seeds, less extensions
 - Lower recall, higher speed, precision stays
- Increasing q (and adapting t)
 - Higher requirements for any seed
 - Less seeds, less extensions
 - Lower recall, higher speed, precision stays

BLAST Screenshots

BLAST-2


 Altschul, Madden, Schaffer, Zhang, Zhang, Miller, Lipman: "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NAR, 1997




- BLAST: 90% of time spend in extensions
- BLAST2: Two seeds in short distance
 - Needs a decrease in t

Higher recall

- BLAST didn't even consider gaps in the extension phase
- BLAST2: Full local alignment starting from seeds
 - Allows an increase of t

Further Reading

- Substitution matrixes: Krane & Raymer, Chapter 3
- BLAST, BLAST2: Merkl & Waack, Chapter 12