

Algorithms and Data Structures

AVL: Balanced Search Trees

- AVL Trees
- Searching
- Inserting
- Deleting

History

- Adelson-Velskii, G. M. and Landis, E. M. (1962). "An information organization algorithm (in Russian)", Doklady Akademia Nauk SSSR. 146: 263–266.
 - Georgi Maximowitsch Adelson-Welski (russ. Георгий Максимович Адельсон-Вельский; weitere gebräuchliche Transkription Adelson-Velsky und Adelson-Velski; *1922 in Samara, †2014 in Israel) ist ein russischer Mathematiker und Informatiker. Zusammen mit J.M. Landis entwickelte er 1962 die Datenstruktur des AVL-Baums.
 - Jewgeni Michailowitsch Landis (russ. Евгений Михайлович Ландис; *1921 in Charkiw, Ukraine; †1997 in Moskau) war ein sowjetischer Mathematiker und Informatiker … Zusammen mit G. Adelson-Velsky entwickelte Landis 1962 die Datenstruktur des AVL-Baums.
 - Source: http://www.wikipedia.de/

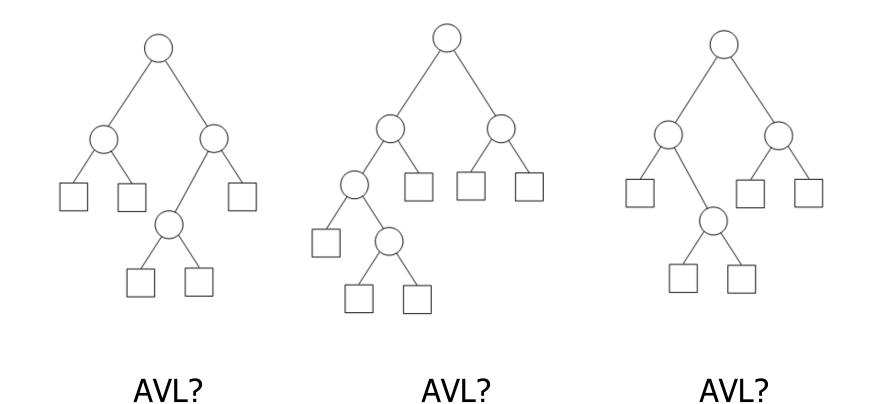
- Natural search trees: Searching / inserting / deleting is O(log(n)) on average, but O(n) in worst-case
- Complexity directly depends on tree height
- Balanced trees are binary search trees with certain constraints on tree height
 - Intuitively: All leaves have "similar" depth: ~log(n)
 - Accordingly, searching / deleting / inserting is in O(log(n))
 - Difficulty: Keep the height constraints during tree updates
- First proposal of balanced trees is attributed to [AVL62]
- Many more since then: brother-, RB-, B-, B*-, BB-, ... trees

Definition

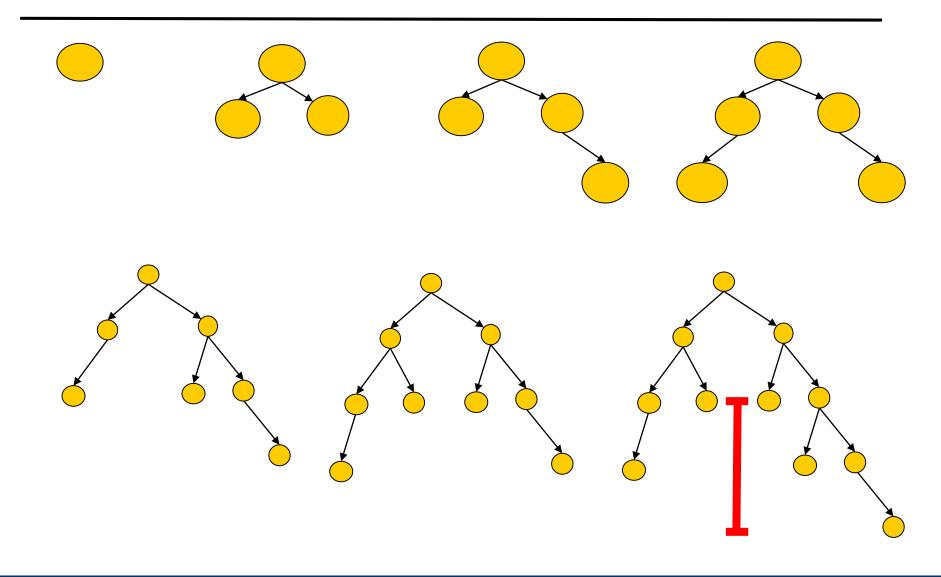
An AVL tree T=(V, E) is a binary search tree in which the following constraint holds: $\forall v \in V$: $|height(v.leftChild) - height(v.rightChild)| \leq 1$

- Remarks
 - AVL trees are height-balanced
 - Condition does not imply that the level of all leaves differ by at most 1
 - Will call this constraint height constraint (HC)
 - AVL trees are search trees, i.e., the search constraint (SC) also must hold: Right child is larger than parent is larger than left child

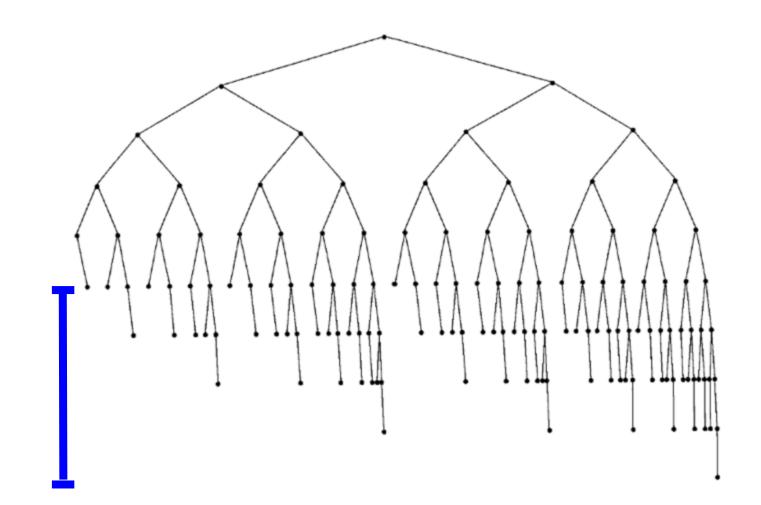
Examples [source: S. Albers, 2010]



"Unbalancing"

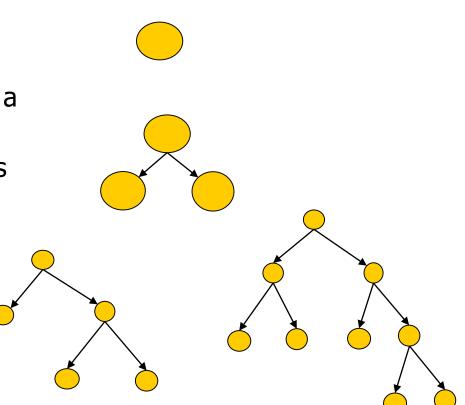


Worst-Case



Height of an AVL Tree

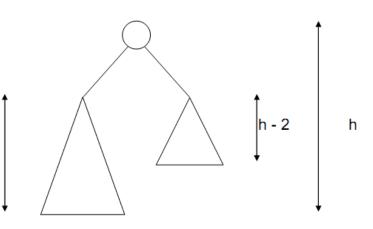
- Lemma The height h of an AVL tree T with |V|=n is in O(log(n))
- Proof by induction
 - We construct AVL trees with the minimal # of nodes (n) at a given height h
 - Let m be the number of leaves
 - h=0 \Rightarrow m=1
 - h=1 \Rightarrow m=1 or m=2
 - $h=2 \Rightarrow 2 \le m \le 4$
 - h=3 ⇒ 3≤m≤8



Height of an AVL Tree

- Lemma
 An AVL tree T with n nodes has height h ≤ O(log(n))
- Proof by induction
 - We construct AVL trees with the minimal # of nodes (n) at a given height h
 - Let m(h) be the minimal number of leaves of an AVL tree of height h
 - It holds: m(h) = m(h-1)+m(h-2)
 - Such "maximally unbalanced" AVL trees are called Fibonacci-Trees

h - 1



Proof Continued

- Because: m(h) are exactly the Fibonacci numbers fib
 0, 1, 1, 2, 3, 5, 8...
- Recall (from Fibonacci search)

$$fib(i) \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{i+1} = \frac{1}{\sqrt{5}} * \left(\frac{1+\sqrt{5}}{2}\right) * \left(\frac{1+\sqrt{5}}{2}\right)^{i} = c * 1,61^{i}$$

• Since h "starts" at i=1

$$m(h) = fib(h+1) \sim c*1,61^{h+1} = c*1,61*1,61^{h} = c*1,61^{h}$$

• This yields (recall: In binary trees: $n \le 2m-1 \Rightarrow (n+1)/2 \le m$)

$$\frac{n+1}{2} \le m(h) \sim c'^* 1,61^h \quad \Rightarrow \quad h \le O(\log(n))$$

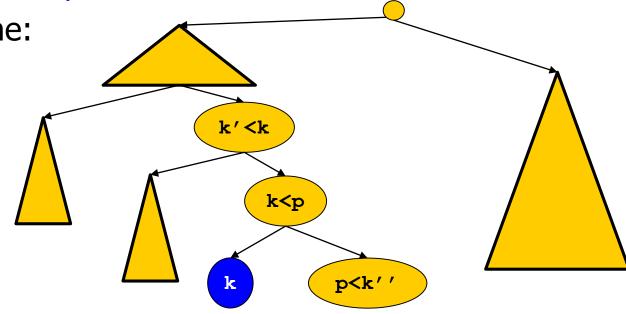
- AVL Trees
- Searching
- Inserting
- Deleting

- Searching is in O(log(n))
 - Follows directly from the worst-case height
- Note: The best-case height is ceil(log(n)), so best-case and worst-case asymptotically are of the same order
- But how can we ensure that the HC is always fulfilled?

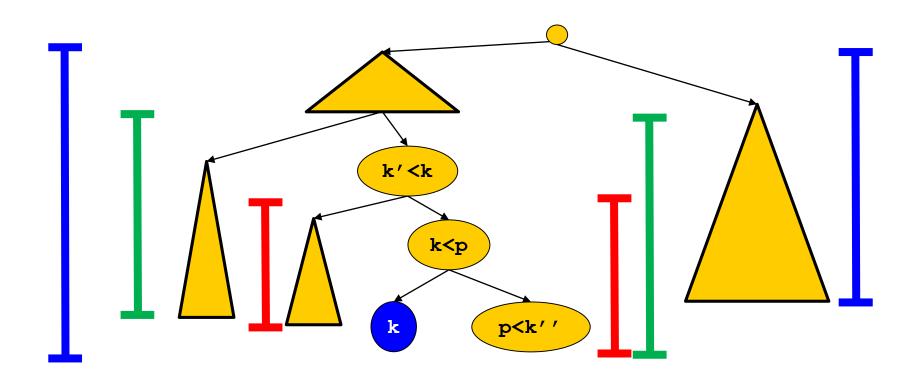
- We start with insertions
- The trick is to insert nodes efficiently without hurting the height constraint (HC) nor the search constraint (SC)
- We first explain the procedure(s) and then prove that HC/SC always holds after insertion of a node if HC/SC held before this insertion
- We have to work for the HC; SC follows almost automatically from the procedure

Framework

- Assume an AVL tree T=(V, E) and we want to insert k, $k \notin V$
- As for search trees, we first check whether k∈V and end in a node p where we know that k cannot be in the subtree rooted at p, but must be placed there
- What are the possible situations?
- This is one:

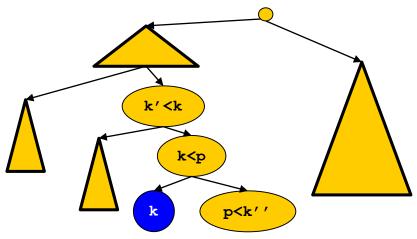


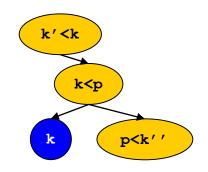
Height Constraints



How to Proof the HC

- We now only look at this particular case
- Before insertion, HC and SC held
 - Note: k" cannot have children
- Height constraint after ins(k)
 - The height of only one subtree changes – left child of p
 - Adding k does not hurt HC in p (because k" exists)
 - Thus, HC holds after insertion
- Search constraint (we have k'<k<p<k")
 - Since k is larger than k', it must be in the right subtree of k'
 - Since k is smaller than p, it must be in the left subtree of p
 - This subtree didn't exit and is created now
 - Thus, SC holds after insertion

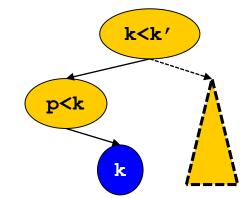




 Since we do not change the height of the subtree under p (nor of any other subtree), the HC must hold for ancestors of p and all nodes of T after insertion if it held before insertion Also trivial

k<k' p<k k''<p

- Problem
 - The subtree of p = the left subtree of k' changes its height
 - We have to look at the height of the right subtree of k' to decide what to do
 - Actually, we only need to know if it is larger, smaller, or equal in height to the left subtree (before insertion)



- We assume that we found the position of k such that SC holds after insertion
 - We don't need to check from now on its part of the case
- To check HC, we need to know the prior height differences in every node that is an ancestor of the new position of k
- Definition

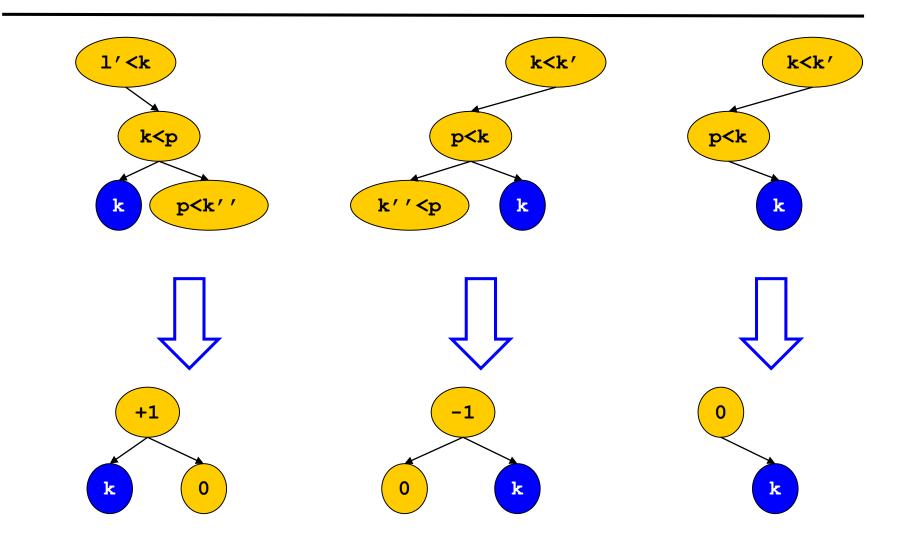
Let T=(V, E) be a binary tree and $p \in V$. We define

bal(p) = height(right_child(p)) - height(left_child(p))

• Lemma

If T is an AVL tree, then $\forall p: bal(p) \in \{-1, 0, 1\}$

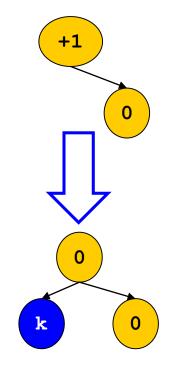
New Presentation



Now Systematically: 3 Cases

- Assume AVL tree T=(V, E) and we want to insert k, $k \notin V$
- We found parent p under which we must insert k (for SC)
- Three possible cases

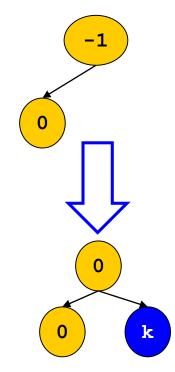
- Case 1: bal(p)=+1
 - Then there exists a right "subtree" of p (one node only)
 - We insert k as left child
 - Height of p doesn't change
 - Ancestors of p remain unaffected
 - Adapt bal(p) and we are done



Case 2

- Assume AVL tree T=(V, E) and we want to insert k, $k \notin V$
- We found parent p under which we must insert k (for SC)
- Three possible cases

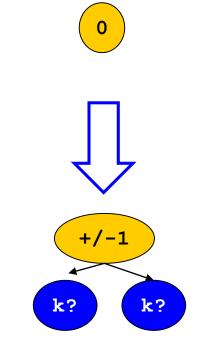
- Case 2: bal(p)=-1
 - Then there exists a left "subtree" of p (one node only)
 - We insert k as right child
 - Height of p doesn't change
 - Ancestors of p remain unaffected
 - Adapt bal(p) and we are done



Case 3

- Assume AVL tree T=(V, E) and we want to insert k, $k \notin V$
- We found parent p under which we must insert k (for SC)
- Three possible cases

- Case 3: bal(p)=0
 - There is neither a left nor a right subtree of p (p is a leaf)
 - We insert k as left or right child
 - Height of p changes (HC valid?)
 - Ancestors of p are affected
 - Idea: Adapt bal(p) and look at parent(p)

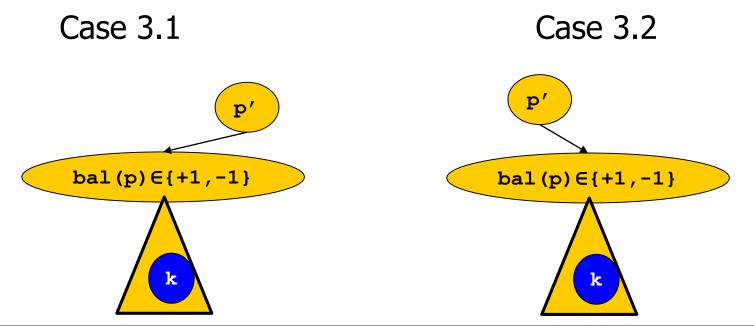


Up the Tree

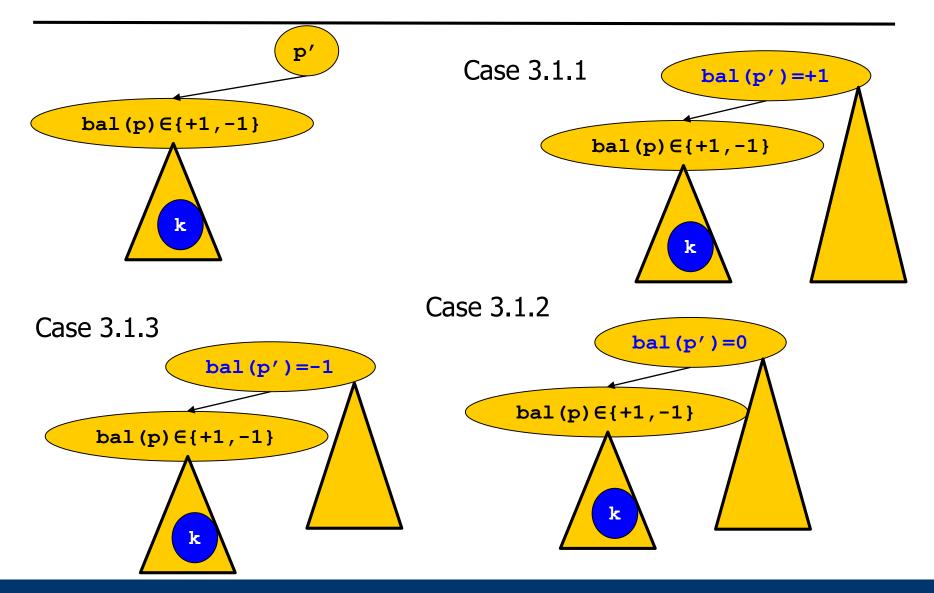
- If bal(p)=0, we have to check HC in ancestors of p
- We call a procedure upin(p) recursively
 - We look at the parent p' of p
 - We check bal(p') to see if the height change in p breaks HC in p'
 - If not, we are done
 - If yes, we can either fix it locally (below p') or have to propagate further up the tree
- "Fixing locally" in constant time is the main trick behind AVL trees
- Since we can call upin(p) only O(log(n)) times the height of an AVL tree with n nodes – and do only constant work: Insertion is in O(log(n))

Subcases – Somewhere in the Tree

- p can either be the left or the right child of its parent p'
- Note that bal(p) must be +1 or -1 when upin() is called
 - We call this PC, the precondition of upin()
 - In the first call, bal(p)=0 before insertion, thus +1/-1 afterwards
 - In later calls: We have to check



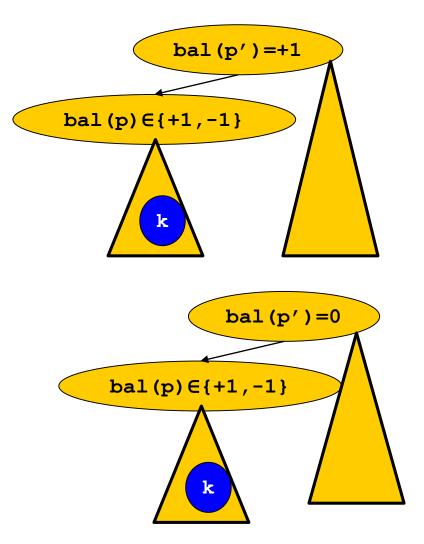
Subcases of Case 3.1



Ulf Leser: Algorithms and Data Structures

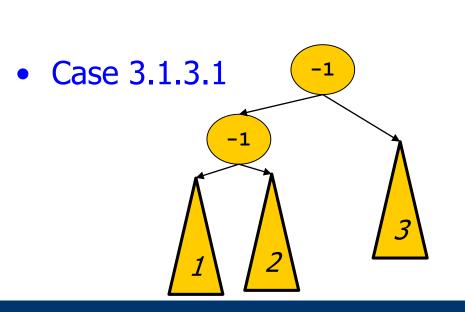
Subcases of Case 3.1

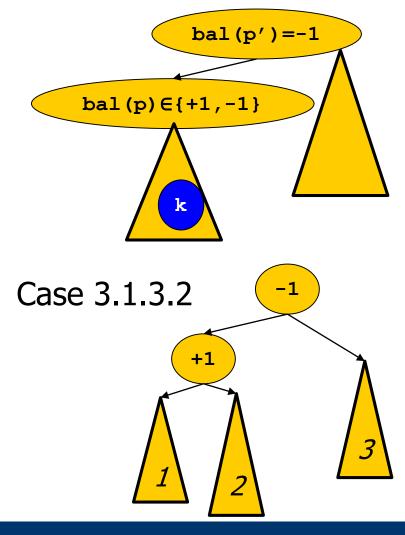
- Case 3.1.1 (bal(p')=+1)
 - Right subtree of p' was higher than left subtree
 - Left subtree has just grown by 1
 - Thus, height of p' doesn't change
 - Set bal(p`)=0 and we are done
- Case 3.1.2 (bal(p')=0)
 - Left and right subtree of p' had same height
 - Height of p' changes, but HC holds in p'
 - Set bal(p')=-1 and call upin(p')
 - Note: PC holds



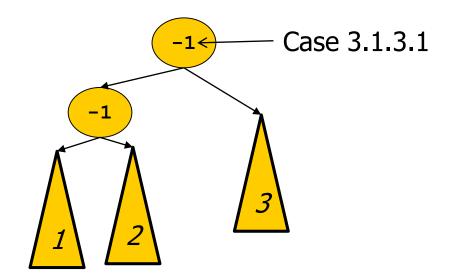
Subcases of Case 3.1

- Case 3.1.3 (bal(p')=-1)
 - Left subtree of p` was already higher than right subtree
 - And has even grown further
 - HC is hurt in p'
 - Fix locally but how?



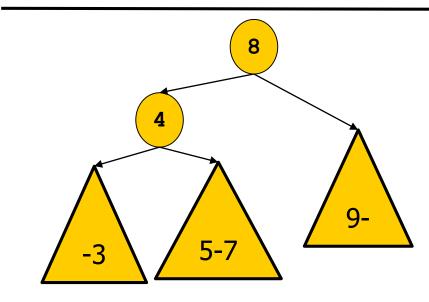


A Closer Look



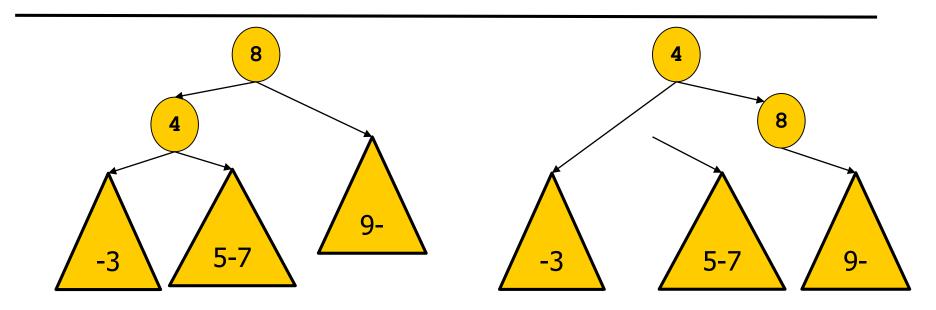
- Subtree 1 contains values smaller than p (and than p')
- Subtree 2 contains values larger than p, but smaller than p'
- Subtree 3 contains values larger than p' (and than p)
- Can we rearrange the subtrees rooted in p' such that SC and HC hold?

Example



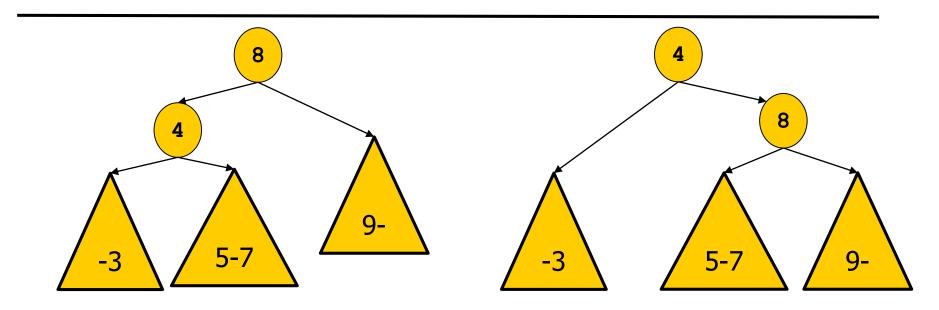
- Subtree 1 contains values smaller than p (and than p')
- Subtree 2 contains values larger than p, but smaller than p'
- Subtree 3 contains values larger than p' (and than p)
- Idea: There are not "enough" values larger than p'
- Thus, p' cannot be root of this subtree rotate

Rotation



- Rotate nodes p and p' to the right
 - Tree "-3" has lost height (8 moved)
 - Fine: Was too high
 - Tree "9-" gained height (4 on top)
 - Fine: Was too low

Rotation



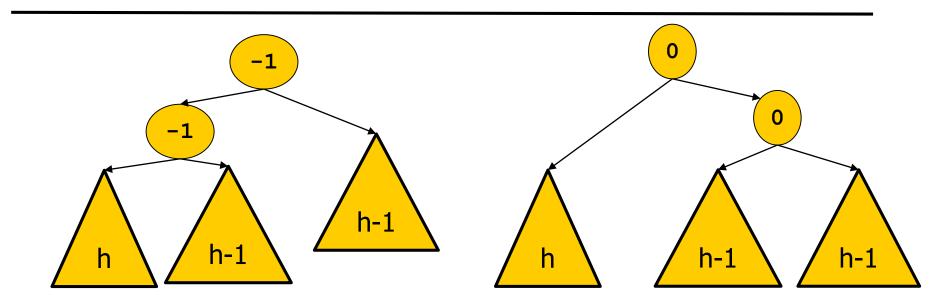
- Rotate nodes p and p' to the right
 - Tree "5-7" keeps height
- Clearly, SC holds
- Impact on HC?

Rotation and HC



- Before rotation after insertion
 - p': HC hurt in left subtree (height now is h+1) versus right subtree (height remains h-1)
 - Entire subtree at p' before insertion had height h+1

Rotation and HC



- Before rotation after insertion
 - p': HC hurt in left subtree (height now is h+1) versus right subtree (height remains h-1)
 - Entire subtree at p' before insertion had height h+1

- After rotation
 - HC holds
 - Height of subtree at p' is
 h+1 and hence unchanged
 - No further upin()

Second Sub-Sub-Subcase

- Case 3.1.3
 - Left subtree of p` was already higher than right subtree

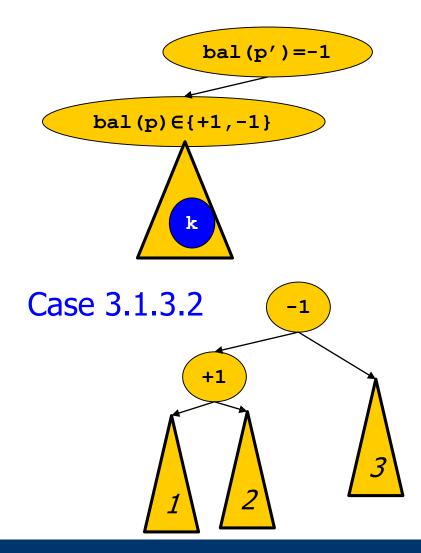
-1

2

-1

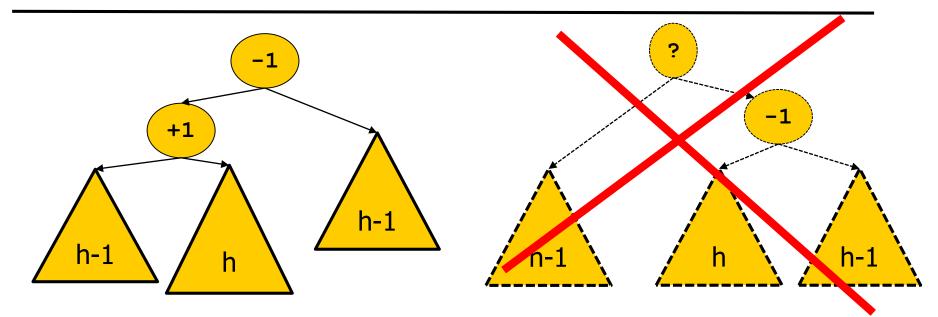
3

- And has even grown
- HC is hurt in p'
- Fix locally
- How?
- Case 3.1.3.1



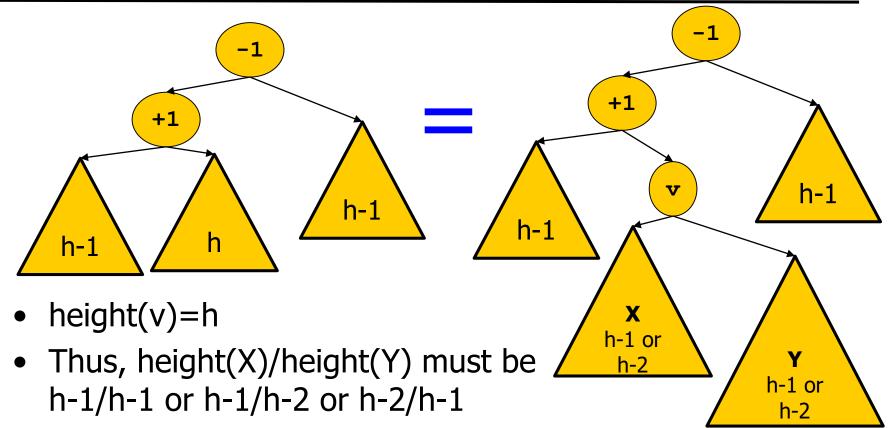
1

More Intricate



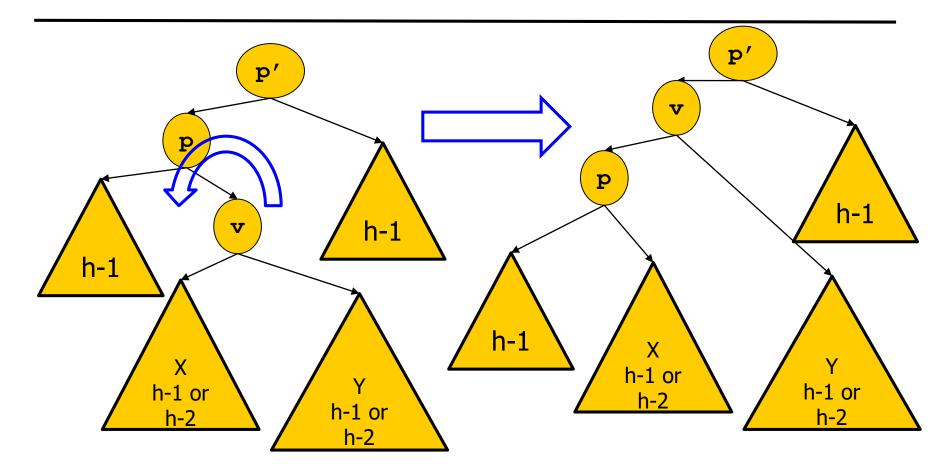
- HC hurt (height of left subtree of p' is h+1, right ST is h-1)
- If we rotated to the right, p (the new root) would have a left subtree of height h-1 and a right subtree of height h+1
 - The "deep" subtree "h" remains deep
- Forbidden by HC
- We have to break into the subtree "h"

Breaking a Subtree

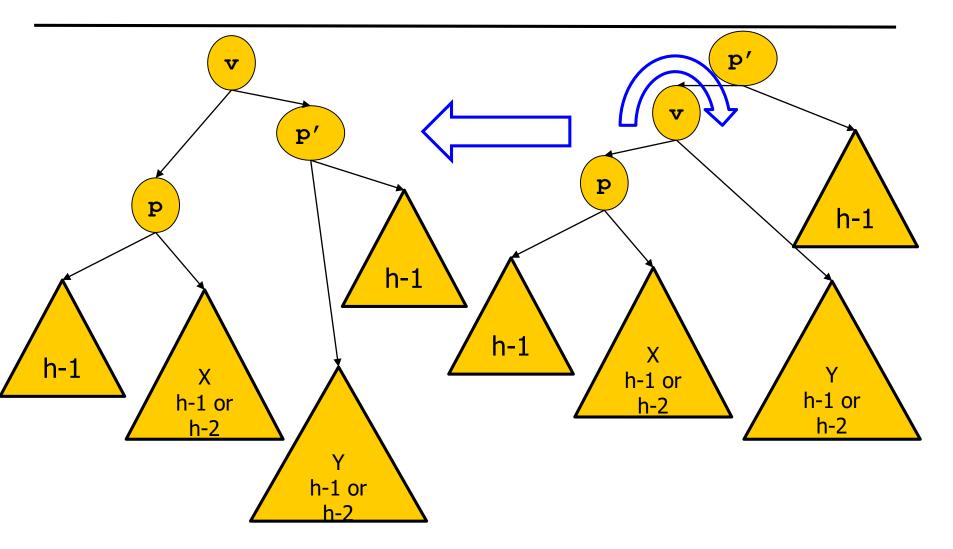


 But: Since the subtree rooted at p has just grown in height, this growth must have happened below v (because bal(p)=+1), so we must have height(X)≠height(Y)

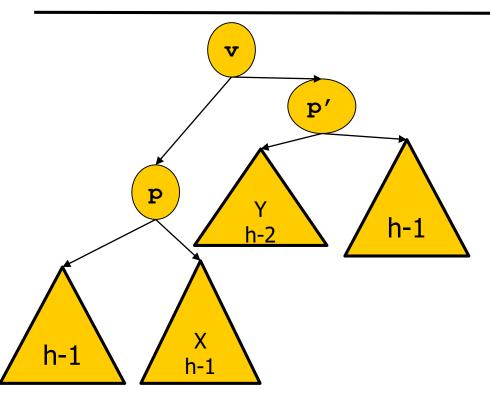
Double Rotation: First Rotation



Double Rotation: Second Rotation

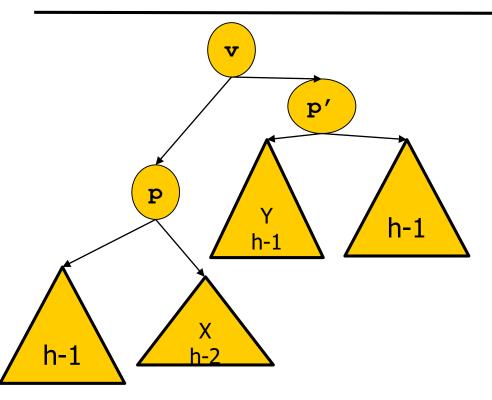


AVL Constraints



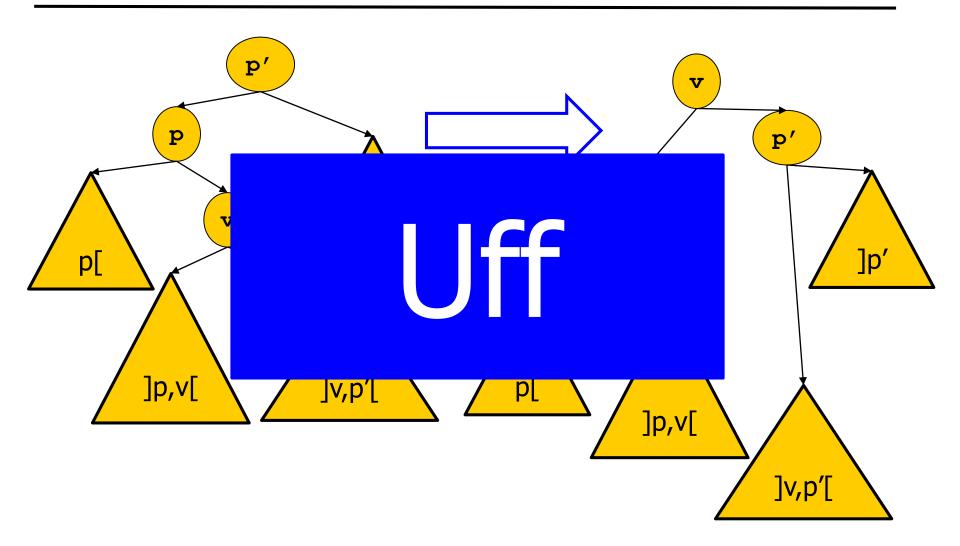
- Adaptation: If h(X)=-1 and h(Y)=-2, we now get
 - bal(p) = 0
 - bal(p') = +1
 - bal(v) = 0
 - Both ST have height h
- Height constraint
 - Holds in every node
- Need to call upin(v)?
 - No: Subtree had height h+1 and still has height h+1
- Search constraint?

AVL Constraints



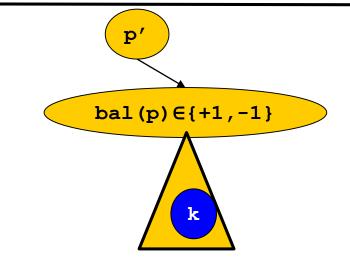
- Adaptation: If h(X)=-2 and h(Y)=-1, we now get
 - bal(p) = -1
 - bal(p') = 0
 - bal(v) = 0
 - Both ST have height h
- Height constraint
 - Holds in every node
- Need to call upin(v)?
 - No: Subtree had height h+1 and still has height h+1
- Search constraint?

Search Constraint



Are we Done?

• Case 3.2

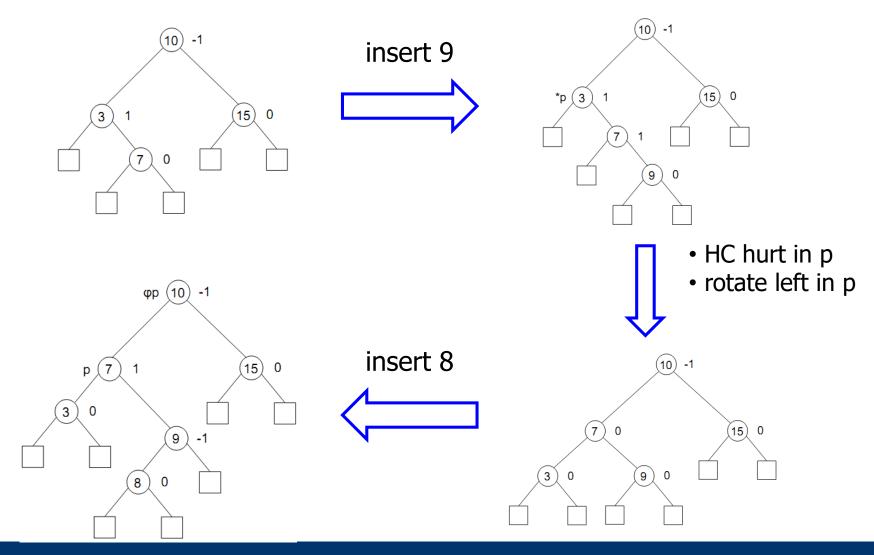


- Similar solution
 - If bal(p')=-1, adapt and finish
 - If bal(p')=0, adapt and call upin(parent(p')
 - If bal(p')=+1, then
 - Case 3.2.3.1: Rotate left in p
 - Case 3.2.3.1: Rotate right in p, then rotate left in v

Summary

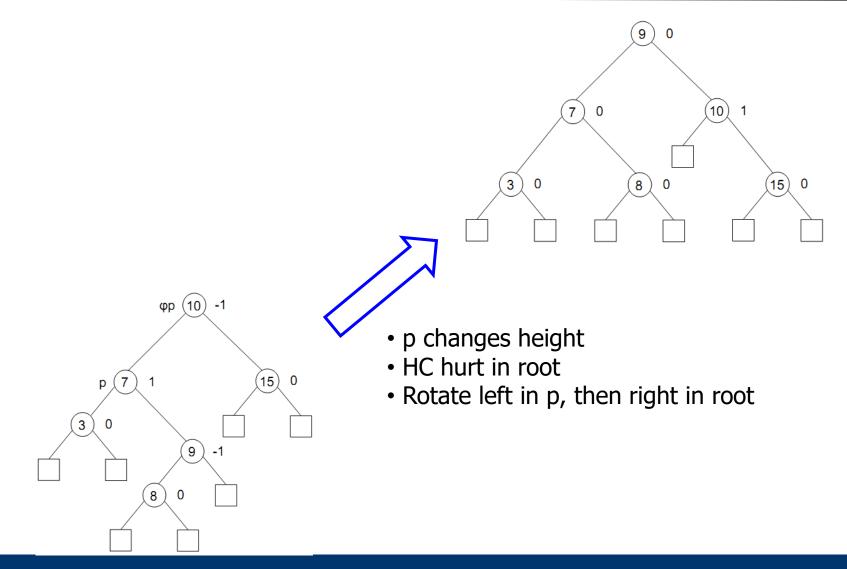
- We found the node p under which we want to insert k
- Major cases
 - If k
 - If k>p and leftChild(p)≠null: Insert k (new right child)
 - If p has no children: Insert k and call upin(p)
- Procedure upin(p)
 - If p=leftChild(p')
 - If bal(p')=1: Set bal(p')=0, done
 - If bal(p')=0: Set bal(p')=-1, call upin(p')
 - If bal(p')=-1:
 - If bal(p)=-1: Rotate right in p, done
 - If bal(p)=+1: Rotate left in p, right in v, done
 - Else (p=rightChild(p'))

Example



Ulf Leser: Algorithms and Data Structures

Example

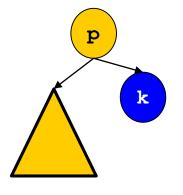


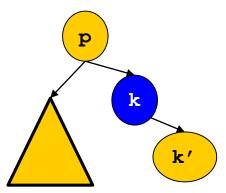
- AVL Trees
- Searching
- Inserting
- Deleting

- Follows the same scheme as insertions
- First find the node p which holds k (to be deleted)
- We will again find cases where we have to do nothing, cases where we have to rotate, and cases where we have to propagate changes up the tree
- We will be a bit more sloppy than for insertions details can be found in [OW]

Major Cases

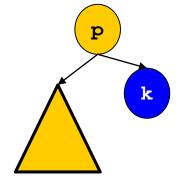
- Case 1: k has no children
 - Remove k, adapt bal(p)
 - If bal(p) is set to 0, then height has shrunken by 1
 - All other cases are easily resolved locally
 - Then call upout(p)
- Case 2: k has only one child
 - Replace k with k`
 - k' cannot have children, or HC would not hold in k
 - Height of k' has changed
 - Call upout(k')



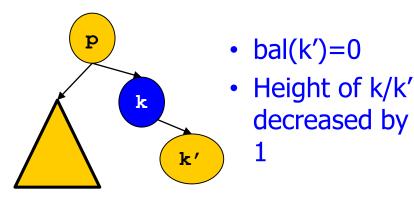


Invariant

- Case 1: k has no children
 - Remove k, adapt bal(p)
 - If bal(p) is set to 0, then height has shrunken by 1
 - All other cases are easily resolved locally
 - Then call upout(p)
- Case 2: k has only one child
 - Replace k with k`
 - k' cannot have children, or HC would not hold in k
 - Height of k' has changed
 - Call upout(k')

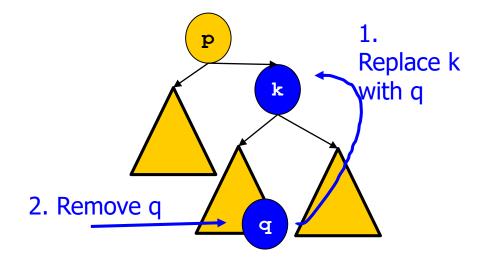


- bal(p)=0
- Height of p decreased by 1



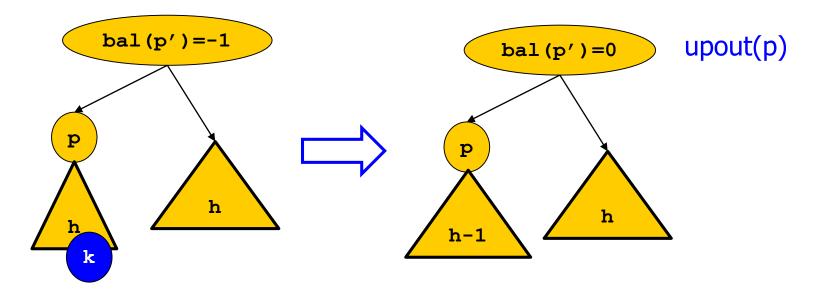
Case 3

- Case 3: k has two children
 - Recall natural search trees
 - We search the symmetric predecessor q of k
 - Replace k with q and call delete(q) (the old one)



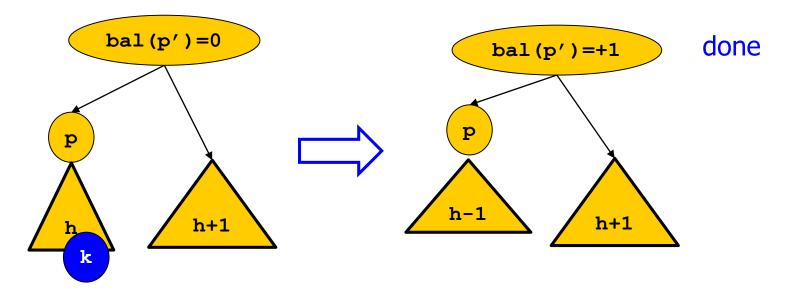
Procedure upout(p)

- Whenever we call upout(p), the height of p has decreased by 1 and bal(p)=0
- Let p be the left child of its parent p'
 - Again, the case of p being the right child of p' is symmetric
- Case 1; bal(p')=-1

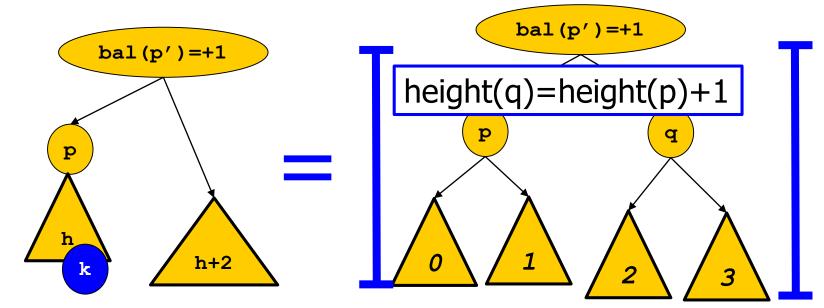


Procedure upout(p)

- Whenever we call upout(p), the height of p has decreased by 1 and bal(p)=0
- Let p be the left child of its parent p'
 - Again, the case of p being the right child of p' is symmetric
- Case 2: bal(p')=0

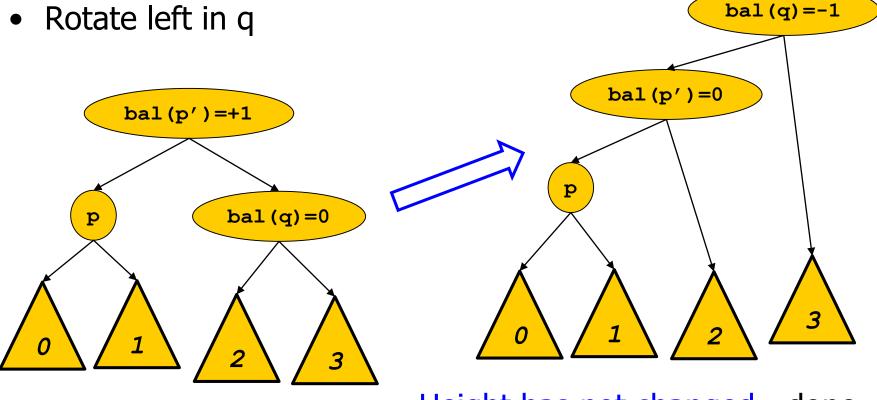


- Whenever we call upout(p), the height of p has decreased by 1 and bal(p)=0
- Let p be the left child of its parent p'
 - Again, the case of p being the right child of p' is symmetric
- Case 3: bal(p')=+1



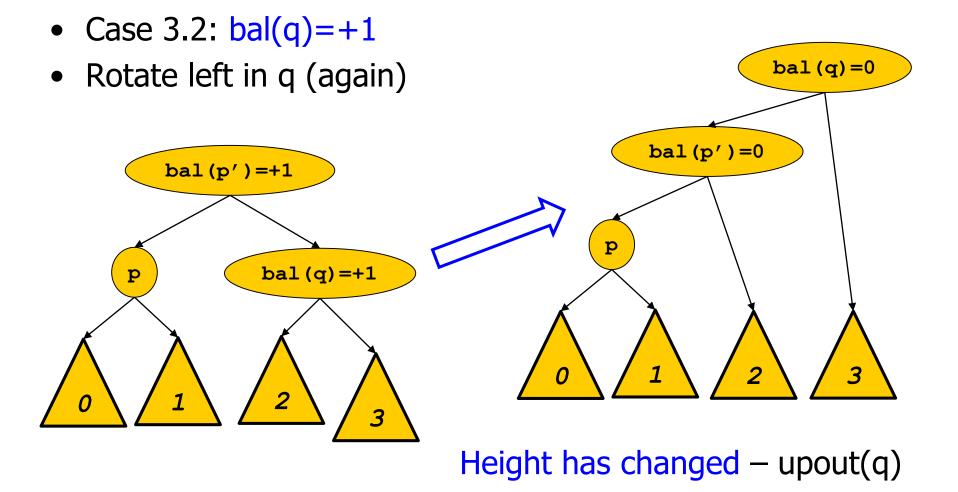
Subcase 1

- Case 3.1: bal(q)=0
- Rotate left in q

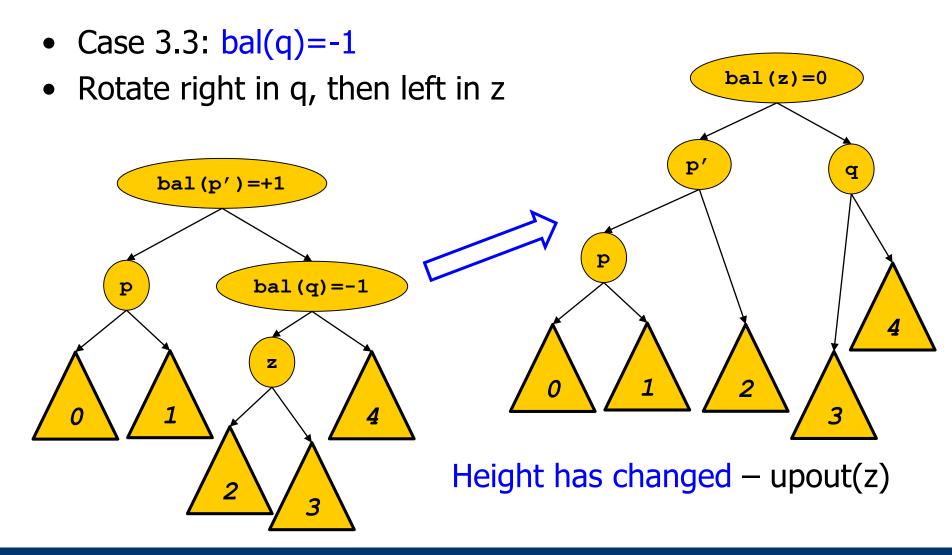


Height has not changed - done

Subcase 2



Subcase 3



- With a little work, we reached our goal: Searching, inserting, and deleting is in O(log(n))
- One can also show that ins/del are in O(1) on average
 Because reorganizations are rare and usually stop very early
- AVL trees are a "work-horse" for managing a sorted list
- AVL trees are bad as disk-based DS
 - Disk blocks (b) are much larger than one key, and following a pointer means one head seek
 - Better: B-Trees: Trees of order b with constant height in all leaves
 - b typically $\sim 1000 all children of a node should fill one IO block$
 - Finding a key only requires O(log₁₀₀₀(n)) seeks

- Given the following AVL tree and the following sequence of operations <(I,15>, <D, 25>, <I, 8>, ...). Draw the tree after every operation. In case rotations are necessary, also draw the tree after every rotation.
- Give a formal proof that the height of a AVL-Tree over n nodes is in O(log(n)). Use the formula fib(n)~c*1.6ⁿ, for some constant c.
- Consider the following AVL tree. Insert as many nodes as possible (with arbitrary yet reasonable key values) without changing the height of any of its subtree.