Algorithms and Data Structures

Strongly Connected Components
Content of this Lecture

• Graph Traversals
• Strongly Connected Components
Reachability in Graphs

• Fundamental problem: Given a graph $G=(V,E)$ and a pair of nodes $v,w \in V$: Is w reachable from v?

• Solutions so far ($n=|V|$)
 – Warshall’s algorithm solves the problem for all pairs, but $O(n^3)$
 – Dijkstra solves the problem for a given pair, but $O(n^2)$
 • Our implementation was $O(n^2 \log(n))$
 • Actually finds the shortest path, which we don’t need

• Can we do better?
 – Yes: By pre-processing the graph (graph indexing)
Recall: Reachability in Trees

- Assume a DFS-traversal
- Build an array assigning each node two numbers

- **Preorder numbers**
 - Keep a counter pre
 - Whenever a node is entered the **first time**, assign it the current value of pre and increment pre

- **Postorder numbers**
 - Keep a counter post
 - Whenever a node is left the **last time**, assign it the current value of post and increment post

Examples from S. Trissl, 2007
Ancestry and Pre-/Postorder Numbers

• Trick: A node v is reachable from a node w iff
 \[\text{pre}(v) > \text{pre}(w) \land \text{post}(v) < \text{post}(w) \]

• Explanation
 - v can only be reached from w, if w is “higher” in the tree, i.e., v was traversed after w and hence has a higher preorder number
 - v can only be reached from w, if v is “lower” in the tree, i.e., v was left before w and hence has a lower postorder number

• Analysis: Test is O(1)
 - But preprocessing is O(n)
 - Pays off is pre-processed once, followed by many queries
Pre-/Post-order Labeling for Graphs

• Method

 Let $G=(V, E)$. We assign each $v \in V$ a pre-order and a post-order as follows. Set $\text{pre}=\text{post}=1$. Perform a depth-first traversal of G, starting at arbitrary nodes. When a node v is reached the first time, assign it the value of pre as pre-order value and increase pre. Whenever a node v is left the last time, assign it the value of post as post-order value and increase post.

• Notes

 – Traversals are cycle-free by definition – avoid multiple visits
 – Complexity: $O(|V|+|E|)$
 – Labeling not unique; depends on chosen start nodes and order in which children are visited
Example

X

K1

K2

K3

K4

K5

K6

K7

K8

X

K3

K2

K4

K1

K6

K7

K8

K5
Example

Last visit: All children already visited
Example
Example

- Does our trick work?
 - Example: K1-K4
 - Reachable in G
 - But pre(K1)<pre(K4)

- Reachability trick does not work
Ideas to Speed-Up Reachability in Graphs

• Much research over the last decade
 – PPO: Pre-/Post-Order Pair

• Trivial idea: Brute-Force
 – Assign to each node as many PPOs as paths that reach him
 • Choosing a set of roots is tricky
 – Reachability: Compare all pairs of PPOs of v and w (not O(1))
 – Requires exponential space in WC, depending on “tree-likeness”
 – Efficient, if the graph is very “tree-like”
 • Single root, almost acyclic
Ideas to Speed-Up Reachability in Graphs: GRIPP

- **GRIPP**
 - If the graph is acyclic (wait)
 - Modified DFS: When a node is visited for the none-first time, assign another PPO but to not continue traversal further
 - During search, expand nodes in the PP-range of start nodes which have multiple PPOs
 - Expand: “Jump” to the all PPOs and branch another search
 - “Almost constant” runtime in many graphs

Example

- Is E reachable from B?
 - First test: pre(E) < pre(B) – NO
 - But D is reachable from B (with second PPO)
 - Expand D – test its further PPOs
 - Second test (E reachable from D): YES
Tricks to Speed-Up Reachability: GRAIL

- Observation: If v is reachable from w, then there exists a DFS of G in which pre(w) < pre(v) and post(w) > post(v)
 - Example K1-K4: Start DFS in K1

- Idea
 - Perform a fixed number (k) of DFSs and use these as filter
 - If v is reachable from w in any of the DFS: Done.
 - Otherwise use another method (hopefully not often!)
 - Very effective in dense graphs where most pairs are “reachable”
 - Parameter k controls runtime and space (trade-off)
 - Towards a probabilistic algorithm:
 Be very fast with high probability

Yildirim, H., Chaoji, V. and Zaki, M. J. (2010). "GRAIL: Scalable Reachability Index for Large Graphs." *VLDB*
Graph Indexing

- Many other suggestions
 - Runtimes have been reduced since 2005 by at least a factor of 100
 - And graph sizes have grown by a factor of at least 1000
 - Current research: Timed graphs
 - Edges exist only in some windows in time (e.g.: ÖPNV)
 - Find a path and a start time when w is reachable from v

- All require a preprocessing phase (e.g. single or multiple PPO indexing) and a search phase
 - Complexities of both phases depend fundamentally on |G|
 - If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster

- Many methods only work with acyclic graphs
 - We need a way to transform a cyclic graph G into an acyclic graph G' which encoded the same reachability information
Content of this Lecture

- Graph Traversals
- Strongly Connected Components (SCC)
 - Motivation: Graph Contraction
 - Kosaraju’s algorithm
Recall: (Strongly) Connected Components

- **Definition**

 Let $G=(V, E)$ be a directed graph.

 - An induced subgraph $G'=(V', E')$ of G is called connected if G' contains a path between any pair $v, v' \in V'$

 - Any maximal connected subgraph of G is called a **strongly connected component** of G
Recall

- **Definition**

 Let \(G = (V, E) \) be a directed graph.
 - An induced subgraph \(G' = (V', E') \) of \(G \) is called connected if \(G' \) contains a path between any pair \(v, v' \in V' \).
 - Any maximal connected subgraph of \(G \) is called a strongly connected component of \(G \).
Motivation: Contracting a Graph

- Consider finding the **transitive closure (TC)** of a digraph G
 - If we know all SCCs, parts of the TC can be computed immediately
 - Next, each **SCC can be replaced by a single node**, producing G'
 - G' must be acyclic – and is (much) smaller than G
Reachability and Graph Contraction

• Intuitively: $\text{TC}(G) = \text{TC}(G') + \text{SCC}(G)$
 • Reachability $v \rightarrow w$: If $\text{ssc}(v) = \text{ssc}(w)$: yes; else: Look at G'
 • First path can be implemented in $O(1)$ with hashing

• Computing SCC solves some problems in reachability
 – “If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster”
 • Yes we can
 – “We need a way to transform a cyclic graph G into an acyclic graph G' which encoded the same reachability information”
 • Yes we can

• Question – how do we compute $\text{SCC}(G)$?
Content of this Lecture

• Graph Traversals
• Strongly Connected Components (SCC)
 – Motivation
 – Kosaraju’s algorithm
Kosaraju’s Algorithm

- **Definition**
 Let $G=(V,E)$. The graph $G^T=(V, E')$ with $(v,w) \in E'$ iff $(w,v) \in E$ is called the *transposed graph* of G.

- **Kosaraju’s algorithm** is very short (but not simple)
 - Compute post-order labels for all nodes from G using a *first DFS*
 - Break cycles; start as often until all nodes have a post-order
 - We don’t need pre-order values
 - Compute G^T
 - Perform a *second DFS* on G^T always choosing as next root / node the one with the **highest post-order** according to the first DFS
 - **All trees** that emerge from the second DFS are SCC of G (and G^T)

- Kosaraju, 1978 (unpublished)
Example

- Note: Usually, we need more than one root
Example

X
K1
K2
K3
K4
K5
K6
K7
K8

X:9
K3:8
K4:7
K2:6
K6:5
K7:4
K5:3
K8:2
K1:1
Correctness

• Theorem
 Let G=(V,E). Any two nodes v, w are in the same tree of the second DFS iff v and w are in the same SCC in G.

• Proof
 - \iff: Suppose $v \rightarrow w$ and $w \rightarrow v$ in G. One of the two nodes (assume it is v) must be reached first during the second DFS. Since v can be reached by w in G, w can be reached by v in G^T. Thus, when we reach v during the traversal of G^T, we will also reach w further down the same tree, so they are in the same tree of G^T.
Correctness

- \Rightarrow: Suppose v and w are in the same DFS-tree of G^T
 - Suppose r is the root of this tree
 - (1) Since $r \rightarrow v$ in G^T, it must hold that $v \rightarrow r$ in G
 - (2) Because of the order of the second DFS: $\text{post}(r) > \text{post}(v)$ in G
 - (3) Thus, there must be a path $r \rightarrow v$ in G: Otherwise, r had been visited last after v in G and thus would have a smaller post-order
 - (4) Since $v \rightarrow r$ (1) and $r \rightarrow v$ (3) in G, the same is true for G^T
 - (5) The same argument shows that $w \rightarrow r$ and $r \rightarrow w$ in G
 - (6) By transitivity, it follows that $v \rightarrow w$ and $w \rightarrow v$ via r in G and in G^T
Examples \((p(X) = \text{post-order}(X))\)

- \(v \rightarrow w\)
- Thus, \(w \rightarrow v\) in \(G^T\)
- Because \(w \rightarrow v\) in \(G\), \(p(v) > p(w)\)
- First tree in \(G^T\) starts in \(v\); doesn’t reach \(w\)
- \(v, w\) not in same tree

- \(v \rightarrow w\) and \(w \rightarrow v\) in \(G\) and in \(G^T\)
- Assume \(w\) is first in 1st DFS: \(p(w) > p(v)\)
- Thus 2nd DFS starts in \(w\) and reaches \(v\)
- \(v, w\) in same tree

- Let’s start 1st DFS in \(r\): \(p(r) > p(w) > p(v)\)
- 2nd DFS starts in \(r\), but doesn’t reach \(w\)
- Second tree in 2nd DFS starts in \(w\) and reaches \(v\)
- \(v, w\) in same tree
Complexity

- Both DFS are in $O(|G|)$, computing G^T is in $O(|E|)$
- Instead of computing post-order values and sort them, we can simply push nodes on a stack when we leave them the last time in the first DFS – needs to be done $O(|V|)$ times
- In the 2nd DFS, we pop nodes from the stack as new roots
 - Needs one more array to remove selected nodes during second DFS from stack in constant time
- Together: $O(|V|+|E|)$
 - Optimal: Since in WC we need to look at each edge and node at least once to find SCCs, the problem is in $\Omega(|V|+|E|)$
- There are faster algorithms that find SCCs in one traversal
 - Tarjan’s algorithm, Gabow’s algorithm